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Abstract: In parallel with the rapid adoption of transport layer security (TLS), malware has utilized
the encrypted communication channel provided by TLS to hinder detection from network traffic.
To this end, recent research efforts are directed toward malware detection and malware family
classification for TLS-encrypted traffic. However, amongst their feature sets, the proposals to utilize
the sequential information of each TLS session has not been properly evaluated, especially in the
context of malware family classification. In this context, we propose a systematic framework to
evaluate the state-of-the-art malware family classification methods for TLS-encrypted traffic in a
controlled environment and discuss the advantages and limitations of the methods comprehensively.
In particular, our experimental results for the 10 representations and classifier combinations show
that the graph-based representation for the sequential information achieves better performance
regardless of the evaluated classification algorithms. With our framework and findings, researchers
can design better machine learning based classifiers.

Keywords: malware family classification; malware detection; encrypted traffic; transport layer
security

1. Introduction

While the secure sockets layer (SSL), an encryption protocol designed for web applica-
tions, has been used with the broad adoption of the internet in the 1990s, the adoption of
SSL and its successor transport layer security (TLS) was less than half of the web traffic
until the mid 2010s [1]. Recently, however, the use of SSL/TLS was popularized with rapid
growth. According to Google’s Transparency Report [2], about 95 % of the traffic across
Google is encrypted with HTTPS (HTTP with TLS). Even with the up-to-date version of
TLS (TLS 1.3) approved in August 2018, it took less than one year for more than 15% of
websites to support the up-to-date TLS, while TLS 1.2 required around 5 years to achieve
the same 15% adoption rate [3].

In parallel with the rapid adoption of TLS, unfortunately, malware is used to hinder
detection from traffic. For example, Ref. [4] reports that even 91.5% of malware was
arrived from encrypted traffic in the 2nd quarter of 2021. However, existing network
security solutions, such as signature-based intrusion detection system (IDS) and deep
packet inspection (DPI), do not work, so current industrial approaches tend to utilize TLS
interception mechanisms, which can violate the confidentiality goals of TLS [5].

In this context, recently, there were several research efforts directed toward detecting
or classifying TLS-encrypted traffic generated by malware or specific malware family,
utilizing statistical [6], machine learning-based [7–9], or neural network-based [10,11]
methods. A majority of the works extract flow-level features, such as sequences of message
type, packet length, and interarrival time (SPLT), pre-process the features in an appropriate
representation, and select a better (statistical or machine learning-based) classifier from
multiple classifiers. However, due to various goals and constraints in malware traffic
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classification, comparison among the classification methods is rarely conducted, especially
in the context of malware family classification. Furthermore, while feature representation
and learning for the classifiers are important issues in machine learning applications [12],
existing research efforts in malware family classification rarely report the performance
comparison among different feature representations and learning approaches.

To this end, in this article, we propose a systematic framework to evaluate malware
family classification methods for TLS-encrypted traffic in a controlled environment. To eval-
uate the existing research efforts with different feature representation and learning fairly in
a common environment, we utilize the framework to extract a common flow-level feature
(i.e., flow length sequence and directions) from TLS-encrypted traffic and evaluate sev-
eral malware family classification methods. By conducting experiments in our proposed
framework, we discuss the existing methods more comprehensively.

In summary, our work makes the following contributions for the TLS-encrypted
malware family classification problem:

• We propose an evaluation framework for TLS-encrypted malware family classification
with the same configuration and the same input, which allows different sequential
information representations and classification algorithms to be evaluated. We discuss
the reasons that such experimental evaluation should be conducted in Section 2.4.

• In the evaluation of traffic classification methods especially for supervised learning-
based methods, we need to obtain an appropriate labeled dataset. However, unfortu-
nately, we find that the existing community efforts on labeled dataset with malware
family traffic samples have some flaws. To this end, we describe a method to obtain
better dataset in a public repository. More information can be found in Section 2.3.

• We provide experimental evaluation results with various criteria for the state-of-the-
art methods which utilize sequential information (e.g., packet length sequence and
directions) and can be applied in the malware family classification problem. Our
results show that the state-of-the-art methods have several advantages and limitations
to be resolved by future work.

The rest of this article is organized as follows. In Section 2, we provide comprehensive
backgrounds and related research efforts in encrypted traffic classification as well as chal-
lenges of malware family classification for TLS-encrypted traffic. Section 3 describes our
systematic framework for the malware family classification in terms of feature representa-
tions and classification algorithms. In Section 4, we discuss the evaluation results with the
state-of-the-art methods with various criteria. Our conclusions are drawn in Section 5.

2. Backgrounds and Related Work

In this section, we describe the backgrounds and related research efforts in encrypted
traffic classification and discuss the necessity of evaluating several malware family clas-
sification methods in a fair configuration. Note that correlating/associating multiple
encrypted flows with the same characteristics (e.g., BLINC [13]) is out of our scope. That
is, we only cover flow-level traffic classification methods, where each encrypted flow is
classified independently.

