
electronics

Article

Named Data Networking Based Disaster Response Support
System over Edge Computing Infrastructure †

Minh-Ngoc Tran and Younghan Kim *

����������
�������

Citation: Tran, M.-N.; Kim, Y.

Named Data Networking Based

Disaster Response Support System

over Edge Computing Infrastructure.

Electronics 2021, 10, 335. https://

doi.org/10.3390/electronics10030335

Academic Editor: Khaled Elleithy

Received: 17 December 2020

Accepted: 27 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic Engineering, Soongsil University, Seoul 06978, Korea; mipearlska1307@dcn.ssu.ac.kr
* Correspondence: younghak@ssu.ac.kr; Tel.: +82-02-820-0841
† This paper is the extended version of the conference paper: Tran, M.N.; Kim, Y. NDN-based Emergency

Communication over Edge Computing Infrastructure. In Proceedings of the 11th International Conference on
ICT Convergence, Jeju Island, Korea, 21–23 October 2020.

Abstract: After a disaster happens, effective communication and information sharing between emer-
gency response team members play a crucial role in a successful disaster response phase. With
dedicated roles and missions are assigned to responders, role-based communication is a pivotal
feature that an emergency communication network needs to support. Previous works have shown
that Named Data Networking (NDN) has many advantages over traditional IP-based networks in
providing this feature. However, these studies are only simulation-based. To apply NDN in disaster
scenarios, real implementation of a deployment architecture over existing infrastructure during the
disaster should be considered. Not only should it ensure efficient emergency communication, but the
architecture should deal with other disaster-related challenges such as responder mobility, intermit-
tent network, and replacement possibility due to disaster damage. In this paper, we designed and
implemented an NDN-based disaster response support system over Edge Computing infrastructure
with KubeEdge as the chosen edge platform to solve the above issues. Our proof-of-concept system
performance shows that the architecture achieved efficient role-based communication support, fast
mobility handover duration, quick network convergence time in case of node replacement, and
loss-free information exchange between responders and the management center on the cloud.

Keywords: named data networking; edge computing; disaster response; emergency communica-
tion; KubeEdge

1. Introduction

Disaster Response is the second phase in the four-phase process of Disaster Manage-
ment (Preparedness, Response, Rehabilitation and Reconstruction, Mitigation)—a process
that government and authorities follow to reduce potential damage from hazards, assure
prompt and appropriate assistance to victims during a disaster, and recover after that ac-
cording to WHO training package document [1]. Disaster Response happens immediately
aftermath of a disaster and aims to minimize the damage by conducting assistance services
(searching and rescuing), distributing supplies, and medical care. In this phase, emergency
responders are normally divided into teams with different missions. Reliable and timely
information exchange between these responders and their commanders is the key to make
an effective disaster response phase.

However, several challenges make it difficult to communicate efficiently in a disaster
scenario. First, infrastructure is usually damaged and broken after a disaster happens.
With the messaging server is down, most normal centralized message delivery applications
cannot work. Second, communication using the current IP-based network show limitations.
Considering responders’ dynamic roles and high mobility when participating in the disaster
response phase, it is difficult to know each individual IP address to contact. This causes
a significant delay in emergency information delivery during the disaster. As a result,

Electronics 2021, 10, 335. https://doi.org/10.3390/electronics10030335 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1086-4422
https://orcid.org/0000-0002-1066-4818
https://doi.org/10.3390/electronics10030335
https://doi.org/10.3390/electronics10030335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030335
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/335?type=check_update&version=2

Electronics 2021, 10, 335 2 of 19

inappropriate resource allocation, late assistance when rescuing people happen and these
issues can lead to unwanted and serious consequences.

Because of these challenges, it is necessary to find a network solution that has mobil-
ity built-in support and enable location-independent, role-based group communication
between responders. In recent years, several studies [2–4] have shown that Information-
Centric Networking (including NDN—one of its architectures) can improve IP-based
network weaknesses in providing these mentioned features in disaster. Specifically, NDN
uses the content name as the main entity inside the network to route the packet instead
of IP address–content location in IP-based network. It allows NDN consumers to fetch
data from anywhere in the network storing the copy of the data that has the same name as
the interest packet (the NDN request packet). This location-independent feature enables
group role-based message delivery in NDN. People in the same messaging group can fetch
messages by using the group’s unique name prefix. Moreover, NDN location-independent
feature enables native mobility support. When a user moves to a new location, data can be
requested using its name instead of having to know the new location address like in an
IP-based network.

Although several studies [3–12] have leveraged NDN in dealing with disaster manage-
ment issues, real implementation of an NDN-based architecture over existing infrastructure
during a disaster is lacking. Most works’ results are limited to simulation analysis. More-
over, when deploying an NDN network in a disaster scenario, apart from role-based
communication, additional challenges should be considered. First, infrastructure is nor-
mally damaged during a disaster, quick replacement time for network nodes is required.
Second, despite the NDN mobility built-in support feature, only the consumer mobility
issue is natively supported. Due to emergency responder high mobility, producer mobility
problem is also required to be addressed. NDN needs to be enhanced so that network can
automatically build routing paths to the producer’s new location after moving. Another
challenge is the intermittent network caused by disaster hazards. To effectively manage
tasks during the disaster response phase, reported information from responders to the
management center and commands from commanders to responders should ensure to
be delivered without any loss. Missing information can seriously affect searching and
rescue efforts.

