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540142 Targu Mures, Romania; bela.genge@umfst.ro (B.G.); adrian.duka@umfst.ro (A.-V.D.);
piroska.haller@umfst.ro (P.H.)
* Correspondence: adrian.roman@umfst.ro

Abstract: Modern auto-vehicles are built upon a vast collection of sensors that provide large amounts
of data processed by dozens of Electronic Control Units (ECUs). These, in turn, monitor and control
advanced technological systems providing a large palette of features to the vehicle’s end-users
(e.g., automated parking, autonomous vehicles). As modern cars become more and more intercon-
nected with external systems (e.g., cloud-based services), enforcing privacy on data originating from
vehicle sensors is becoming a challenging research topic. In contrast, deliberate manipulations of
vehicle components, known as tampering, require careful (and remote) monitoring of the vehicle
via data transmissions and processing. In this context, this paper documents an efficient method-
ology for data privacy protection, which can be integrated into modern vehicles. The approach
leverages the Fast Fourier Transform (FFT) as a core data transformation algorithm, accompanied
by filters and additional transformations. The methodology is seconded by a Random Forest-based
regression technique enriched with further statistical analysis for tampering detection in the case
of anonymized data. Experimental results, conducted on a data set collected from the On-Board
Diagnostics (OBD II) port of a 2015 EUR6 Skoda Rapid 1.2 L TSI passenger vehicle, demonstrate
that the restored time-domain data preserves the characteristics required by additional processing
algorithms (e.g., tampering detection), showing at the same time an adjustable level of privacy.
Moreover, tampering detection is shown to be 100% effective in certain scenarios, even in the context
of anonymized data.

Keywords: automotive systems; data distortion; data privacy; Fast Fourier Transform; tampering

1. Introduction

Technological advancements have entirely reshaped the automotive industry. Modern
auto-vehicles are built upon a vast collection of sensors that provide a large amount of data
processed by dozens of Electronic Control Units (ECUs) [1]. ECUs monitor and control
advanced technological systems providing an extensive palette of features to the vehicle’s
end-users (e.g., automated parking, driverless vehicles). An overview of the vehicle’s
internal architecture is shown in Figure 1.

As modern cars become more and more integrated with external systems (e.g., cloud-
assisted monitoring and remote control), decisions are being taken at a rapid pace both
locally, within ECUs, as well as in various external systems. These external components
are aimed at facilitating advanced processing and, ultimately, to support the vehicle in
delivering its modern features (e.g., anomaly detection modules, diagnostics systems).
While, nowadays, vehicles are progressing towards the automotive Internet of Things [2],
difficulties in securing in-vehicle communications are exposing the vehicle not only to cyber
attacks [3,4], but also to tampering [5,6]. Tampering denotes deliberate and unauthorized
manipulations of vehicle components, which alter vital vehicle functions aimed at gaining
certain advantages (e.g., financial). Odometer tampering, for instance, is affecting used
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car dealers and consumers. As a result, several stakeholders have raised their concerns
and have requested urgent solutions [7]. The European Commission estimated that up to
50% of used cars that are being traded across the borders within the European Union (EU)
have their odometer manipulated. Other reports showed that a large number of trucks
across various European Union countries have emissions much higher than their EURO
norm, which suggests the presence of tampering (or the lack of maintenance) with vehicle’s
emission control systems [8].

Figure 1. Internal architecture of the modern vehicle.

In light of such threats, it becomes imperative to transmit vehicle data to the relevant
authorities for further processing and analysis. Especially in the context of tampering,
where the vehicle is modified with the owner’s consent, data tampering detection cannot
be contained only within the vehicle, since the vehicle owner may also tamper with the
detection system. Therefore, a connected approach is required, where tampering detection
is performed outside the vehicle. However, data transfers outside the vehicle are not
trivially achievable, both from a security and, more significantly, from a data privacy
perspective. The latter issue has recently come to the attention of policy-makers as well.
Accordingly, the European Commission, through the European Data Protection Board,
adopted on 28 January 2020 the “Guidelines 1/2020 on processing personal data in the
context of connected vehicles and mobility related applications” [9]. The document defines
personal data in the context of connected vehicles and distinguishes between different
types of personal data, including geolocation, biometrics, and data revealing criminal
offenses or other infractions. Subsequently, the document elaborates on the purpose and
processing techniques of data. Consequently, in order to facilitate the implementation
of regulatory directives, both policymakers and researchers need to work together and
elaborate efficient techniques applicable both inside and outside the vehicle.

In line with recent policy-level requirements [9], this paper documents an efficient
methodology for data privacy protection and tampering detection. The efficiency of the
data anonymization methodology makes it suitable for in-vehicle implementation, while
the tampering detection can be performed outside the vehicle, on the already anonymized
data. This approach is in accordance with recent regulatory requirements, which explic-
itly stipulate that “wherever possible, use processes that do not involve personal data or
transferring personal data outside of the vehicle (i.e., the data is processed internally)” [9].
The developed approach for data anonymization leverages data distortion [10] as a funda-
mental technique, and, more specifically, the Fast Fourier Transform (FFT) as a core data
transformation algorithm. Observing that the complexity of the FFT is O(n log n) [11], we
find it suitable for implementation in existing ECUs. Since the proposed approach filters
data in the frequency domain, which inevitably results in data loss, the original data matrix
can not be easily reconstructed from the distorted matrix. The data anonymization method-
ology is accompanied by a tampering detection technique that leverages the Random Forest
ensemble machine learning technique and the cumulative sum algorithm. As demonstrated
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by experimental results conducted on a data set collected from the On-Board Diagnostics
(OBD II) port of a 2015 EUR6 Skoda Rapid 1.2L TSI passenger vehicle, the restored data
(i.e., in the time domain) preserves the required characteristics for tampering detection.

Compared to prior works [12–14], the approach documented in this paper distin-
guishes itself from several perspectives: (i) the transformations and pre-processing for data
privacy are performed early, in the vehicle, to ensure end-to-end privacy protection; and
(ii) the reduced complexity (O(n log n)) of the data anonymization makes it suitable for
integration in vehicle controllers.

The remainder of the paper is organized as follows. Section 2 provides an overview of
related techniques. The proposed approach is presented in Section 3. The experimental
results are documented in Section 4, and the conclusions are formulated in Section 5.