2.1. Early Encrypted Traffic Classification Methods

Traffic classification has been investigated for more than 20 years with well-established
literature [14]. To the best of our knowledge, however, the first comprehensive survey
on encrypted traffic classification [15] appeared in 2015, in spite of the widespread use of
secure network protocols. Before the early 2010s, many research efforts were conducted to
classify encrypted traffic into a coarse-grained application type (e.g., chat, game, and web
surfing) or application protocol (e.g., HTTPS, SSH, SFTP and Skype) as an alternative to
port-based application protocol identification (which gives protocol information quickly
with little complexity but was already known as an unreliable approach at that time [16])
and DPI solutions (which are no longer able to be utilized for encrypted traffic).
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To this end, several methods were designed for near real-time classification of ap-
plication protocol. As an example, focusing on SSL/TLS-encrypted traffic, Bernaille and
Teixeira [17] proposed a semi-supervised machine learning-based classification method.
In this approach, only the sizes and directions of the first few data packets in a SSL-
encrypted flow are extracted so that near real-time classification is possible with more than
85% accuracy.

On the other hand, there are a lot of research efforts on non real-time application
identification. As a notable instance, Sun et al. [18] proposed a naive Bayes classifier to
identify application protocol from SSL/TLS-encrypted flows. The classifier utilizes several
flow-level statistics, such as mean/max/min packet length, mean/max/min inter-arrival
time, flow duration, and the number of packets as features. However, this work reports a
simple binary protocol identification result (between HTTPS and ToR) with 94.52% accuracy.
Note that the statistical features can be obtained only after completion of the flow so that
real-time identification is not achievable.

2.2. Recent Advances in TLS-Encrypted Traffic Classification Methods

In the last decade, with the growing adoption of TLS, advanced classification methods
for TLS-encrypted traffic were introduced in the literature. We discuss several notable
approaches in three-fold.

2.2.1. Exploiting Sequential Information of TLS Flow

While application data are encrypted in a TLS flow, sequential feature of the TLS flow
may contain information related to application’s behavior. In the early methods, there
is a tendency to use some representative values (partly due to high space complexity),
but recent works try to convert such sequential features into a compact representation to
identify or detect a specific application (instead of application layer protocol).

Korczynski and Duda [6] proposed a Markov chain-based stochastic fingerprinting
method, which derives a Markov chain model from TLS message type sequences of flows
for each application. This work confirms that high accuracy classification is possible with
the proposed method due to incorrect implementation, protocol misuse, diversity in server
configuration, and the application nature. Shen et al. [19] extended the model to the second-
order Markov chain. Similarly, Anderson and McGrew [20] generated Markov chains from
packet length and interarrival time sequences of each flow for machine learning-based mal-
ware detection. In contrast, FS-Net [10] proposes an end-to-end recurrent neural network
(RNN) classification model, which learns features from packet length sequences. FS-Net
also reports that the packet length sequence is more representative than the message type.

Recently, Shen et al. [11] proposed the notion of the traffic interaction graph (TIG) to
represent a packet length sequence with directions and introduced graph neural network-
based representation learning for distributed application classification, called GraphDApp.
Figure 1 shows an example of a packet length sequence and the corresponding TIG, where
each node corresponds to a packet length, each vertical edge represents the order of
consecutive packets in each burst, and each horizontal edge indicates the range between
neighboring bursts. To this end, TIG is a powerful representation which summarizes the
packet direction, packet length, packet burst, and packet ordering information.

In this paper, we evaluate a hybrid version of [6,9] (i.e., deriving a Markov chain model
from packet length sequences of flows for each malware family), FS-Net, and GraphDApp [11].
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Figure 1. An example of the traffic interaction graph (TIG) from a Angler-EK sample. The minus
sign indicates that the corresponding packet is sent from client to server.

2.2.2. Fine-Grained Classification for TLS-Encrypted Traffic in Mobile Apps

With the massive adoption of mobile devices and a wide range of mobile applications,
several research efforts were directed toward encrypted mobile traffic classification to infer
fine-grained private information.

For example, Conti et al. [21] collected TLS-encrypted traffic of popular Android mo-
bile apps, such as Gmail, Facebook, Twitter, Dropbox, Evernote, etc., and inferred specific
user action within each app from the packet length sequences and directions. This work uti-
lized both supervised (i.e., random forest) and unsupervised (i.e., agglomerative clustering)
machine learning algorithms with a dynamic time warping (DTW)-based distance metric.
AppScanner [22], Taylor et al. [23] proposes a novel method for automatic fingerprinting
and the real-time identification of Android apps from encrypted or unencrypted network
traffic based on support vector machine (SVM) and random forest classifiers. Since App-
Scanner’s classification framework is designed for high scalability, 110 applications are
used to generate its test set.

The aforementioned advances in mobile apps can be applicable for malware fam-
ily classification, but due to different goals and constraints, the direct adoption of the
classification methods into malware family classification seems to be infeasible.

2.2.3. Malware Detection and Family Classification from TLS-Encrypted Traffic

As described in Section 1, research efforts to detect or classify TLS flows generated by
malware or malware family have appeared in recent years.

In particular, a set of works by Anderson and McGrew in Cisco Systems [7,8,20]
proposes to collect more flow features which are not supported in the standard NetFlow
records for network telemetry. The enhanced flow features include SPLT (i.e., packet
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length sequence and interarrival time sequence), the byte distribution of the encrypted
packet payloads, and TLS flow metadata (which can be collected from TLS handshake
messages). Furthermore, Anderson and McGrew [7] suggested the notion of contextual
flows of a TLS flow, which are defined as DNS and HTTP flows from the same source
IP address within a 5 min window, and showed that the enhanced flow features and
contextual flow information can be used to detect malware traffic very accurately but
with a controlled false discover rate. Anderson and McGrew [8] concluded that in TLS-
encrypted malware detection, the random forest ensemble method outperforms popular
supervised learning classifiers, such as linear regression, logistic regression, decision tree,
SVM, and multi-layer perceptron, even with noisy labels. In addition, Lee et al. [24]
proposed a malware detection method which uses incremental learning algorithms with
carefully chosen contextual flow information.