In this paper, we designed and implemented an NDN-based disaster response support
system over Edge Computing infrastructure with KubeEdge as the chosen implementation
edge platform to solve the above issues. In this proposed architecture, we design a deploy-
ment strategy to establish an NDN network at both one region level and multiple regions
level. NDN network functions are deployed as containers from cloud to edge equipment
to provide emergency communication. Each cluster contains several edge nodes to provide
an NDN network for one region. Master nodes from each cluster are tunneled to connect
the NDN network between two regions. In case of damaged edge nodes caused by the
disaster, NDN containerized function will be deployed from the cloud to replaced nodes.
With Named-data link-state protocol (NLSR) [13] enabled, the NDN network can converge
quickly after replacement. We also enhance NDN with a protocol between user devices and
border edge nodes to solve the mobility challenge. Finally, we utilize KubeEdge to provide
reliable information sharing between cloud and edge in discontinuous network conditions.
The architecture is implemented using KubeEdge on multiple servers and NUCs. For end-
users, we design an exclusive NDN disaster application that provides message delivery
and information exchange with the management center function. Our proof-of-concept
system performance shows that the architecture obtains the following achievements:

• A deployment architecture to provide emergency communication over NDN network
and NDN device management for disaster information exchange

• Faster network convergence time after replacement in case of damaged network node
caused by disaster compared to IP-based network

• Faster mobility handover duration compared to Mobile IP [14] and rendezvous mobil-
ity solution for NDN [15]

Electronics 2021, 10, 335 3 of 19

• Low information exchange transmission overhead between cloud and responder
devices

• Ensuring loss-free information exchange between responders and management center
at cloud compared to normal NDN method without using edge platform.

Compared with the preliminary version [16], this paper provides more details about
the architecture design, presents implementation results and analysis.

The remaining sections are organized as follows: Section 2 presents the related works.
Subsequently, we present our proposed architecture and system design, including NDN
network deployment architecture over edge computing, NDN mobility protocol, and
information exchange mechanism between cloud and responders through KubeEdge in
Section 3. Section 4 shows our detailed implementation and Section 5 shows evaluation
results.

2. Related Works

2.1. Named Data Networking Advantages over IP-Based Network in Disaster Response

The limitation of IP-based networks compared with NDN in disaster response has
been discussed in several studies [2–4]. There are three main advantages of NDN over IP
architecture. Firstly, location-independent routing capability allows NDN to perform more
timely information dissemination than IP-based networks. Group communication between
responders can be easily created by using group name prefixes in NDN. Meanwhile, IP
addresses need to be distributed first before messages can be exchanged. Moreover, the
NDN in-network caching feature allows it to provide lower latency data delivery than
the IP network. Secondly, NDN can handle the responder mobility challenge better than
IP architecture. NDN provides mobility built-in support whereas IP need to use patch
like mobile-IP. Lastly, since bandwidth is limited inside the network in disaster scenarios
due to damaged network infrastructure, NDN is more convenient. By using the name as
the main network entity, NDN packet is smaller than IP counterpart which includes the
address inside. Moreover, the interest aggregation feature of NDN also helps it to utilize
network bandwidth.

2.2. Previous Research Efforts

With these clear advantages of NDN over IP-based networks in disaster manage-
ment, the research community has contributed several disaster-related solutions using
this network architecture. Although state-of-the-art NDN has been applied in message
delivery [9,10], social networking service [11], and vehicular communication [12] in disaster
scenarios, most works extend and improve NDN features to enhance its performance in
different aspects. Koki et al. [8] improve the capability of naming disaster information
in NDN by using natural language processing. Abdul et al. [3] added lightweight push
support to the original NDN for an NDN-IoT-based system for disaster management. This
extension helped reduce system latency and increase its throughput. Mohammad et al. [5]
proposed a disaster NDN information dissemination with complex graph-based names-
paces, automatic name-based load-splitting support on a recipient-based publish/subscribe
architecture. Their system improved state-of-the-art NDN in terms of information delivery
time and load sharing. Another kind of approach in leveraging NDN in disaster manage-
ment solutions is combining NDN with other architecture. Yang et al. [7] adopted NDN in
Mobile Ad hoc networks (MANET). The authors proposed a proactive routing protocol
that extends NDN’s Forwarding Information Base (FIB) and leverages NDN multipath
forwarding support. Their system improved transmission efficiency in MANET.

However, it is complex to evaluate these systems in a real disaster scenario since most
previous works are simulated using NS-3 network simulator ndnSim [17]. Only a few
works have real implementations of their systems. The mentioned NDN-based MANET [7]
is demonstrated by a platform consisting of several Raspberry Pi smart cars. NDN engine
with the proposed routing protocol is installed in these Raspberry Pis. Another work that
has real demonstration is the graph-based namespaces NDN information dissemination

Electronics 2021, 10, 335 4 of 19

system [5]. The demonstration [6] consists of several responder devices, a coordination cen-
ter, and a middle device moving between them to update responder devices’ namespaces.
Although their results are reliable, these architectures are only applicable to device-to-
device (D2D) network. User devices can run out of energy anytime because power supplies
might not be available after the disaster happens. Moreover, the D2D network is not
reliable in large-scale disaster scenarios. Therefore, it is necessary to find a way to deploy
an NDN-based system on the remaining infrastructure.

Our previous works [18] has already presented a real implementation of a name-
based emergency communication system by virtualizing NDN network functions over
Kubernetes. However, we find it necessary to enhance our system to deal with other
disaster-related challenges so that it can work effectively in real scenarios. In this paper,
our proposed architecture focus on the following issues. First, producer mobility should be
supported because responders frequently move during their disaster response missions.
Second, since network infrastructure can be damaged by hazards during the disaster, the
network architecture should be able to re-converge fast in case of replacement. Lastly,
the system should be able to prevent information loss caused by intermittent network
conditions. In this work, we design a mobility protocol between responder devices and
border edge and utilize KubeEdge—a lightweight edge computing platform to address
these mentioned problems.