2. Related Work

Various mechanisms have been proposed to preserve data privacy when potentially
sensitive information is transmitted over the Internet (as sensor data is transferred from
auto-vehicles to data analysis servers). Data needs to be protected both from the honest-
but-curious [15], as well as from external attackers [16]. As data analysis and data mining
do not necessarily require the exact values captured from sensors, original data can be
distorted or/and aggregated while providing valuable input for further data process-
ing. The remainder of this section documents both traditional techniques used for data
anonymization and more recent privacy-preserving algorithms.

2.1. Background and Overview of Traditional Techniques

Time-series data collected from automotive systems contain information that may, for
instance, lead to the identification of the driver [17]. Sensitive information (e.g., geolocation
data, biometrics) should be hidden before leaving the vehicle and reaching an external sys-
tem used for data analysis purposes (e.g., tampering detection). The following, potentially
sensitive, characteristics of the time-series data have been identified [18] and should be
considered while implementing data privacy techniques are: amplitude (the strength of a
signal), average, peak and trough, trend, and periodicity (in the frequency domain).

Within the scientific literature we find three main directions for protecting time-series
data: encryption, anonymization, and perturbation [19].

Encryption is a traditional privacy approach used to protect the data from unauthorized
access. However, encryption may be challenging to implement in sensor-based systems
due to their limited processing power. The anonymization (sometimes called sanitation [20])
consists of deleting, replacing, or hashing all the personally identifiable information (PII)
within a data set. This process does not reduce the data quality, and anonymized data can
be safely transported over the Internet. Popular approaches for data anonymization include
k-anonymity [21], l-diversity [22], and t-closeness [23]. Perturbation, on the other hand, distorts
data to protect the privacy of personal data [24]. The distortion decouples the resulting
data from the original record values, and the perturbation algorithms use data to derive
aggregate distributions. Two main advantages of perturbation are worth mentioning: it
does not require additional knowledge of other records and its computational complexity
is low [20].

The typical approach to hiding sensitive information in time series is data perturbation
or distortion, which has been actively studied in recent years. Data perturbation techniques
include randomization-based methods (additive perturbation [25], multiplicative perturba-
tion [26,27], geometric perturbation [26], nonlinear perturbation [28], differential privacy
(DP) [29]) and transformation-based methods [30–34].

Randomization-based methods consist of perturbing the original data using randomly
generated values. Considering a set of data values, denoted by X = x1 . . . xN , collected
from one sensor and the perturbed set, denoted by Y, the additive perturbation [25] consists
of adding independent identically distributed (i.i.d.) random values extracted from a
probability distribution (e.g., Uniform, Gaussian), denoted by E = e1 . . . eN , to the X vector
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of values, such that Y = x1 + e1 . . . xN + eN . In the case of multiplicative perturbation [27],
the perturbation is described as Y = X · E, where E has a specific variance and a mean of
1.0. Starting from the original data matrix X, a geometric perturbation is a mix of additive and
multiplicative perturbations that maps the distorted data as: Y = RX + Φ + ∆, where X is
the original data, R is a rotation permutation matrix, Φ is a random translation matrix, ∆ is
the noise matrix with independently and identically distributed values from a Gaussian
distribution [26], and Y is the distorted data. Finally, the nonlinear randomization takes
the following form: Y = B + Q · N (A + RX), where B, Q, A, R are random matrices, N
is a bounded nonlinear function [28], and Y is the distorted matrix. Generally speaking,
perturbations based on randomization provide fair privacy, are good at preserving the
distance between data points, are computationally efficient [27], and they may also provide
lossy compression [30]. However, the noise can be filtered in many cases [35], thus the
approach may be vulnerable to various types of attacks, such as “known-input attacks” [36]
or MAP estimations [16].

Differential privacy (DP) is a newer approach for data perturbation that has been
successfully used in various scenarios (e.g., centralized and federated learning [37,38]).
Differential privacy protects data by adding the selected amount of noise to the original
data using various mathematical algorithms (e.g., Laplace, Gaussian). However, obtaining
the desired trade-off between privacy and accuracy may be difficult for time-series, and it
may result in the reduction of data utility [19].

Another practical approach for data anonymization is data transformation: the collected
values are firstly translated from the original feature space into a lower-dimensional feature
space. Furthermore, high energy coefficients are considered [30], or noise is added to the re-
sulting data matrix. In the end, the processed data is transformed back to the original space.
Examples of such transformations that preserve Euclidean distances are the discrete Fourier
transform (DFT) and the discrete Wavelet transform (DWT) [39]. Various algorithms that
implement data transformations have been described in the literature, such as the Fourier
perturbation algorithm (FPA) [32], clamping Fourier perturbation algorithm (CFPA) [34],
wavelet perturbation algorithm (WPA) [33], and clamping wavelet perturbation algorithm
(CWPA) [34]. These approaches are useful as they preserve Euclidean distances [30,31],
make the reconstruction of original values difficult, and provide significant data reduc-
tion. The drawback of time-series data transformation is related to the usefulness of the
perturbed data, as a trade-off between privacy and utility needs to be established.

2.2. Privacy-Preserving Detection Techniques

Considering that the developed approach for tampering detection leverages anomaly
detection principles, the remainder of this section focuses on the analysis of prior privacy-
preserving anomaly detection techniques.

In general, anomaly detection is a well-established direction of research with applica-
tions in various domains. In the case of industry-grade anomaly detection Genge, et al. [40]
adopted Principle Component Analysis (PCA) for dimensionality reduction, alongside
statistical analysis for anomaly detection. The applicability of data clustering techniques
for anomaly detection was explored in the work of Kiss, et al. [41]. In this approach, Gaus-
sian Mixture Model (GMM) was compared to the K-means clustering technique, and the
superior performance of the former was demonstrated in the context of a chemical process.
A similar attempt for the classification of different events was undertaken by Wang and
Mao in [42]. Here, an ensemble of two models of one-class classification was developed.
Its performance was demonstrated in the context of two industrial installations (an electric
arc furnace and a wind tunnel) and several public datasets. In the direction of multivariate
statistical analysis, we find the work of Daegeun Ha, et al. [43]. Here, the multi-mode PCA
was used together with the K-nearest neighbor algorithm for process monitoring and data
classification. The approach was evaluated in the context of a mixed refrigeration physical
process. In a similar direction, Portnoy, et al. [44] developed a weighted adaptive recur-
sive PCA approach for fault detection in a natural gas transmission pipeline. Conversely,
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Chen, et al. [45], aimed at reducing the size of the monitored parameter space with the help
of a multisensor fusion strategy. The approach was tested in the context of state estimation
of a small power network.