For malware family classification for TLS-encrypted traffic, [9] showed that the L1
multinomial logistic regression classifier with the enhanced flow features can classify
TLS-encrypted malware traffic into 1 of 18 classes (i.e., malware families) with a total
accuracy of 90.3%. In [25], an XGBoost [26]-based malware family classification framework
was proposed with a distance-based clustering method to measure the similarity between
malware families. Ref. [27] proposed a multi-task hierarchical learning method, which is
based on one-dimensional CNN and gives both mid-level class (e.g., malware family) and
top-level class (e.g., either malware or benign) at the same time. In both [25,27], features
were selected from the enhanced flow features.

In addition, Kim et al. [28] proposed an aligned and fixed-size TLS metadata repre-
sentation method for malware family classification, which gives more than 93% accuracy
in SVM and convolutional neural network (CNN) classifiers. The main motivation of
the proposal was to visualize TLS metadata in images both for security experts and ma-
chine learning algorithms, inspired by research efforts in image visualization [29] from
binary code and deep learning-based malware recognition [30–32]. More comprehensive
discussion of the advantages of aligned, fixed-size, normalized, and complete packet rep-
resentations for machine learning-based traffic classification for a variety of problems,
including malware detection, was given in a recent work by Holland et al. [33].

While a majority of recent malware detection and malware family classification meth-
ods utilize a subset of the enhanced flow features, which can be exported by network
devices [20], collecting such features may be inefficient in some scenarios, especially when
there is no careful feature selection (e.g., [34]). To this end, MalClassifier [35] presents
a malware family classification system from connection logs of a widely used real-time
network monitoring framework called Bro (currently Zeek) [36]. Clearly, MalClassifier is ef-
ficient and can be operated in real time, but it is reported that a distance-based method [25]
outperforms MalClassifer especially due to false positives due to the similarity of several
malware families.

We should note that while we discussed some recent machine learning-based malware
detection and family classification methods specialized for TLS-encrypted traffic, there is a
broad range of machine learning-based techniques which complement or are used for net-
work intrusion detection systems, which require diverse malicious network traffic (includ-
ing TLS/SSL traffic) in general. Verkerken et al. [37] evaluated four unsupervised machine
learning techniques on a modern real-world network traffic dataset. Gopalan et al. [38]
provided a survey on research efforts to address the imbalanced dataset issue in machine
learning-based techniques for network intrusion detection systems. Mauro et al. [39] gave
a novel experimental-based review of neural network-based techniques for network in-
trusion management. Chou et al. [40] presented data-driven network intrusion detection
methods from the past 10 years with a discussion on research trends and future directions.

2.3. Lack of Malware Family Dataset

As we observed in Section 2.2, research efforts toward malware family classification
for TLS-encrypted traffic were conducted by only a few researcher groups in recent years.
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Amongst them, the set of works by Anderson and McGrew in Cisco Systems [20], Anderson
and McGrew [7,8] gives arguably the most comprehensive and trustworthy results in this
area. There are several reasons for the statement. At first, Cisco successfully commercial-
ized the research effort with a name encrypted traffic analytics (ETA) [41]. Furthermore,
the research team made their tools (Joy [42] and Mercury [43]) open-source with a finger-
print database for TLS metadata. However, unfortunately, the malware and legitimate
TLS-encrypted traffic datasets in their works are not available publicly.

Actually, there are several research community efforts to collect and distribute unen-
crypted and encrypted malware traffic dataset [44]. In particular, as discussed by Thakkar
and Lohiya [45], there are several malware traffic datasets, each of which has selected and
pre-processed features especially for intrusion detection. However, these datasets typically
do not provide sequential information of TLS flow discussed in Section 2.2.1, so recent
research efforts in this area cannot be evaluated.

Therefore, many researchers obtain the sequential information from a raw malware
traffic dataset, which is collected by themselves or acquired from a public repository. To the
best of our knowledge, the most voluminous raw malware traffic dataset available publicly
is offered by the Stratosphere IPS project [46]. With a feature dataset that is selectively
chosen from this raw dataset, a recent malware traffic classification challenge called NetML
2020 [47] was held as a part of the NETAML workshop in conjunction with IJCAI-PRICAI
2020. In particular, the NetML feature dataset provides most of the enhanced feature set
in [7]. However, while the community efforts should be appreciated, unfortunately, we
have found that both datasets should be used with caution. For example, as shown in
Figure 2b, the TrickBot samples in the NetML 2020 dataset have a simple Markov chain
fingerprint due to the only communication pattern: ClientHello from the Trickbot and
HandshakeFailure from the server due to the unsupported SSL/TLS version.