2.3. KubeEdge

KubeEdge [19] is an open-source edge computing platform that is designed to ex-
tend Kubernetes containerized orchestration capabilities to hosts at Edge. It supports
networking, application deployment, and metadata synchronization between cloud and
edge devices. KubeEdge architecture consists of two parts: Cloudcore and Edgecore as
shown in Figure 1.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 19

that has real demonstration is the graph-based namespaces NDN information dissemina-

tion system [5]. The demonstration [6] consists of several responder devices, a coordina-

tion center, and a middle device moving between them to update responder devices’

namespaces. Although their results are reliable, these architectures are only applicable to

device-to-device (D2D) network. User devices can run out of energy anytime because

power supplies might not be available after the disaster happens. Moreover, the D2D net-

work is not reliable in large-scale disaster scenarios. Therefore, it is necessary to find a

way to deploy an NDN-based system on the remaining infrastructure.

Our previous works [18] has already presented a real implementation of a name-

based emergency communication system by virtualizing NDN network functions over

Kubernetes. However, we find it necessary to enhance our system to deal with other dis-

aster-related challenges so that it can work effectively in real scenarios. In this paper, our

proposed architecture focus on the following issues. First, producer mobility should be

supported because responders frequently move during their disaster response missions.

Second, since network infrastructure can be damaged by hazards during the disaster, the

network architecture should be able to re-converge fast in case of replacement. Lastly, the

system should be able to prevent information loss caused by intermittent network condi-

tions. In this work, we design a mobility protocol between responder devices and border

edge and utilize KubeEdge—a lightweight edge computing platform to address these

mentioned problems.

2.3. KubeEdge

KubeEdge [19] is an open-source edge computing platform that is designed to extend

Kubernetes containerized orchestration capabilities to hosts at Edge. It supports network-

ing, application deployment, and metadata synchronization between cloud and edge de-

vices. KubeEdge architecture consists of two parts: Cloudcore and Edgecore as shown in

Figure 1.

Figure 1. KubeEdge architecture.

Compared with Kubernetes, orchestration capabilities are separated from edge

nodes to the cloud side. Cloudcore is the extended Kubernetes controller that controls

edge nodes and pods metadata so that data can be targeted to specific edge nodes. Mean-

while, computing functionalities—pod deployments are handled by Edgecore.

Figure 1. KubeEdge architecture.

Compared with Kubernetes, orchestration capabilities are separated from edge nodes
to the cloud side. Cloudcore is the extended Kubernetes controller that controls edge
nodes and pods metadata so that data can be targeted to specific edge nodes. Meanwhile,
computing functionalities—pod deployments are handled by Edgecore.

Several KubeEdge advantages make us choose it as the edge platform to deploy
NDN network functions in disaster scenarios. First, Edgecore has a lightweight size. It

Electronics 2021, 10, 335 5 of 19

is a node agent equivalent to kubelet [20] in Kubernetes. However, several features of
kubelet are stripped out and SQLite [21] is used instead of etcd [22] to make Edgecore’s
binary size small and consume much less memory than kubelet. This allows this edge
node agent to be installed even in resources-constraint devices when normal network
infrastructure is heavily damaged by the disaster. Second, Edgecore supports device
management with multiple protocols such as Bluetooth, Modbus [23], OPC-UA [24]. A
custom protocol can also be defined by KubeEdge users. This feature allows us to use
KubeEdge to manage NDN responder devices. Information can be exchanged between
the disaster management commander at cloud and responders by utilizing KubeEdge’s
Mosquitto publish/subscribe framework [25]. Finally, KubeEdge supports transmission
reliability between cloud and edge, which is a very important feature, especially in disaster
intermittent network conditions. The mechanism that enables this feature is called At-
Least-Once Delivery [26] and the architecture design between Cloudcore and Edgecore
that enables this feature is shown in Figure 2.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 19

Several KubeEdge advantages make us choose it as the edge platform to deploy NDN
network functions in disaster scenarios. First, Edgecore has a lightweight size. It is a node
agent equivalent to kubelet [20] in Kubernetes. However, several features of kubelet are
stripped out and SQLite [21] is used instead of etcd [22] to make Edgecore’s binary size
small and consume much less memory than kubelet. This allows this edge node agent to
be installed even in resources-constraint devices when normal network infrastructure is
heavily damaged by the disaster. Second, Edgecore supports device management with
multiple protocols such as Bluetooth, Modbus [23], OPC-UA [24]. A custom protocol can
also be defined by KubeEdge users. This feature allows us to use KubeEdge to manage
NDN responder devices. Information can be exchanged between the disaster manage-
ment commander at cloud and responders by utilizing KubeEdge’s Mosquitto pub-
lish/subscribe framework [25]. Finally, KubeEdge supports transmission reliability be-
tween cloud and edge, which is a very important feature, especially in disaster intermit-
tent network conditions. The mechanism that enables this feature is called At-Least-Once
Delivery [26] and the architecture design between Cloudcore and Edgecore that enables
this feature is shown in Figure 2.

Figure 2. KubeEdge Cloud-Edge transmission reliability design.

The Kubernetes Custom Resources Definition (K8s-CRD) is used to store the resource
version of the messages which are sent from cloud to edge. The message is marked as
completed only when Cloudcore receiving the acknowledgment through the Message
Acknowledgement Channel (MsgAckChannel) from Edgecore after successful message
receipt here. In case of disconnection between cloud and edge happens, unacknowledged
messages will be kept in the messages queue for resending after the connection is recov-
ered. With this mechanism, data loss communication between cloud and edge can be pre-
vented and recovered when the network is unstable.