Similar works related to anomaly detection can be found in Internet of Things [46], and
automotive systems [47]. In the remainder of this section, however, we focus on privacy-
preserving anomaly detection. To this end, Keshk, et al. [12] used feature selection based
on Pearson’s correlation coefficient (PCC) to approximate the linear correlation between
two or more different variables. This was followed by the GMM to combine different
features and to detect anomalous behavior. Essentially, data privacy was implemented
via the PCC and the GMM, which combine the features and ensure that the original
information is hidden. Compared to the approach proposed by Keshk, et al., the work at
hand distinguishes itself by leveraging transformations and pre-processing early in the
vehicle to ensure that data is already anonymized before being transmitted to any further
processing (e.g., tampering detection).

Moving towards computation-intensive techniques, we find homomorphic encryption.
Homomorphic encryption is a recent direction in cryptography, which has risen from the
need to apply mathematical computations on encrypted data. Accordingly, the scenario
entails that data is appropriately encrypted, and subsequent computations need to be
applied in order to detect abnormal data. To this end, Alabdulatif, et al. [13] developed a
privacy-preserving anomaly detection technique in a cloud-based approach. The solution
entails the presence of data centers where sensitive data is stored and further processed
for the detection of anomalies. The approach builds on Domingo-Ferrer’s additive and
multiplicative privacy homomorphism scheme [48]. The scheme implies public/private
parameters alongside modulo operation with large integers. Other techniques leveraging
homomorphic techniques have been documented in the scientific literature, which has
been applied in various directions [14,49].

More recently, Gyawali, et al. [50] developed an approach for a privacy-preserving
misbehavior detection system in vehicular communication networks. The approach lever-
ages several external components, alongside homomorphic encryption to enforce privacy,
while detecting abnormal vehicle behavior. As already mentioned, and in comparison
with Gyawali’s work, the approach documented in the paper at hand can be viewed as
complementary. That is, its high computational efficiency (in terms of data anonymization)
enables its provisioning within vehicles. However, in the case of external and collaborative
data analysis, Gyawali’s approach could be applied on top of the approach at hand. This
would ensure end-to-end data privacy, starting from the first component (e.g., the Engine
Control Unit), up to the point where additional data processing techniques would be
applied (e.g., cloud storage).

Lastly, in Table 1, we summarize the main advantages of the approach documented
in this paper, with respect to the most relevant prior studies. As shown in this table, our
approach has several advantages/distinct applicability when compared to the lightweight
homomorphic encryption proposed by Alabdulatif, et al. [13], and the PPMDS (Privacy-
preserving misbehavior detection system) method proposed by Gyawali, et al. [50]. Ac-
cordingly, homomorphic encryption can only be applied on an external host (e.g., server).
However, the communication between automotive systems and the encryption server could
raise major security challenges. Therefore, processing data locally is not only preferred, but
recommended by regulatory authorities [9]. On the other hand, while the PPMDS method
can be applied locally, the flexibility of the FFT-based methodology documented in this
paper is superior from several perspectives: it supports the simultaneous anonymization of
several sensor measurements, thus reducing the computation complexity; and, it provides
an adjustable level of privacy, while taking into account the desired level of data utility. We
further note that the efficiency of the data anonymization methodology makes it suitable
for other applications as well, including smart parking systems [51], vehicle to vehicle
communications [52], or, in general, vehicle to cloud communications [53]. However, for
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each scenario, the data utility needs to be further analyzed since other applications may
require adjusting the method’s parameters.

Table 1. Comparison to the closest related privacy-preserving anomaly detection techniques applica-
ble to automotive systems.

Privacy
Preservation
Technique

Computation
Operations

Privacy
Preservation
Location

Applicable
on Multiple
Sensors
Simultane-
ously

Adjustable
Level of
Privacy

Computation
Complexity

Lightweight
homomor-
phic encryp-
tion [13]

additive and
multiplicative
homomorphic
encryption

on an exter-
nal trusted
server

no no high

PPMDS [50]

additive ho-
momorphic
encryption
and signing

locally no no medium

FFT-based
data perturba-
tion

data trans-
formation,
frequency
filtering, noise
addition

locally yes yes low

3. Privacy-Preserving Tampering Detection

The developed approach embraces Fast Fourier Transform (FFT) as the core element
for achieving data distortion. Briefly, the approach is applied in a scenario consisting of
data distortion in the frequency domain, followed by data reconstruction for tampering
detection. The envisioned steps for applying the documented approach are the following:
(i) collect data from sensors and apply FFT; (ii) apply a suitable filter in the frequency do-
main to reduce data dimension; (iii) add Gaussian white noise to a selection of frequencies
in order to amplify data distortion and increase data privacy; (iv) reconstruct the data
(with the Inverse Fast Fourier Transform (IFFT)) and proceed with additional processing
(e.g., anomaly/tampering detection).

3.1. FFT-Based Data Distortion

The Fourier transform is a reversible transformation, which describes a function as
a sum of sine and cosine waves. The developed approach leverages the fundamental
properties of FFT to decompose sensor data into frequencies and to reconstruct it after a
prior filtering phase. FFT is an algorithm for computing the discrete Fourier transform
(DFT). It converts a data sequence from its original domain (time in our case) to the
frequency domain.

Consider sets of N discrete values collected from M sensors, which describe the state
of a vehicle. Let A be a matrix of size M×N containing the sensor data. Then, for a function
f (x, y) of size M× N, the DFT decomposition in the frequency domain is defined as:

F(u, v) =
M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−2πi( ux
M +

vy
N ) (1)

The exponential in (1) can be expanded into sine and cosine components, and the
variables u and v determine their frequencies. The following equation describes the inverse
of the above discrete Fourier transform:

f (x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v)e2πi( ux
M +

vy
N ) (2)
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The value of the Fourier transform at the origin F(0, 0) of the frequency domain is
called the Dominant Component and represents M·N times the average value of f (x, y).
As it is a base-2 algorithm, FFT assumes that the number of points N to be processed satisfy
the relationship N = 2γ, where γ is an integer value [54]. This results in essential savings
in computation time, hence reducing the complexity of DFT from O(n2) to O(n log n).