To this end, in this paper, we obtain malware family pcap samples from a public repos-
itory called https://www.malware-traffic-analysis.net (accessed on 15 November 2021)
collected by a security expert from a sandbox. One of the important characteristics of the
samples is validated by the expert with descriptions so that labeling the samples can be
done consistently. Furthermore, the repository provides various malware family samples
over time so that, although diverse, communication patterns due to the evolution of the
malware family are captured. Figure 2a shows that the TrickBot samples in our dataset
generate a complex Markov chain fingerprint due to diverse communication patterns.
In this context, we believe that our dataset is suitable for fair evaluation among malware
family classification methods. Note that technical details of our dataset are described in
Section 4.1.

https://www.malware-traffic-analysis.net
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(a)

(b)

Figure 2. Markov chain fingerprints from packet length sequences of TrickBot samples in our dataset (left) and NetML
2020 dataset (right). Note that for simplicity, edges with <1% state transition probability are removed in (a). (a) TrickBot
fingerprint generated from our dataset, (b) TrickBot fingerprint generated from NetML 2020 dataset.

2.4. Need for Evaluation Based on Packet Length Sequences

Based on the previous discussion in this section, we insist that there is a need for
evaluation based on packet length sequences, summarized as the following:
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• Recent research efforts [7,8,19,20] showed that we can successfully classify TLS-
encrypted malware traffic without decryption in a coarse-grained manner (i.e., mal-
ware detection) and a fine-grained manner (i.e., malware family classification), pro-
vided that more features are collected from unencrypted parts of network traffic but
selected by security experts. Similarly, more recent works [28,33] insisted that more
generic representation of the unencrypted parts can leverage the burden of domain
expertise with the introduction of machine learning.

• Surprisingly, while there are various proposals to represent sequential information
in TLS-encrypted traffic for machine learning-based classification, there is no clear
discussion among the proposals, especially in the context of malware family classifica-
tion due to diverse feature sets in the current methods. Considering a broad adoption
of sequential information in recent research efforts, a fair experimental evaluation
among the proposals (i.e., evaluation with the same configuration and the same input)
should be given to understand which representations and classification algorithms
are better than others.

• In particular, the packet length sequence and directions in TLS-encrypted traffic can
be easily obtained with lower overhead, compared with TLS metadata. In addition,
the time complexity to obtain the packet length sequence is comparable with that of
unique packet length features (e.g., mean, max, and min), while more space complexity
is required [34]. Fortunately, the space complexity problem can be alleviated with
the recent advances of storage technology in speed and volume or with the use of a
fixed-size packet length sequence.

• Currently, one minor but important advantage of flow sequential information is the
measurability of the information in most scenarios of traffic classification. While the
inclusion of TLS metadata as input improves accuracy, especially with the current
dataset, a part of TLS metadata may be unavailable in some scenarios with TLS 1.2
session resumption, and a substantial part of TLS metadata is encrypted in TLS 1.3 [48]
such that the information may be unavailable in near future.

3. Evaluation Framework

In this section, we describe our evaluation framework in detail. We first give an
overview of our framework in brief, and we discuss the details in two parts: sequential
information representationsand classification algorithms.

3.1. Framework Overview

As we discussed in Section 2.4, we focus on the evaluation of the state-of-the-art
malware family classification methods in a evaluation framework with the same configura-
tion and the same input, other than the sequential data representations and classification
algorithms. Figure 3 sketches the overview of our evaluation framework.

In our framework, we use the packet length sequence and the directions of each TLS-
encrypted traffic flow generated from the malware flow samples as raw input (i.e., a data
point in the dataset). In an implementation perspective, the sequential flow information can
be represented in a Python list of signed integers, where the sign represents the direction
(as in Figure 1). We split the whole dataset into three datasets: training dataset for training,
validation dataset for parameter tuning and test dataset for testing.

As we already described in Section 2.2.1, we evaluate three representative state-
of-the-art methods: Markov chain fingerprinting (a hybrid of [6,9]), GraphDApp [11],
and FS-Net [10]. The basic representations of each data point in the methods are Markov
chain fingerprint, traffic interaction graph (TIG), and embedding vector, respectively.

In the training phase of Markov chain fingerprinting, a representative Markov chain
fingerprint model is generated from all data points of each malware family. On the other
hand, GraphDApp and FS-Net have their own representation learning methods described
in Section 3.2.
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In the classification phase, each method has its default classifier: the maximum likeli-
hood classifier, the Softmax classifier with a fully-connected (linear) layer, and the software
classifier with a two-layer perceptron and the Selu activation function, respectively. For the
first two methods, we also include non-default classifiers, such as L1 logistic regression,
linear SVM, decision tree, and random forest, some of which appeared in literature.

In the testing phase, we evaluate the trained classifiers with the test dataset with the
standard metrics: accuracy, F1 score, recall, and precision. In addition, we also evaluate the
classifiers with 3% noisy class labels to simulate inaccurate ground truth scenarios, which
makes the adoption of machine learning slow in real deployments [8,49].

Figure 3. An overview of our evaluation framework for the malware family classification methods.

3.2. Feature Representations

In our framework, the following representation methods are applied.

• Markov chain fingerprinting: While the original paper on Markov chain fingerprint-
ing [6] utilizes TLS message type sequences for feature representation of a TLS session
(i.e., bidirectional flow), our input is the packet length sequence with their directions
for the TLS session. On the other hand, the method used in [7,20] only considers the
packet length sequence since each unidirectional flow is used in the method. To this
end, we propose a hybrid method to use 150 byte bins for the packet length but allow
the minus sign in order to represent the direction of the packet. It implies that a
total of 20 states are available in our Markov chain fingerprints. We also generate the
enter probability distribution Q = [qi] and the exist probability distribution W = [wi]
described in [6] as features.