3. System Design
The general architecture of deploying NDN network over edge computing infra-

structure has two separated parts: cloud and edge. The Cloud side is responsible for edge
nodes management, NDN containerized network functions deployment over managed
edge nodes. The edge side contains all the edge nodes located around disaster areas. Each
edge node is responsible for running one containerized NDN router. Among them, nodes
which provide Wi-Fi access point are border edge nodes. They act as NDN gateway for
responders to connect and exchange information through the NDN network.

Figure 2. KubeEdge Cloud-Edge transmission reliability design.

The Kubernetes Custom Resources Definition (K8s-CRD) is used to store the resource
version of the messages which are sent from cloud to edge. The message is marked as
completed only when Cloudcore receiving the acknowledgment through the Message
Acknowledgement Channel (MsgAckChannel) from Edgecore after successful message
receipt here. In case of disconnection between cloud and edge happens, unacknowledged
messages will be kept in the messages queue for resending after the connection is recovered.
With this mechanism, data loss communication between cloud and edge can be prevented
and recovered when the network is unstable.

3. System Design

The general architecture of deploying NDN network over edge computing infras-
tructure has two separated parts: cloud and edge. The Cloud side is responsible for edge
nodes management, NDN containerized network functions deployment over managed
edge nodes. The edge side contains all the edge nodes located around disaster areas. Each
edge node is responsible for running one containerized NDN router. Among them, nodes
which provide Wi-Fi access point are border edge nodes. They act as NDN gateway for
responders to connect and exchange information through the NDN network.

When deploying this architecture in disaster scenarios, a suitable edge platform that
can work well in disaster conditions is required. Based on the characteristics that we
discussed in the previous part, we choose KubeEdge as the platform to deploy the NDN
network over.

Electronics 2021, 10, 335 6 of 19

3.1. NDN Deployment over KubeEdge Architecture

We first demonstrate the general network architecture for a single region where one
KubeEdge cluster is used to deploy NDN network. The architecture is shown in Figure 3.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 19

When deploying this architecture in disaster scenarios, a suitable edge platform that
can work well in disaster conditions is required. Based on the characteristics that we dis-
cussed in the previous part, we choose KubeEdge as the platform to deploy the NDN
network over.

3.1. NDN Deployment over KubeEdge Architecture
We first demonstrate the general network architecture for a single region where one

KubeEdge cluster is used to deploy NDN network. The architecture is shown in Figure 3.

Figure 3. Named Data Networking (NDN) over KubeEdge general network architecture in single
region.

KubeEdge Cloudcore is the sole component on the cloud side. Cloudcore manages
all edge nodes in the cluster and responder devices’ information that connect to them. It
is also responsible for deploying containerized NDN routers at the correct edge nodes
based on their pre-defined yaml files.

The edge side of the architecture contains edge nodes with KubeEdge Edgecore in-
stalled inside them. Each edge node runs one instance of NDN containerized router de-
ployed from CloudCore. Border edge nodes have Wi-Fi access points to provide an NDN
gateway for responders to connect to the NDN network. In case an edge node is damaged
during the disaster, Edgecore binary can easily be installed into any network equipment
(even resources constraint once) thanks to the lightweight size of the Edgecore. After that,
given that Cloudcore information is pre-installed inside the replaced edge node by an
emergency repair team member, this node can re-join the KubeEdge cluster and deploy
the corresponding NDN routers based on the command from Cloudcore. The NDN net-
work is recovered at this moment.

For large scale disaster area which spreads over multiple regions, multiple KubeEdge
clusters are needed to provide NDN network. Figure 4 shows our designed architecture
for deploying the NDN network using KubeEdge over multiple regions.

The NDN network in each region will connect to an NDN router deployed at Cloud-
core node. This router will act as an NDN gateway for each region and connect to an IP
gateway router. To connect the network between two regions, a high-speed, high-band-
width TCP tunnel will be created between two IP gateway routers. This design is referred
to as a real NDN deployment presented in [27].

Figure 3. Named Data Networking (NDN) over KubeEdge general network architecture in single region.

KubeEdge Cloudcore is the sole component on the cloud side. Cloudcore manages all
edge nodes in the cluster and responder devices’ information that connect to them. It is
also responsible for deploying containerized NDN routers at the correct edge nodes based
on their pre-defined yaml files.

The edge side of the architecture contains edge nodes with KubeEdge Edgecore
installed inside them. Each edge node runs one instance of NDN containerized router
deployed from CloudCore. Border edge nodes have Wi-Fi access points to provide an
NDN gateway for responders to connect to the NDN network. In case an edge node is
damaged during the disaster, Edgecore binary can easily be installed into any network
equipment (even resources constraint once) thanks to the lightweight size of the Edgecore.
After that, given that Cloudcore information is pre-installed inside the replaced edge node
by an emergency repair team member, this node can re-join the KubeEdge cluster and
deploy the corresponding NDN routers based on the command from Cloudcore. The NDN
network is recovered at this moment.

For large scale disaster area which spreads over multiple regions, multiple KubeEdge
clusters are needed to provide NDN network. Figure 4 shows our designed architecture
for deploying the NDN network using KubeEdge over multiple regions.Electronics 2020, 9, x FOR PEER REVIEW 7 of 19

Figure 4. NDN over KubeEdge general network architecture in two regions.