Thus, matrix A needs to be transformed such that its width and height are integers
power of 2. The simplest way to achieve this is to zero pad the matrix. The size of the new
zero-padded matrix Ā is M̄× N̄, where both M̄ and N̄ are integers power of 2. The next
step is to move the Dominant Component located at F(0, 0) to the center of the transformed
matrix, F(M

2 , N
2 ), in order to perform the filtering more efficiently. This can be achieved by

multiplying each entry (x, y) of the Ā matrix with eπi(x+y) [55]. The new matrix is denoted
by Â, and its size remains the same M̄× N̄.

The first transformation in the FFT-based data distortion is filtering. Low-pass filtering,
high-pass filtering, or other types of filtering can be applied in the frequency domain in or-
der to modify the original sensor data. After applying the filter, additional transformations
(e.g., adding a Gaussian white noise) can increase distortion and decrease the chances of
restoring the exact original signal.

Let us consider the matrix F̄+ as the result of all transformations performed in the
frequency domain. Then, the distorted data from the matrix F̄+ is restored in the matrix
D̄ by applying the Inverse Fast Fourier Transform. As the size of the distorted matrix D̄
is larger than that of the original matrix A, due to the zero padding, only the data from
the top-left corner of the matrix is considered. Therefore, D̄ is cropped to matrix D of
size M× N.

In a nutshell, by applying the above described FFT-based data distortion procedure
the matrix D is obtained, which is similar to A, but not identical.

3.2. Data Distortion by Filtering Fourier Frequencies and Adding Gaussian Noise

As stated earlier, once the data is transformed to the frequency domain, a basic filter
can be applied to cut off a selection of frequencies. Several types of filters, often used in
image processing [56], can be applied, such as low-pass, high-pass, band-pass, band-reject,
and threshold filters.

When applied to sensor measurements, the data restored from the frequency domain
to the time domain needs to maintain its main characteristics but, at the same time, hide
sensitive data. The approach we consider consists of applying low-pass filters and cutting
off the high frequencies from the Fourier space, usually regarded as noise frequencies,
while keeping the Dominant Component unaltered. Thus, the filtered matrix F̄ becomes:

F̄(u, v) = H(u, v) · F(u, v) (3)

where H is a low-pass filter function that removes high frequencies, and F̄ contains the
remaining Fourier frequencies after the filter is applied.

Further, the ideal 2D low-pass filter (ILPF) [56] is applied to data. This filter keeps
all frequencies inside a radius fc and discards all the rest. The ILPF involves a simple
computational process, and it can be obtained rapidly:

H(u, v) =

{
1, if

√
u2 + v2 ≤ fc

0, otherwise,
(4)

where fc is the cut-off frequency. The helper function ComputeFilter mentioned in Algorithm 1
computes the H matrix.

In addition to filtering, other data transformations are possible. These can be applied
in the frequency domain either before or after the filtering. In this context, our choice is to
apply a Gaussian white noise with a given variance in the frequency domain after filtering,
to enhance the distortion of the resulting data and ensure data privacy.
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The selected method [31] defines the discord σ as the standard deviation of the added
perturbation. The discord σ determines the maximum information loss that the system is
willing to tolerate and the maximum uncertainty that can be introduced. By design, the
perturbation technique of adding Gaussian white noise with variance σ2 preserves the
signal’s spectral and “smoothness” properties [31]. Thus, the approach preserves both
privacy and utility of time series. To increase resistance to filtering and other types of
attacks, we add the noise to only a fraction of the frequencies such that the total noise
variance is maintained at σ2.

Algorithm 1: FFT-based data distortion.
Input: A (Sensor data); fc (Cut-off frequency); σ (Noise variance)
Output: D (The distorted data)
Function ComputeDistortedData(A, fc, σ):

[M, N]←− size(A);
Ā←− zeropadding(A); // Zero pad to the next power of 2
[M̄, N̄]←− size(Ā);
Â←− Ā;
for x ← 1 to M̄ do

for y← 1 to N̄ do
Â(x, y)← Ā(x, y) · eπi(x+y);

end
end
F ←− FastFourierTrans f orm(Â);
H ←− ComputeFilter( fc, M̄, N̄); // Get the filter matrix H
F̄ ←− H · F; // Apply the filter
F̄+ ←− AddGaussianNoise(F̄, σ); // Add Gaussian white noise
D̄ ←− InverseFastFourierTrans f orm(F̄+); // Get the distorted data
D ←− crop(D̄, M, N); // Get only data from the top-left corner
return D

End Function

Proposition 1. A standard deviation of σ
√
N/K forK out ofN frequencies maintains the overall

variance of the Gaussian white noise at σ2.

Proof. We denote with ni the Gaussian noise to be applied to frequency values. The
variance Var[ni] is by definition:

Var[ni] =
1
N ∑

i∈I
(ni − µ)2 =

1
N ∑

i∈I
n2

i , (5)

where N is the total number of non-filtered frequencies (N = sum(F̄ > 0)), µ is the mean
of noise values, µ = 0, and I is the set of indices of the non-filtered frequencies. Further, we
separate the noise applied to the selected frequencies (i ∈ I′, where I′ is the set of indices
of frequencies with the magnitude greater than σ) from the noise applied to the rest of the
frequencies (i ∈ I \ I′):

Var[ni] =
1
N ∑

i∈I
n2

i =
1
N

∑
i∈I′

n2
i + ∑

i∈I\I′
n2

i

. (6)

The variance of the noise values greater than σ is:

σ2N
K =

1
K ∑

i∈I′
n2

i , and ∑
i∈I′

n2
i = σ2N . (7)
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By replacing (7) into Equation (6), and taking into account that ni is zero for frequencies
with magnitude less than σ, we obtain that Var[ni] = σ2:

Var[ni] =
1
N

(
σ2N + (N −K) · 0

)
= σ2. (8)

Lastly, we added the above-described Gaussian noise to the entire frequency matrix
F̄ resulted after applying the low-pass filter. To every non-zero frequency from F̄ with
a magnitude greater than σ, a complex Gaussian random number was added to the real
and imaginary parts, in order to distort the amplitude and the phase independently. The
transformed matrix F̄+ contains the filtered frequencies, part of them distorted by the noise,
such that the result enforces data privacy and maintains utility. The described procedure,
alongside the addition of noise, are summarized as Algorithms 1 and 2, respectively.