• GraphDApp: To construct the traffic interaction graph, we implement the same
algorithm described in Algorithm 1 of [11]. For the representation learning, we also
implement the graph neural network (GNN) architecture described in Sections IV.B
and IV.C of [11]. In the architecture, the representation learning part consists of n
layers of perceptrons, where each layer follows a recursive neighborhood aggregation
scheme as a variant of the work of Xu et al. [50]; all layers are concatenated by the
jumping knowledge network proposed by Xu et al. [51].

• FS-Net: In the embedding layer of FS-Net, the raw input is converted into a embedding
vector sequence, which is widely used in natural language processing [52]. Since the
representation learning part in FS-Net is highly related to the classification algorithm,
we cover this part in Section 3.3.
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We should note that in our experiment for GraphDApp and FS-Net, we restrict the
maximum number of packets in the raw input as 25 since GraphDApp uses the parameter
to achieve moderate time overhead.

3.3. Classification Algorithms

In our framework, the following classification algorithms are applied.

• Maximum likelihood classifier for Markov chain fingerprinting [6]: When a raw input
[L1, L2, ..., LT ] is given, we can compute the conditional probability that the raw input
is occurred, given that the input is generated by a specific malware family G as

P([L1, L2, ..., LT ]) = qL1 × wLT × ∏
t=2T

pLt−1,Lt , (1)

where pi,j is the state transition probability (from state i to state j) of the Markov
chain fingerprint model for G. The maximum likelihood classifier outputs the most
plausible family G∗ (i.e., the family which maximizes the likelihood function) when
the likelihood function for a family G is defined as Equation (1).

• L1 logistic regression: We use a L1-multinomial logistic regression classifier imple-
mented in scikit-learn v 1.0.1 as in [9]. Note that [20] gave the results for the L1
logistic regression classifier for the malware detection problem.

• Linear SVM, decision tree, and random forest: We use a linear SVM-based classifier,
a classification and regression tree (CART)-based decision tree classifier, and a random
forest classifier implemented in scikit-learn v1.0.1 as in [8] both for Markov chain
fingerprinting and the traffic interaction graph. Note that according to [9], there is
no improvement in a statistically significant manner when we compare L1 logistic
regression and linear SVM for the malware family classification problem.

• Fully connected layer for GraphDApp [11]: Following GraphDApp [11], we use
the softmax classifier with a fully-connected layer for malware family classification.
To compute the loss, the cross entropy function is used.

• FS-Net: The flow-sequence network (FS-Net) architecture consists of several layers:
embedding layer, encoder layer, decoder layer, reconstruction layer (only for represen-
tation learning), dense layer, classification layer (for classification). The embedding
vector sequence is generated in the embedding layer as described in Section 3.2. Then,
the embedding vector sequence is given to the encoder layer and the decoder layer
(both are stacked multi-layer bi-GRUs [53]) to generate compressed expressive fea-
tures (i.e., encoder and decoder sequences). In addition, the Softmax classifier is
used in both the reconstruction layer and the classification layer. For the dense layer,
a two-layer perceptron with the Selu activation function [54] is used. We use the
default parameters described in [10]. To compute the loss, the cross entropy function
is used.

In particular, machine learning classifiers, such as SVM, decision tree, and random
forest, are often used in state-of-the-art proposals to address the malware traffic classifica-
tion problem [8,28,55]. So, we adopt these classifiers to confirm their performance when
we combine them with different representations (i.e., Markov chain fingerprinting and
GraphDApp with the traffic interaction graph-based feature representation), not only the
maximum likelihood classifier and the fully-connected layer classifier, which are used
in [6,11], as the default, respectively. Considering our evaluation results, we expect that
adopting other classifiers (e.g., linear regression, MLP, and LightGBM) may not improve
their performance dramatically, but it would be considered in future work.

In our experiment, the parameters used in the classifiers are hand-tuned. At first,
we train the classification model with the default parameters in Python-based libraries
(scikit-learn, PyTorch, and TensorFlow) and obtain the classification results with the val-
idation set in terms of accuracy, F1 score, recall, and precision. Then, we increase or
decrease each parameter to achieve better results repeatedly. Finally, we select the final
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parameters which show the best performance with the validation set and use them for
experimental evaluation.

4. Experimental Evaluation

In this section, we first describe our dataset for malware family samples. Then, we
discuss our evaluation results.

4.1. Traffic Dataset

As described in Section 2.3, we collected 14,980 TLS-encrypted malware flow sam-
ples from the https://www.malware-traffic-analysis.net (accessed on 15 November 2021)
repository for the time period between July 2019 and May 2014. As summarized in Table 1,
the resulting malware family labels include Angler-EK, Dridex, Gootkit, Hancitor, IcedID,
Rig-EK, Trickbot, and Zeus.

Table 1. Flow samples of malware families used in evaluation.