3.2. NDN Emergency Communication Design
During the disaster response phase, emergency responders are normally split into

several groups. Each group includes several members that have the same role, and do the
same mission. Moreover, each responder may have multiple roles. Hence, we design an
emergency communication namespace that allows each responder to participate in mul-
tiple group message rooms based on their roles. Figure 5 shows how messages are deliv-
ered inside the NDN network using our designed namespaces.

The distributed NDN message delivery mechanism is based on ChronoSync [28].
Each group has two kinds of interest packets: group interest and user message interest.
They are named following the role of responders in the same group and their format is
given in Table 1. The group interest is used for fetching the sequence number of the mes-
sage from other users. The user message interest is used for fetching the content of the
message. At a balanced state, when there is no new message from any responder inside
the group, everyone will send a group interest with the same sync number. When one
responder establishes a new message, his device will reply with a data packet containing
the new message sequence number to other responder devices. Then, they will send the
message interest with that received sequence number to fetch the new message. After that,
every responder device in the group will send the new sync interest with the sync number
increased by one, and the balance state is achieved again.

(a)

(b)

Figure 5. NDN emergency group message delivery: (a) Balance state; (b) New message state.

Table 1. Emergency group communication namespace.

Interest Kind Format
Group responderRole/syncNumber

User Message responderRole/userID/messageSequenceNumber

Figure 4. NDN over KubeEdge general network architecture in two regions.

Electronics 2021, 10, 335 7 of 19

The NDN network in each region will connect to an NDN router deployed at Cloud-
core node. This router will act as an NDN gateway for each region and connect to an
IP gateway router. To connect the network between two regions, a high-speed, high-
bandwidth TCP tunnel will be created between two IP gateway routers. This design is
referred to as a real NDN deployment presented in [27].

3.2. NDN Emergency Communication Design

During the disaster response phase, emergency responders are normally split into
several groups. Each group includes several members that have the same role, and do
the same mission. Moreover, each responder may have multiple roles. Hence, we design
an emergency communication namespace that allows each responder to participate in
multiple group message rooms based on their roles. Figure 5 shows how messages are
delivered inside the NDN network using our designed namespaces.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 19

Figure 4. NDN over KubeEdge general network architecture in two regions.

3.2. NDN Emergency Communication Design
During the disaster response phase, emergency responders are normally split into

several groups. Each group includes several members that have the same role, and do the
same mission. Moreover, each responder may have multiple roles. Hence, we design an
emergency communication namespace that allows each responder to participate in mul-
tiple group message rooms based on their roles. Figure 5 shows how messages are deliv-
ered inside the NDN network using our designed namespaces.

The distributed NDN message delivery mechanism is based on ChronoSync [28].
Each group has two kinds of interest packets: group interest and user message interest.
They are named following the role of responders in the same group and their format is
given in Table 1. The group interest is used for fetching the sequence number of the mes-
sage from other users. The user message interest is used for fetching the content of the
message. At a balanced state, when there is no new message from any responder inside
the group, everyone will send a group interest with the same sync number. When one
responder establishes a new message, his device will reply with a data packet containing
the new message sequence number to other responder devices. Then, they will send the
message interest with that received sequence number to fetch the new message. After that,
every responder device in the group will send the new sync interest with the sync number
increased by one, and the balance state is achieved again.

(a)

(b)

Figure 5. NDN emergency group message delivery: (a) Balance state; (b) New message state.

Table 1. Emergency group communication namespace.

Interest Kind Format
Group responderRole/syncNumber

User Message responderRole/userID/messageSequenceNumber

Figure 5. NDN emergency group message delivery: (a) Balance state; (b) New message state.

The distributed NDN message delivery mechanism is based on ChronoSync [28].
Each group has two kinds of interest packets: group interest and user message interest.
They are named following the role of responders in the same group and their format
is given in Table 1. The group interest is used for fetching the sequence number of the
message from other users. The user message interest is used for fetching the content of the
message. At a balanced state, when there is no new message from any responder inside
the group, everyone will send a group interest with the same sync number. When one
responder establishes a new message, his device will reply with a data packet containing
the new message sequence number to other responder devices. Then, they will send the
message interest with that received sequence number to fetch the new message. After that,
every responder device in the group will send the new sync interest with the sync number
increased by one, and the balance state is achieved again.

Table 1. Emergency group communication namespace.

Interest Kind Format

Group responderRole/syncNumber
User Message responderRole/userID/messageSequenceNumber

With this namespace design, we can provide flexible and location-independent emer-
gency communication for responders. Figure 6 shows how we applied our namespace
design for message delivery in a Seoul disaster scenario. Four responders participate
in three messaging channels in this scenario. “/disaster01/seoul/dongjak/emergency”

Electronics 2021, 10, 335 8 of 19

channel is for all emergency responders (including hospital, fire and police responders)
who is doing their mission in Dongjak. “/disaster01/seoul/hospital” channel is for all
hospital responders in Seoul. “/disaster01/seoul/general” channel is the general channel
for everyone. Each responder can join multiple channels based on their roles. When
responders connect to a border edge node and join a channel, route to responder devices
will be automatically advertised to the NDN network by the edge node. Hence, no matter
where the responders are, they can send and receive messages from their channels using
the group name prefixes.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 19

With this namespace design, we can provide flexible and location-independent emer-
gency communication for responders. Figure 6 shows how we applied our namespace
design for message delivery in a Seoul disaster scenario. Four responders participate in
three messaging channels in this scenario. “/disaster01/seoul/dongjak/emergency” chan-
nel is for all emergency responders (including hospital, fire and police responders) who
is doing their mission in Dongjak. “/disaster01/seoul/hospital” channel is for all hospital
responders in Seoul. “/disaster01/seoul/general” channel is the general channel for every-
one. Each responder can join multiple channels based on their roles. When responders
connect to a border edge node and join a channel, route to responder devices will be au-
tomatically advertised to the NDN network by the edge node. Hence, no matter where
the responders are, they can send and receive messages from their channels using the
group name prefixes.