Algorithm 2: Add Gaussian white noise to the frequency matrix.

Input: F̄ (The filtered frequency matrix); σ (Noise variance)
Output: F̄+ (The distorted frequency matrix)
Function AddGaussianNoise(F̄, σ):

[M̄, N̄]←− size(F̄);
N+ ←− sum(F̄ > 0); // Get the number of frequencies > 0,
K ←− sum(abs(F̄) ≥ σ); // and the number with magnitude > σ
for i← 1 to M̄ do

for j← 1 to N̄ do
if abs(F̄(i, j)) ≥ σ then

F̄+(i, j)←− F̄(i, j) + GaussRnd(0, σ
2

√
N+
K )(1 + i);

else
F̄+(i, j)←− F̄(i, j);

end
end

end
return F̄+ // Return the distorted frequency matrix

End Function

3.3. Data Distortion Measurements

In order to compare the original data matrix A to the distorted data matrix D, metrics
are necessary to evaluate and control the distortion process. By comparing the original
data to the distorted one, one may decide to re-apply the distortion process in order to
keep the distortion metrics between the desired parameters.

The distorted data resulting by applying the FFT-based method depends on the chosen
cut-off frequency ( fc) and the discord σ. Consequently, if the distortion is higher than
expected, an additional data distortion may be necessary having a higher cut-off frequency
or a lower discord σ value.

We measure the performance of the proposed perturbation solution and compare the
1D and 2D sensor data distortion using the Mean Absolute Error (MAE) index:

MAE =
1
N ∑

i∈N
|X(i)−Y(i)|, (9)

where N is the length of the time series, X the original data vector, and Y the distorted data.
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3.4. Tampering Detection with Anonymized Data

This section complements the prior data distortion technique with a tampering de-
tection methodology. More specifically, we leverage random forest-based regression,
accompanied by statistical analysis, for detection purposes.

3.4.1. Random Forest

Random forest (RF) is an ensemble machine learning methodology introduced by
Breiman in 2001 [57]. It can be applied for classification or regression, alongside other
tasks (e.g., feature ranking and selection). In this work, we leverage the RF for regression
purposes, with the ultimate goal to detect tampering.

More formally, let us consider X a matrix of m variables X = [X1 X2 ... Xm], denoting
raw measurements. Each Xi, i ∈ [1, m] is a column vector of n observations. Each column
denotes measurements associated with a particular feature; these features are also known
as the “predictors”. Let Y denote a column vector of n observations, containing (at least
for the approach documented in this paper) a single feature, also known as the “label”.
Essentially, the predictors are used as input to the RF methodology in order to predict the
label feature.

In the following, we distinguish between two sub-sets of X, namely: the training
dataset consisting of (XTrain, YTrain), where XTrain ⊂ X, YTrain ⊂ Y; and the evaluation (test)
dataset consisting of (XTest, YTest), where XTest ⊂ X, YTest ⊂ Y.

Next, by training an RF on (XTrain, YTrain) we obtain a model MRF that can be used
for prediction purposes:

YP = MRF.predict(XTest), (10)

where YP is a column vector of predicted values.

3.4.2. The Univariate Cumulative Sum

Univariate cumulative sum (UCUSUM)-based approaches have been known to pro-
vide an efficient solution for detecting the gradual change of the monitored variables. They
have been first proposed in [58], and presume one change-point in the mean value of
the recorded time series. However, they are also capable of detecting small changes by
accumulating the deviations from several samples.

The simplest form of a UCUSUM is the one that records the changes in the parameters
of an independent random series X. In this case, it is presumed that the parameter µ0 (the
mean value) is a reference value computed in a tampering-free scenario. The UCUSUM
is computed over a moving window of size W according to Algorithm 3. Here, the
notation X(i : i +W − 1) denotes a sub-vector of elements starting from index i up to index
i + W − 1.

Algorithm 3: UCUSUM computation over a sliding window.
Input: X (Column vector); W (Sliding window size);
Output: CS (The cumulative sum as a column vector)
Function CumulativeSum(X, W, µ0 = None):

if µ0 = None then
µ0 ←− Mean(X);

end
for i← 1 to size(X)−W do

CS(i)←− Mean(X(i : i + W − 1))− µ0;
end
return CS

End Function

3.4.3. Tampering Detection

The tampering detection methodology leverages the RF technique alongside the
UCUSUM. Namely, the output of the data distortion procedure is the input to the RF model.
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The prediction error is then cumulated with the help of the UCUSUM methodology. The
same procedure is applied in the tampering-free and the tampering scenario.

More formally, we presume that a MRF was obtained by training a RF model in a
tampering free scenario against a particular label feature YTrain. By leveraging a test dataset
(XTest, YTest), in the tampering-free scenario we obtain the following:

errTFree = |MRF.predict(XTest)−YTest|, (11)

CSTFree = CumulativeSum(errTFree, W). (12)

That is, we compute the prediction error errTFree in the tampering-free scenario. Then,
we apply the UCUSUM over the errTFree column vector and obtain CSTFree. By leveraging
CSTFree, the detection threshold DTH is set at one standard deviation from the mean value
µ0 computed in the tampering-free scenario:

DTH = µ0 + std(CSTFree). (13)

Next, in the tampering scenario, consisting of the dataset (XTamp, YTamp), we compute
the following:

errTamp = |MRF.predict(XTamp)−YTamp|, (14)

CSTamp = CumulativeSum(errTamp, W, µ0). (15)

Then, for detection purposes, each value in CSTamp is compared to DTH. A successful
detection point is considered for CSTamp(i) > DTH.

For estimating the performance of the detection strategy, the True Positive Rate (TPR)
and the False Positive Rate (FPR) are computed. TPR is the proportion of correctly detected
anomaly/tampered values and is computed as:

TPR =
TP

TP + FN
. (16)

On the other hand, the FPR is the proportion of wrongly detected anomaly/tampered
values, that is:

FPR =
FP

FP + TN
. (17)

The TPR and FPR measures depend on: the true positive (TP), denoting the number
of values correctly categorized as anomalies; the true negative (TN), which refers to the
number of values that are not anomalies and detected as such; false negative (FN), which
are values that are anomalous but not detected; and, false positive (FP), which refers to the
number of values that are not anomalies but categorized as ones.