Malware Family Flow Samples Train Set Validation Set Test Set

Angler-EK 128 80 22 26
Dridex 539 351 80 108
Gootkit 112 70 20 22

Hancitor 2187 1392 358 437
IcedID 193 125 30 38
Rig-EK 264 168 43 53
Trickbot 10,363 6632 1658 2073

Zeus 1194 769 186 239

Total 14,980 9587 2397 2996

Since the repository gives raw pcap files only, we develop a TLS flow feature extraction
tool. In the tool, only TLS bidirectional flows in each pcap file are filtered using the tshark’s
dissection heuristic, and each flow is identified by the four-tuple (i.e., source IP address,
destination IP address, source port, and destination port). The resulting dataset is split into
three parts (64% for training, 16% for validation, and 20% for testing).

4.2. Evaluation Results

In this subsection, we discuss the evaluation results.

4.2.1. Accuracy and F1 Score of the State-of-the-Art Methods

Table 2 shows our evaluation results for the 10 trained classifiers with the test dataset.
In the table, we present four performance metrics: accuracy, F1 score, recall, and precision.

For the classification accuracy ranking, most of the results can be expected from exist-
ing research efforts [8,9,11], although the efforts mainly focus on application classification
and malware detection. However, their detailed values are interesting. For example,
Ref. [11] reports that Markov chain fingerprinting with maximum likelihood classifier [6]
has very poor accuracy for decentralized application identification, but in our experiment,
the accuracy of the Markov chain fingerprinting with various classifiers is within the range
between 69% and 78%.

https://www.malware-traffic-analysis.net
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Table 2. Malware family classification results in terms of accuracy, F1 score, recall, and precision.

Representation Classification Algorithm Accuracy F1 Score Recall Precision

Markov Chain Fingerprint Maximum Likelihood [6] 71.99% 76.74% 71.99% 86.02%
Markov Chain Fingerprint L1 Logistic Regression [9] (cf. [20]) 69.12% 56.56% 69.12% 47.86%
Markov Chain Fingerprint Linear SVM [9] (cf. [8] for detection) 69.19% 56.59% 69.19% 47.87%
Markov Chain Fingerprint Decision Tree (cf. [8] for detection) 77.77% 71.60% 77.77% 73.55%
Markov Chain Fingerprint Random Forest (cf. [8] for detection) 77.50% 71.30% 77.50% 75.87%

Traffic Interaction Graph Fully-Connected Layer [11] 97.83% 97.93% 97.83% 98.18%
Traffic Interaction Graph Linear SVM 96.92% 97.08% 96.92% 97.44%
Traffic Interaction Graph Decision Tree 85.91% 87.72% 85.91% 91.56%
Traffic Interaction Graph Random Forest 92.85% 91.93% 92.85% 92.50%

Embedding Vector FS-Net [10] 91.40% 89.91% 91.40% 92.46%

For traffic interaction graph, the fully connected layer classifier (i.e., the default
classifier of GraphDApp) has the highest accuracy, which can also be expected, but other
TIG-based classifiers show decreased but comparable performance in accuracy. It confirms
the powerful capability of traffic interaction graph to represent the sequential information
of TLS-encrypted traffic. FS-Net shows better accuracy than Markov chain-based classifiers,
but most of TIG-based classifiers, except decision tree, outperform FS-Net.

For other performance metrics, there is no difference among representations, but one
interesting result can be found within Markov chain-based classifiers. That is, the default
classifier in [6] shows the highest precision and results in the highest F1 score. Considering
the precision quantifies the number of correct predictions for each class and the data
imbalance in our dataset, the maximum likelihood classifier can correctly classify malware
families with small malware flow samples.

4.2.2. Confusion Matrices without Noisy Labels

Figure 4 depicts the confusion matrix for each representation with the most accurate
classifier. As in Table 2, GraphDApp clearly shows the highest accuracy for each malware
family, except TrickBot, compared with Markov chain fingerprinting and FS-Net.

There are two interesting points can be found in the figure. At first, FS-Net has a
tendency to have higher accuracy for malware families with larger samples, which can be
regarded as an evidence that FS-Net can be improved with more samples. Next, FS-Net
tends to predict Zeus samples as Hancitor. Hancitor is often used to infect other malware
such as Zeus and IcedID. Thus, such misprediction may result from the fact that some data
points are mislabeled.

On the other hand, one may have a question that the used dataset is imbalanced, so
the given experimental result may have flaws. To answer this potential issue, as shown in
Figure 5, we also conduct an experiment with the balanced dataset using SMOTEENN [56]
(a combination of over-sampling (SMOTE) and under-sampling (edited nearest neighbours)
methods) to address the imbalanced dataset issue. In the experiment, the accuracy of the
Markov chain fingerprinting, GraphDApp, and FS-Net are 64.4%, 98.09%, and 93.43%,
respectively. Compared to the experimental results with the original dataset, the perfor-
mance of the Markov chain fingerprinting classifier become worse, but the rest of two
classifiers which are deep learning-based models, show a small improvement.



Electronics 2021, 10, 3180 13 of 22

(a) (b)

(c)

Figure 4. Confusion matrices of classification results using (a) Markov chain fingerprinting with maximum likelihood
classifier, (b) traffic interaction graph with fully connected layer classifier (GraphDApp), and (c) embedding vector
with FS-Net.
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(a) (b)

(c)

Figure 5. Confusion matrices of classification results using (a) Markov chain fingerprinting with maximum likelihood
classifier, (b) traffic interaction graph with fully connected layer classifier (GraphDApp), and (c) embedding vector with
FS-Net with balanced train set.