Figure 6. Multiple concurrent NDN group messaging channels in Seoul disaster scenario.

3.3. NDN Mobility Support Design
As responders need to move a lot during their missions in the disaster response

phase, mobility support is an essential feature that our network architecture should pro-
vide. Our proposed design is shown in Figure 7.

Figure 7. NDN mobility support design.

After moving, NDN name prefixes from responders’ devices need to be advertised
to the NDN network to continue message delivery. To minimize the handover time, we
add two pairs of client and server at user equipment and border edge so that this adver-
tisement process can be performed immediately at the node that the responder device
connects to. Normally, when responders join a group channel, the group prefix and the
message prefix will be sent from the advertising client to the advertising server at the edge

Figure 6. Multiple concurrent NDN group messaging channels in Seoul disaster scenario.

3.3. NDN Mobility Support Design

As responders need to move a lot during their missions in the disaster response phase,
mobility support is an essential feature that our network architecture should provide. Our
proposed design is shown in Figure 7.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 19

With this namespace design, we can provide flexible and location-independent emer-
gency communication for responders. Figure 6 shows how we applied our namespace
design for message delivery in a Seoul disaster scenario. Four responders participate in
three messaging channels in this scenario. “/disaster01/seoul/dongjak/emergency” chan-
nel is for all emergency responders (including hospital, fire and police responders) who
is doing their mission in Dongjak. “/disaster01/seoul/hospital” channel is for all hospital
responders in Seoul. “/disaster01/seoul/general” channel is the general channel for every-
one. Each responder can join multiple channels based on their roles. When responders
connect to a border edge node and join a channel, route to responder devices will be au-
tomatically advertised to the NDN network by the edge node. Hence, no matter where
the responders are, they can send and receive messages from their channels using the
group name prefixes.

Figure 6. Multiple concurrent NDN group messaging channels in Seoul disaster scenario.

3.3. NDN Mobility Support Design
As responders need to move a lot during their missions in the disaster response

phase, mobility support is an essential feature that our network architecture should pro-
vide. Our proposed design is shown in Figure 7.

Figure 7. NDN mobility support design.

After moving, NDN name prefixes from responders’ devices need to be advertised
to the NDN network to continue message delivery. To minimize the handover time, we
add two pairs of client and server at user equipment and border edge so that this adver-
tisement process can be performed immediately at the node that the responder device
connects to. Normally, when responders join a group channel, the group prefix and the
message prefix will be sent from the advertising client to the advertising server at the edge

Figure 7. NDN mobility support design.

After moving, NDN name prefixes from responders’ devices need to be advertised to
the NDN network to continue message delivery. To minimize the handover time, we add
two pairs of client and server at user equipment and border edge so that this advertisement
process can be performed immediately at the node that the responder device connects to.
Normally, when responders join a group channel, the group prefix and the message prefix
will be sent from the advertising client to the advertising server at the edge node. They
will be advertised to the NDN network by the NLSR engine here. These prefixes will also
be saved in the local database of the advertising client. When moving to a new location
and connecting to a new border edge node, the advertising client will detect the network
change and inform the ndn-autoconfig [29] client. Ndn-autoconfig client will automatically
create an NDN connection with the corresponding server running at the edge node. After

Electronics 2021, 10, 335 9 of 19

the NDN connection is established, those saved prefixes at the advertising client will be
sent to the server for advertising to the NDN network. At the same time, routes back to
user equipment for these prefixes will also be created. At this moment, the responder can
send and receive NDN messages normally.

3.4. NDN Device Management Using KubeEdge as Edge Computing Platform

Effective disaster response task management requires the commander at the man-
agement center to have an overview picture of what is happening around disaster areas.
Hence, we utilize KubeEdge device management feature to create an NDN responder
device management system for the centralized commander on the cloud. Through this
system, the commander can receive the reported mission status of all responders (current
event, requirement, location) from their devices. Based on this information, the commander
can directly update responders’ missions, roles from cloud to responder devices. Moreover,
we take advantage of the reliable cloud-edge transmission feature of KubeEdge so that no
information (reports from devices and updates from cloud) between cloud and devices is
dropped in intermittent network conditions.

The information exchange mechanism between cloud and responder devices is demon-
strated in Figure 8. Update information from the commander at cloud will be sent to
Edgecore and publish to Mosquitto topics here. Subscribed devices will receive updates.
Meanwhile, reported information from responders will be processed by the device-mapper
and published to Mosquitto topic. Edgecore gets reported data from subscriptions and
sends it to the cloud. Commander can get data from the Kubernetes API Server.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 19

node. They will be advertised to the NDN network by the NLSR engine here. These pre-
fixes will also be saved in the local database of the advertising client. When moving to a
new location and connecting to a new border edge node, the advertising client will detect
the network change and inform the ndn-autoconfig [29] client. Ndn-autoconfig client will
automatically create an NDN connection with the corresponding server running at the
edge node. After the NDN connection is established, those saved prefixes at the advertis-
ing client will be sent to the server for advertising to the NDN network. At the same time,
routes back to user equipment for these prefixes will also be created. At this moment, the
responder can send and receive NDN messages normally.