3.5. Computational Complexity

Since one of the objectives of the paper is to find a suitable implementation for existing
ECUs, we analyze the computational complexity of the perturbation phase, as the detection
takes place on external systems. FFT can be computed in O(n log n) [11], and no additional
complexity is added by the filtering phase and the noise addition. The approach is time-
efficient even in the case of processing larger amounts of data (as presented in Section 4.3,
in the scalability analysis).

4. Experimental Results

To validate the proposed approach, we experimented on a data set collected from
the On-Board Diagnostics (OBD II) port of a 2015 EUR6 Skoda Rapid 1.2 L TSI passenger
vehicle. The data was collected with VCDS, an aftermarket Windows-based diagnostic
software for VAG (VW-Audi Group) motor vehicles, using an OBD II - USB interface cable.
The data set consisted of data collected from 12 sensors. Matlab was used to implement
the proposed approach and all the subsequent experiments. Firstly, we started with the
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data provided by only one sensor, and afterward, we extended the procedure to a larger
data set.

4.1. 1D Sensor Data FFT-Based Distortion

The data used in this experiment, collected via the OBD II port, originates from the
oxygen sensor (O2), also known as the lambda sensor. This sensor is located in the vehicle’s
exhaust stream and provides the engine control unit (ECU) a voltage corresponding to the
oxygen content in the exhaust gases. By means of a feedback loop, the ECU controls the air
to fuel ratio (AFR) of the engine, which is uniquely related to the oxygen concentration. In
order to meet exhaust pollution requirements, the ECU has to maintain the AFR close to
the stoichiometric ratio of 14.7:1 (for gasoline fuel) or the normalized AFR λ = 1. At this
ideal ratio, the output of the O2—the sensor is approximately 450 mV.

The normalized AFR λ represents the ratio of actual AFR (AFRact) to stoichiometric
AFR (AFRst): λ = AFRact/AFRst. As the AFR becomes unbalanced, varying around the
desired value (λ = 1), the output of the sensor changes abruptly from 100 mV to 900 mV,
denoting either a lean (λ > 1: too much air and too little fuel) or a rich (λ < 1: too much
fuel and too little air) operation of the combustion engine [59].

Figure 2 shows the raw measurements (lambda) collected from the lambda sensor
over a time interval of 400s and the distorted signal resulting by applying the perturbation
procedure described in the previous section (Algorithm 1). Two sets of parameters ( fc and
σ) have been utilized, as indicated in the figures.

Figure 2. 1D FFT-based data distortion for the Lambda sensor data ( fc-cut-off frequency, σ-discord,
MAE-Mean Absolute Error): original data values (blue), filtered values in frequency domain (green),
filtered and perturbed values in the frequency domain using additive Gaussian noise (red). (a) Time
domain. (b) Frequency domain.

4.2. 2D Sensor Data FFT-Based Distortion

For data provided by multiple sensors, two approaches may be used: the first one
applies the FFT-based distortion method to the data values of each sensor, and the second
one applies the distortion to the entire data set.

The second approach is intuitively faster (see Table 2) and provides similar distortion
properties. Rather than applying the FFT on every sensor data, it is much more efficient to
process them all at once. We computed the data reduction by comparing the number of
non-zero values of F̄+ to the total number of values from the original matrix A. As seen in
Table 2, the data reduction depends on the data dimensions (the number of sensors and the
number of values). The closer these dimensions are to a power of 2, the greater is the gain
in data reduction.
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Table 2. Execution times (FFT + frequency filtering + noise addition) and data reduction ( fc = 100,
σ = 5).

No. of Overall Exec. Exec. Time/Sensor Data
Sensors Time (ms) (ms) Reduction (%)

1 9.5 9.5 34.3
2 9.7 4.9 34.6
3 9.9 3.3 13.0
5 10.2 2.0 −4.18

10 11.1 1.1 −4.11
12 12.6 1.0 13.23

Figure 3 shows the processed data from the lambda sensor after the FFT method
was applied on the A matrix containing data from five selected sensors (Current of oxygen
sensor, Oxygen jump sensor voltage, Engine torque, Throttle valve position, Coolant temperature).
The same cut-off frequency and discord σ were used as in the test shown in Figure 2. By
comparing the MAE values for the 1D and 2D distortions, one may conclude that both
approaches provide similar perturbation. Further, the utility of the distorted data has to
be demonstrated.

Figure 3. 2D FFT-based data distortion for the Lambda sensor data ( fc-cut-off frequency, σ-discord,
MAE-Mean Absolute Error): original data values (blue), filtered values in frequency domain (green),
filtered and perturbed values in the frequency domain using additive Gaussian noise (red).

4.3. Privacy-Preserving Tampering Detection

An essential purpose of our research is to demonstrate that the proposed perturbation
maintains the utility of the data set. In the case of anomaly or tampering detection, the
objective is to be able to detect the anomalous data points, even after the data was distorted
due to privacy reasons.

The experimental setup used a second data set collected in the same conditions as the
original one. We used the two data sets to create a tampered data set (Figure 4), denoted
by T. In order to recreate a realistic tampering scenario, we replaced measurements in the
second data set with measurements from the original data set. This way, we were able
to simulate the presence of a real tampering device, similar to those already available on
the market, which operate as signal emulators replacing the original signal values with
emulated ones, in order to deceive the ECUs [60].
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Figure 4. Lambda sensor (Current of oxygen sensor) values for the original and the tampered data sets:
original data values (blue) and tampered data values (orange).

Briefly, we applied the methodology developed in this paper for each original and
tampered data set to protect the data (Algorithm 1 described in Section 3.1), and, secondly,
to detect tampering (process described in Section 3.4).