4.2.3. ROC Curves and AUC Values

We present ROC curves in Figure 6 by calculating true positive rates (TPR) and false
positive rates (FPR) for the three classifiers. The total AUC values of each model are 0.7714,
0.9990, and 0.9540. In the Markov chain-based model, the increase in TPR with increase in
FPR is relatively low, and the AUC value is the lowest. On the other hand, the TIG-based
model shows outstanding performance in terms of TPR and FPR. Additionally, the model
that used FS-Net shows good performance, quite similar to the TIG-based model, but there
is a big difference in terms of the increase in TPR and the increase in FPR.
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(a) (b)

(c)

Figure 6. ROC curves using (a) Markov chain fingerprinting with maximum likelihood classifier, (b) traffic interaction
graph with fully connected layer classifier (GraphDApp), and (c) embedding vector with FS-Net.

4.2.4. Non-Parametric Friedman Test and Post-Hoc Nemenyi Test

In the experiment, we conduct the non-parametric Friedman test and the post hoc
Nemenyi test for comparison of the models which use the same feature representation,
but using different classifiers.

In the non-parameteric Friedman test, the null hypothesis is that the mean of each clas-
sifier’s AUC values is the same, and the alternative hypothesis is that the least one of them
is significantly different. For the Friedman test, we present the AUC values for each classi-
fier in Tables 3 and 4 with rankings. The result of the Frideman test for the Markov chain
fingerprinting show the test statistic is 21.4 and the p-value is 0.0002, so we reject the null
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hypothesis since the p-value is less than 0.005. In addition, in GraphDApp-based models,
the test statistic is 22.76923 and the p-value is 0.0000451, which rejects the null hypothesis.
Therefore, we confirm that the least one of the classifiers is significantly different.

Table 3. AUC values for each classifiers using Markov chain fingerprinting with average rank.

Malware Family Maximum Likelihood L1 Logistic Regression Random Forest Linear SVM Decision Tree

Angler-EK 0.7611 (2) 0.5979 (4) 0.7635 (1) 0.3281 (5) 0.6960 (3)
Dridex 0.8503 (1) 0.5957 (3) 0.6233 (2) 0.3957 (5) 0.5747 (4)
Gootkit 0.7770 (1) 0.5521 (4) 0.6138 (2) 0.5430 (5) 0.5753 (3)

Hancitor 0.8709 (1) 0.2436 (5) 0.7511 (2) 0.2940 (4) 0.7356 (3)
IcedID 0.8498 (1) 0.7120 (5) 0.8169 (2) 0.7139 (4) 0.8069 (3)
Rig-EK 0.6921 (1) 0.6486 (2) 0.5982 (3) 0.4524 (5) 0.5509 (4)
Trickbot 0.4988 (4) 0.3180 (5) 0.7286 (1) 0.6680 (3) 0.7077 (2)

Zeus 0.8710 (1) 0.2520 (5) 0.7347 (2) 0.3130 (4) 0.7229 (3)
Average Rank 1.50 4.12 1.88 4.38 3.12

Table 4. AUC values for each classifiers using traffic interaction graph (GraphDApp) with average rank.

Malware Family Fully Connected Layer Random Forest Linear SVM Decision Tree

Angler-EK 0.9975 (2.0) 0.9764 (3.0) 0.9984 (1.0) 0.5558 (4.0)
Dridex 0.9999 (1.5) 0.9934 (3.0) 0.9999 (1.5) 0.9786 (4.0)
Gootkit 0.9999 (1.5) 0.9710 (3.0) 0.9999 (1.5) 0.5681 (4.0)

Hancitor 0.9986 (2.0) 0.9971 (3.0) 0.9990 (1.0) 0.9721 (4.0)
IcedID 0.9999 (1.0) 0.9918 (3.0) 0.9980 (2.0) 0.8785 (4.0)
Rig-EK 0.9992 (2.0) 0.9761 (3.0) 0.9996 (1.0) 0.9201 (4.0)
Trickbot 0.9992 (2.0) 0.9799 (3.0) 0.9994 (1.0) 0.9019 (4.0)

Zeus 0.9979 (2.0) 0.9921 (3.0) 0.9985 (1.0) 0.8891 (4.0)
Average Rank 1.75 3.00 1.25 4.00

We also conduct the post hoc Nemenyi test at p-value 0.05, and we represent the
result using the critical difference (Demšar) diagram in Figure 7. This shows that the
maximum likelihood and random forest classifiers with Markov chain-based models are
not significantly different, and the linear SVM and the L1 logistic regression classifier are
not either. On the other hand, the difference of the GraphDApp-based models is quite
clear, and just the performance of the linear SVM and fully-connected layer classifier are
relatively similar.

(a) (b)

Figure 7. The critical difference diagram of the post hoc Nemenyi test for (a) Markov chain fingerprinting and (b) traffic
interaction graph (GraphDApp).

4.2.5. Training Time and Testing Time

The two plots in Figure 8 show (a) the training time and (b) the testing time of all
malware family classifiers used in evaluation for all malware flow samples respectively.
For each point in each plot, the x-coordinate represents its accuracy, and the y-coordinate
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represents the time for the corresponding dataset. In both training time and testing time,
FS-Net takes the longest time since it heavily uses complex operations for neural networks.

(a) (b)

Figure 8. Training and testing time of malware family classifiers used in evaluation. (a) Training time. (b) Testing time.