3.4. NDN Device Management Using KubeEdge as Edge Computing Platform
Effective disaster response task management requires the commander at the man-

agement center to have an overview picture of what is happening around disaster areas.
Hence, we utilize KubeEdge device management feature to create an NDN responder de-
vice management system for the centralized commander on the cloud. Through this sys-
tem, the commander can receive the reported mission status of all responders (current
event, requirement, location) from their devices. Based on this information, the com-
mander can directly update responders’ missions, roles from cloud to responder devices.
Moreover, we take advantage of the reliable cloud-edge transmission feature of KubeEdge
so that no information (reports from devices and updates from cloud) between cloud and
devices is dropped in intermittent network conditions.

The information exchange mechanism between cloud and responder devices is
demonstrated in Figure 8. Update information from the commander at cloud will be sent
to Edgecore and publish to Mosquitto topics here. Subscribed devices will receive up-
dates. Meanwhile, reported information from responders will be processed by the device-
mapper and published to Mosquitto topic. Edgecore gets reported data from subscriptions
and sends it to the cloud. Commander can get data from the Kubernetes API Server.

Figure 8. Device Management using KubeEdge.

4. Implementation
4.1. System Topology and Configuration

Figure 9 shows the cross-regional NDN network topology in our implementation.
We used physical servers for Cloudcore and normal edge nodes. D34010WYK NUCs are
used for border edge nodes and replacement nodes. KubeEdge version 1.4 is installed in
every node. NDN-cxx [30], NFD [31] version 0.6.5, and NLSR version 0.5 are used for

Figure 8. Device Management using KubeEdge.

4. Implementation

4.1. System Topology and Configuration

Figure 9 shows the cross-regional NDN network topology in our implementation.
We used physical servers for Cloudcore and normal edge nodes. D34010WYK NUCs are
used for border edge nodes and replacement nodes. KubeEdge version 1.4 is installed
in every node. NDN-cxx [30], NFD [31] version 0.6.5, and NLSR version 0.5 are used for
NDN network. IBRDTN [32] version 1.0.1 is used for delay-tolerant networking support.
For end-users, we use Lenovo ideapad D330 notebooks. An exclusive disaster response
assistance application is also designed for responders. It provides two features: NDN
group communication and NDN device management (updating missions from cloud to

Electronics 2021, 10, 335 10 of 19

device and reporting event, requirement, location information from devices to the cloud).
The detailed configuration of our implementation is shown in Table 2.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 19

NDN network. IBRDTN [32] version 1.0.1 is used for delay-tolerant networking support.
For end-users, we use Lenovo ideapad D330 notebooks. An exclusive disaster response
assistance application is also designed for responders. It provides two features: NDN
group communication and NDN device management (updating missions from cloud to
device and reporting event, requirement, location information from devices to the cloud).
The detailed configuration of our implementation is shown in Table 2.

Figure 9. Cross-regional NDN network topology in the implementation.

Table 2. Detailed implementation configuration.

Entity Hardware Software

Cloudcore CPU: Intel® Xeon 2.4 GHz, RAM: 256 GB, HDD: 1.8 TB

Ubuntu server 18.04
KubeEdge Cloudcore v1.4

NDN, NFD v0.6.5
NLSR v0.5

Normal Edgecore CPU: Intel® Xeon 1.5 GHz, RAM: 64 GB, HDD: 440 GB

Ubuntu server 18.04
KubeEdge Edgecore v1.4

NDNcxx, NFD v0.6.5
NLSR v0.5

Ibrdtn v1.0.1

Border Edgecore CPU: Intel® Core i3 1.7 GHz, RAM: 8 GB, HDD: 120 GB

Ubuntu 16.04
KubeEdge Edgecore v1.4

NDNcxx, NFD v0.6.5
NLSR v0.5

Ibrdtn v1.0.1

End-user CPU: Intel® Dual Core, RAM: 8 GB, HDD: 128 GB

Ubuntu 16.04
NDNcxx, NFD v0.6.5

NLSR v0.5
Ibrdtn v1.0.1

4.2. NDN Network Deployment
NDN routers are deployed using pre-configured yaml files. This information helps

NDN routers can automatically create NDN connections with other NDN nodes in the
network. An example of an NDN router’s yaml file is shown in Figure 10. In this file,

Figure 9. Cross-regional NDN network topology in the implementation.

Table 2. Detailed implementation configuration.

Entity Hardware Software

Cloudcore CPU: Intel® Xeon 2.4 GHz,
RAM: 256 GB, HDD: 1.8 TB

Ubuntu server 18.04
KubeEdge Cloudcore v1.4

NDN, NFD v0.6.5
NLSR v0.5

Normal Edgecore CPU: Intel® Xeon 1.5 GHz,
RAM: 64 GB, HDD: 440 GB

Ubuntu server 18.04
KubeEdge Edgecore v1.4

NDNcxx, NFD v0.6.5
NLSR v0.5

Ibrdtn v1.0.1

Border Edgecore CPU: Intel® Core i3 1.7 GHz,
RAM: 8 GB, HDD: 120 GB

Ubuntu 16.04
KubeEdge Edgecore v1.4

NDNcxx, NFD v0.6.5
NLSR v0.5

Ibrdtn v1.0.1

End-user CPU: Intel® Dual Core, RAM:
8 GB, HDD: 128 GB

Ubuntu 16.04
NDNcxx, NFD v0.6.5

NLSR v0.5
Ibrdtn v1.0.1

4.2. NDN Network Deployment

NDN routers are deployed using pre-configured yaml files. This information helps
NDN routers can automatically create NDN connections with other NDN nodes in the
network. An example of an NDN router’s yaml file is shown in Figure 10. In this file,
information about the deployed NDN router’s name (ALIAS, SITENAME), neighbor nodes
(NEIGHBOR_IP, NEIGHBOR_HOSTNAME, NEIGHBOR_SITE_ROUTE), pre-advertised
prefixes (AD_PREFIXE), NLSR configuration (NLSR_LIFETIME, NLSR_HELLOTIME,
NLSR_FIRST_HELLOTIME), Delay-Tolerant Networking [33] (DTN) configuration (DTN_
SUPPORT, DTN_DEFAULT_PREFIX) and targeted edge node (kubernete.io/hostname) is