At first, we constructed five data sets by replacing the values for one particular
sensor: TCurrentO f OxygenSensor, TOxygenJumpSensorVoltage, TCoolantTemperature, TThrottleValvePosition,
and TEngineTorque. Then, for each pair of data sets (the original one and a tampered data set),
which we called the clear data set, we applied the tampering detection using the Random
forest (RF) and UCUSUM approach described earlier. By computing the TPR and FPR
(Table 3, Clear data column), we noticed that the tampering was detected with high proba-
bility rates using the proposed approach (i.e., reaching 100% for most of the considered
sensors). Next, we applied the distortion on both data sets. The distortion considered a
filtering in the frequency domain ( fc = 350) and a Gaussian noise (σ = 5). Afterwards,
the TPR and FPR were measured for the distorted data as well (Table 3, Anonymized data
column). This showed that, even if data is distorted (i.e., anonymized), tampering detection
is still highly likely to succeed. Accordingly, the value of TPR decreased from 77.4% to
76% in the case of tampering with the TCurrentO f OxygenSensor. Subsequently, we recorded
a reduction of TPR in the case of the TEngineTorque (from 100% to 82.7%). Nevertheless,
the remaining tampering scenarios did not exhibit a reduction in the value of the TPR.
However, an increase in the FPR was still recorded in all of the considered scenarios (from
18.5% to 21.5%). The CUSUM values for all experiments involving a singletampered sensor
are shown in Figures 5–9.

Figure 5. CUSUM for the original data (blue) and tampered data (orange) for the Current of oxygen sensor.
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Table 3. TPR and FPR for the described tampering detection process.

# of Tampered
Sensors

Tampered
Sensor(s)

Clear Data Anonymized Data
TPR FPR TPR FPR

1 Current of oxygen
sensor 77.4% 18.5% 76% 21.5%

1 Oxygen jump sen-
sor voltage 100% 18.5% 100% 21.5%

1 Coolant tempera-
ture 100% 18.5% 100% 21.5%

1 Throttle valve po-
sition 100% 18.5% 100% 21.5%

1 Engine torque 100% 18.5% 82.7% 21.5%

2

Current of oxy-
gen sensor, Oxy-
gen jump sensor
voltage

100% 18.5% 100% 21.5%

2
Current of oxy-
gen sensor, Engine
torque

100% 18.5% 99.4% 21.5%

2
Engine torque,
Coolant tempera-
ture

100% 18.5% 100% 21.5%

2
Engine torque,
Throttle valve
position

87.4% 18.5% 100% 21.5%

4

Current of oxygen
sensor, Coolant
temperature,
Engine torque,
Throttle valve
position

100% 18.5% 100% 21.5%

Figure 6. CUSUM for the original data (blue) and tampered data (orange) for the Oxygen jump sensor
voltage sensor.
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Figure 7. CUSUM for the original data (blue) and tampered data (orange) for the Coolant tempera-
ture sensor.

Figure 8. CUSUM for the original data (blue) and tampered data (orange) for the Throttle valve
position sensor.

Figure 9. CUSUM for the original data (blue) and tampered data (orange) for the Engine torque sensor.

Secondly, we increased the level of complexity for the tampering by replacing (i.e., sim-
ulating) measurements for two sensors at once: TCurrentO f OxygenSensor/OxygenJumpSensorVoltage,
TCurrentO f OxygenSensor/EngineTorque, TEngineTorque/CoolantTemperature, and TEngineTorque/ThrottleValve

Position. The same procedure as before was followed to measure the performance of the
developed approach. As depicted in Figures 10–13 and Table 3, the developed approach
still exhibits a high level of precision for most of the considered scenarios.
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Figure 10. CUSUM for the original data (blue) and tampered data (orange) for sensors: Current of
oxygen sensor and Oxygen jump sensor voltage.

Figure 11. CUSUM for the original data (blue) and tampered data (orange) for sensors: Current of
oxygen sensor and Engine torque.

Figure 12. CUSUM for the original data (blue) and tampered data (orange) for sensors: Engine torque
and Coolant temperature.
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Figure 13. CUSUM for the original data (blue) and tampered data (orange) for sensors: Engine torque
and Throttle valve position.

Lastly, we considered a scenario in which the tamperer replaces (simulates) the values
reported by four sensors (Current of oxygen sensor, Coolant temperature, Engine torque, Throttle
valve position). As shown in Figure 14 the detection is still not affected, even in this extreme
case. In fact, the superior performance of the approach is confirmed by the computation of
the TPR and FPR, as shown in Table 3.

Figure 14. CUSUM for the original data (blue) and tampered data (orange) for four sensors tampered.

Figure 15 showcases the scalability of the developed data anonymization strategy.
Accordingly, the approach scales linearly with respect to the number of features (sensors).
To this end, we investigated the scalability for various window sizes (60, 120, 300, 600, 1200)
denoting the number of samples considered for anonymization purposes. Subsequently,
we gradually increased the number of features from 1 to 100. As shown in the same
figure, the approach exhibits a linear behavior with respect to the window size and the
number of features (e.g., signals). This further confirms our initial statement that the data
anonymization approach is suitable for being hosted inside the vehicle.
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Figure 15. The scalability of the proposed perturbation method according to the number of features
and the window size (i.e., the number of samples).

5. Conclusions

This paper investigated the possible use of FFT-based distortion techniques to preserve
data privacy of sensor data collected from auto vehicles. As shown, the proposed FFT-
based approach involves filtering and the addition of Gaussian white noise to preserve the
main characteristics of data, while enforcing data privacy. We have demonstrated that the
approach has additional benefits: it is fast even for an increasing number of sensors, and, it
may, under certain conditions, lead to a reduction in the size of the data to be transmitted
to external processing components.

The data distortion procedure was seconded by a tampering detection methodology.
The detection embraces Random Forest regression and statistical analysis. The detection
strategy on both clear and anonymized data was applied on a real dataset collected from a
2015 EUR6 Skoda Rapid 1.2 L TSI passenger vehicle. A realistic tampering scenario was
simulated by injecting measurements from a distinct data set. The obtained results have
shown that the approach is promising in terms of TPR, exhibiting up to a 100% detection
rate. However, the rate of FPR can, in some cases, reach 21%, which requires further
research. To this end, we note, however, that the main novelty and contribution to the
state of the art is the actual data distortion procedure. Therefore, the tampering detection
should be viewed as a secondary contribution, which can be improved by leveraging other
techniques documented in the scientific literature [41,47].