Surprisingly, the difference between Markov chain fingerprinting and the traffic
interaction graph in the training time is relatively small (i.e., only a few times larger),
while the traffic interaction graph construction requires a lot of matrix multiplications.
Partly, it may be due to an implementation problem: Markov chain fingerprinting is fully
implemented in the Python + scikit-learn combination (which does not provide any
GPU support) but GraphDApp is implemented in the Python + PyTorch combination,
which utilizes graphic processing units (GPUs) for computation (where we use a nVIDIA
RTX 3070 GPU). The training time of Markov chain fingerprinting can be improved by
using other programming languages, such as C with code optimization.

In the testing time, the L1 logistic regression classifier and the decision tree classifiers
take the lowest level time. It seems that the classifiers are simple enough to determine
their output. For the random forest classifiers, their testing time seems to be correlated to a
tunable parameter (i.e., the number of trees in the forest), each of which is hand-tuned to
optimize the accuracy (800 for Markov chain-based random forest and 200 for TIG-based
random forest). It implies that the raw input size (25) to construct the traffic interaction
graph is optimized, as described in [11]. A similar tendency is observed in the SVM
classifiers. Amongst the TIG-based classifiers, the Softmax classifier with a fully connected
layer has the highest testing time. A similar result is reported in [8].

One interesting result in the testing time is the maximum likelihood classifier, which
has the second highest testing time among the Markov chain-based classifiers. As in the
training time, it would be due to the same implementation problem. However, computing
the likelihood function value seems to be too simple (which requires a for loop for consecu-
tive values in the state transition matrix). To this end, the result may come from the fact
that we should compute the likelihood function value for each malware family (8 classes in
our dataset) since such a loop does not appear in other classifiers. It concludes that with
more malware families, the time complexity contribution may not be negligible.
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4.2.6. Performance Evaluation with Noisy Labels

In this subsection, we evaluate the classification methods to simulate inaccurate
ground truth scenarios, which is an important challenge in real deployments. We randomly
choose 3% of the malware traffic samples to be mislabeled. We use the 3% threshold from
an observation in the work of Anderson and McGrew [8]: the accuracy of the several
classifiers is changed near the 3% threshold. Figure 9 shows the classification accuracies of
the three default classifiers in Markov chain fingerprinting, GraphDApp, and FS-Net, with
or without noisy labels. The result shows that GraphDApp has the lowest degradation
in accuracy.

Figure 9. Comparison of classification accuracy with normal labeling and 3% noise labeling.

However, when we observe their confusion matrices shown in Figure 10, we can find
several interesting points. The confusion matrix of GraphDApp shows that the classifier
completely mispredicts some malware families, such as Goodkit and IcedID (with 0% of
precision). Furthermore, the confusion matrix of FS-Net shows a more severe result: most
of the predictions output malware families with relatively larger samples (e.g., Dridex,
TrickBot, and Zeus). Surprisingly, the confusion matrix of the Markov chain-based classifier
seems to be normal (with some level of precision for each malware family), while there
is a substantial amount of misprediction. Since Markov chain fingerprints store non-zero
state transition probabilities when there is at least one sample, non-zero precision would
be guaranteed with a lower level of noisy labels. However, there is no design consideration
in other classifiers. These results show that the neural network-based methods need to be
designed with the possibility of noisy labeling.
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(a) (b)

(c)

Figure 10. Confusion matrices of classification results using (a) Markov chain fingerprinting with maximum likelihood
classifier, (b) traffic interaction graph with fully connected layer classifier (GraphDApp), and (c) embedding vector with
FS-Net at 3% noisy labeling.

4.3. Discussion

Our experiment shows the advantages and limitations of the malware family clas-
sification methods for TLS-encrypted traffic. The classification methods using Markov
chain fingerprinting show worse performance with 69.12–77.77% accuracy. However,
the learning time is the fastest amongst the evaluated classifiers; in particular, the classifier
which uses maximum likelihood shows robustness against noise. On the other hand, most
of the TIG- and GraphDApp-based classifiers show better performance regardless of the
evaluated classification methods. Finally, the classification model using FS-Net shows high
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performance that is nearly similar to the graph-based model, however the model trained
the dataset with noise has a flaw.

There are several limitations in the proposed methodology. First, we only utilize
the packet length sequence information in our experiments, although we could obtain
other flow-level features, such as TLS metadata, HTTP contextual flow, etc. Evaluating
diverse combinations of flow-level feature representations and classification algorithms
could be a future work. In addition, in our experiment, we only focus on the malware
family classification problem. For future work, we could expand our evaluation framework
to the malware detection problem with legitimate network traffic datasets.

5. Conclusions

In this paper, we propose the evaluation framework of malware family classification
methods for TLS-encrypted traffic. With this framework, we conducted the experimental
evaluation of the state-of-the-art encrypted traffic classification methods, which utilize flow-
level sequential information with novel representations. In the experiment, the TIG-based
classifier had the best performance with 97.83% accuracy amongst the evaluated classifiers.
However, with the 3% noise labeled training set, the classifier is prone to mispredict some
malware families, while the maximum likelihood classifier for Markov chain fingerprinting,
which has low accuracy, shows robustness. According to our experimental evaluation, the
malware family classification problem for TLS-encrypted traffic has more room to design
classifiers. One research direction is to improve the graph neural network architecture of
GraphDApp with noisy labels.
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