As future work, we intend to further improve on the tampering detection methodology,
but also, to improve the technique for data anonymization. A further extension will
constitute the implementation of a prototype within an embedded environment, similar to
what is found within auto-vehicles. A key challenge will constitute the extension of the
proposed technique with data pre-processing techniques to ensure real-time execution.
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40. Genge, B.; Haller, P.; Enăchescu, C. Anomaly Detection in Aging Industrial Internet of Things. IEEE Access 2019, 7, 74217–74230.
[CrossRef]

41. Kiss, I.; Genge, B.; Haller, P.; Sebestyén, G. Data clustering-based anomaly detection in industrial control systems. In Proceedings
of the 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca,
Romania, 4–6 September 2014; pp. 275–281. [CrossRef]

42. Wang, B.; Mao, Z. One-class classifiers ensemble based anomaly detection scheme for process control systems. Trans. Inst. Meas.
Control. 2018, 40, 0142331217724508. [CrossRef]

43. Ha, D.; Ahmed, U.; Pyun, H.; Lee, C.J.; Baek, K.H.; Han, C. Multi-mode operation of principal component analysis with k-nearest
neighbor algorithm to monitor compressors for liquefied natural gas mixed refrigerant processes. Comput. Chem. Eng. 2017,
106, 96–105. [CrossRef]

44. Portnoy, I.; Melendez, K.; Pinzon, H.; Sanjuan, M. An improved weighted recursive PCA algorithm for adaptive fault detection.
Control. Eng. Pract. 2016, 50, 69–83. [CrossRef]

45. Chen, B.; Ho, D.W.C.; Zhang, W.A.; Yu, L. Distributed Dimensionality Reduction Fusion Estimation for Cyber-Physical Systems
Under DoS Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 455–468. [CrossRef]

46. Thaseen, I.S.; Mohanraj, V.; Ramachandran, S.; Sanapala, K.; Yeo, S.S. A Hadoop Based Framework Integrating Machine Learning
Classifiers for Anomaly Detection in the Internet of Things. Electronics 2021, 10, 1995. [CrossRef]

47. Longari, S.; Nova Valcarcel, D.H.; Zago, M.; Carminati, M.; Zanero, S. CANnolo: An Anomaly Detection System Based on LSTM
Autoencoders for Controller Area Network. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1913–1924. [CrossRef]

48. Domingo-Ferrer, J. A Provably Secure Additive and Multiplicative Privacy Homomorphism. In Proceedings of the 5th Interna-
tional Conference on Information Security, ISC ’02, Sao Paulo, Brazil, 30 September–2 October 2002; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 471–483.

49. Alabdulatif, A.; Khalil, I.; Yi, X. Towards secure big data analytic for cloud-enabled applications with fully homomorphic
encryption. J. Parallel Distrib. Comput. 2020, 137, 192–204. [CrossRef]

50. Gyawali, S.; Qian, Y.; Hu, R.Q. A Privacy-Preserving Misbehavior Detection System in Vehicular Communication Networks.
IEEE Trans. Veh. Technol. 2021, 70, 6147–6158. [CrossRef]

51. Tsiropoulou, E.E.; Baras, J.; Papavassiliou, S.; Sinha, S. RFID-based smart parking management system. Cyber-Phys. Syst. 2017,
3, 1–20. [CrossRef]

52. Abbasi, I.A.; Shahid Khan, A. A review of vehicle to vehicle communication protocols for VANETs in the urban environment.
Future Internet 2018, 10, 14. [CrossRef]

53. Shon, T. In-Vehicle Networking/Autonomous Vehicle Security for Internet of Things/Vehicles. Electronics 2021, 10, 637. [CrossRef]
54. Brigham, E.O. The Fast Fourier Transform and its Applications; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1988; pp. 131–166.

http://dx.doi.org/10.1145/502512.502546
http://dx.doi.org/10.1109/TSMCB.2010.2051540
http://www.ncbi.nlm.nih.gov/pubmed/20595089
http://dx.doi.org/10.1007/s00778-006-0010-5
http://dx.doi.org/10.1155/2021/6643566
http://dx.doi.org/10.1145/1066157.1066163
http://dx.doi.org/10.1016/j.datak.2012.10.004
http://dx.doi.org/10.3390/s20195450
http://dx.doi.org/10.1109/ACCESS.2019.2920699
http://dx.doi.org/10.1109/ICCP.2014.6937009
http://dx.doi.org/10.1177/0142331217724508
http://dx.doi.org/10.1016/j.compchemeng.2017.05.029
http://dx.doi.org/10.1016/j.conengprac.2016.02.010
http://dx.doi.org/10.1109/TSMC.2017.2697450
http://dx.doi.org/10.3390/electronics10161955
http://dx.doi.org/10.1109/TNSM.2020.3038991
http://dx.doi.org/10.1016/j.jpdc.2019.10.008
http://dx.doi.org/10.1109/TVT.2021.3079385
http://dx.doi.org/10.1080/23335777.2017.1358765
http://dx.doi.org/10.3390/fi10020014
http://dx.doi.org/10.3390/electronics10060637


Electronics 2021, 10, 3161 22 of 22

55. Xu, S.; Lai, S. Fast Fourier Transform Based Data Perturbation Method for Privacy Protection. In Proceedings of the 2007 IEEE
Intelligence and Security Informatics, New Brunswick, NJ, USA, 23–24 May 2007; pp. 221–224.

56. Dewangan, S.; Sharma, A. Image Smoothening and Sharpening using Frequency Domain Filtering Technique. Int. J. Emerg.
Technol. Eng. Res. 2017, 5, 169–174.

57. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
58. Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [CrossRef]
59. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems, 8th ed.; Pearson: New York, NY, USA, 2019.
60. AliExpress. Automotive Sensor Simulators. 2021. Available online: https://www.aliexpress.com/popular/automotive-sensor-s

imulator.html (accessed on 15 November 2021).

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1093/biomet/41.1-2.100
https://www.aliexpress.com/popular/automotive-sensor-simulator.html
https://www.aliexpress.com/popular/automotive-sensor-simulator.html

	Introduction
	Related Work
	Background and Overview of Traditional Techniques
	Privacy-Preserving Detection Techniques

	Privacy-Preserving Tampering Detection
	FFT-Based Data Distortion
	Data Distortion by Filtering Fourier Frequencies and Adding Gaussian Noise
	Data Distortion Measurements
	Tampering Detection with Anonymized Data
	Random Forest
	The Univariate Cumulative Sum
	Tampering Detection

	Computational Complexity

	Experimental Results
	1D Sensor Data FFT-Based Distortion
	2D Sensor Data FFT-Based Distortion
	Privacy-Preserving Tampering Detection

	Conclusions
	References