Electronics 2021, 10, 335 11 of 19

defined in environment variables. Based on these variables, once being deployed, NDN
routers can automatically start up and link with their neighbor nodes to create NDN
network between them. Pre-advertised prefixes will be advertised by NLSR engine so
that information can be delivered immediately through the deployed routers. Moreover,
NDN mobility handling and edge device management software are pre-installed inside
the image.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 19

information about the deployed NDN router’s name (ALIAS, SITENAME), neighbor
nodes (NEIGHBOR_IP, NEIGHBOR_HOSTNAME, NEIGHBOR_SITE_ROUTE), pre-ad-
vertised prefixes (AD_PREFIXE), NLSR configuration (NLSR_LIFETIME, NLSR_HELLO-
TIME, NLSR_FIRST_HELLOTIME), Delay-Tolerant Networking [33] (DTN) configura-
tion (DTN_SUPPORT, DTN_DEFAULT_PREFIX) and targeted edge node (kuber-
nete.io/hostname) is defined in environment variables. Based on these variables, once be-
ing deployed, NDN routers can automatically start up and link with their neighbor nodes
to create NDN network between them. Pre-advertised prefixes will be advertised by
NLSR engine so that information can be delivered immediately through the deployed
routers. Moreover, NDN mobility handling and edge device management software are
pre-installed inside the image.

Figure 10. NDN containerized router deployment file example.

4.3. KubeEdge Extension for NDN Device Management
We extend KubeEdge Edgecore with an NDN Edge Management client. This client

communicates with the ndn-autoconfig server running inside each edge node. Whenever
a responder connects to a border edge node, if it is the first time he joins the emergency
communication network, the edge client will ask the Cloudcore to register the device to
the system as a Kubernetes custom resource. Otherwise, the edge client will tell the Cloud-
core to enable or disable the device based on the responder connection status to the edge.
Moreover, we design an NDN mapper for responder devices. After the device is regis-
tered at Cloudcore, it can use the mosquitto publish/subscribe framework to get updates
from the cloud or push information to the central management center. Commander can
monitor and update responder devices information by interacting with the KubeEdge
control plane at cloud node by using commands such as “kubectl get device” and “kubectl
edit device”. The extended KubeEdge architecture design is shown in Figure 11.

Figure 10. NDN containerized router deployment file example.

4.3. KubeEdge Extension for NDN Device Management

We extend KubeEdge Edgecore with an NDN Edge Management client. This client
communicates with the ndn-autoconfig server running inside each edge node. Whenever
a responder connects to a border edge node, if it is the first time he joins the emergency
communication network, the edge client will ask the Cloudcore to register the device to the
system as a Kubernetes custom resource. Otherwise, the edge client will tell the Cloudcore
to enable or disable the device based on the responder connection status to the edge.
Moreover, we design an NDN mapper for responder devices. After the device is registered
at Cloudcore, it can use the mosquitto publish/subscribe framework to get updates from
the cloud or push information to the central management center. Commander can monitor
and update responder devices information by interacting with the KubeEdge control plane
at cloud node by using commands such as “kubectl get device” and “kubectl edit device”.
The extended KubeEdge architecture design is shown in Figure 11.

Figure 12 shows a sequence diagram of how a new responder NDN device is registered
to the management system, subscribes to get mission updates, and publishes event status
to the cloud.

Electronics 2021, 10, 335 12 of 19

Electronics 2020, 9, x FOR PEER REVIEW 12 of 19

Figure 11. KubeEdge extension to support NDN device management.

Figure 12 shows a sequence diagram of how a new responder NDN device is regis-
tered to the management system, subscribes to get mission updates, and publishes event
status to the cloud.

Figure 12. New NDN device management sequence diagram.

5. Evaluation
5.1. Network Convergence Time in Case of Node Replacement

During a disaster, network nodes are usually damaged and need to be replaced. Net-
work convergence time after replacement should be as fast as possible to re-enable emer-
gency communication through the network. Hence, we evaluated our system network
convergence time by comparing between replacing NDN edge nodes and IP edge nodes.
Both NDN routers and IP routers are deployed as containers over KubeEdge. We chose
the EIGRP routing protocol [34] for IP networks because it has been proven to be the fast-
est convergence IP routing protocol by several studies [35,36]. Network convergence time
is calculated from the moment when the replaced node joins the KubeEdge cluster until
the routing advertisement process is completed. The equation for calculation is:

TNC = TCJ + TRD + TA (1)

Figure 11. KubeEdge extension to support NDN device management.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 19

Figure 11. KubeEdge extension to support NDN device management.

Figure 12 shows a sequence diagram of how a new responder NDN device is regis-
tered to the management system, subscribes to get mission updates, and publishes event
status to the cloud.

Figure 12. New NDN device management sequence diagram.

5. Evaluation
5.1. Network Convergence Time in Case of Node Replacement

During a disaster, network nodes are usually damaged and need to be replaced. Net-
work convergence time after replacement should be as fast as possible to re-enable emer-
gency communication through the network. Hence, we evaluated our system network
convergence time by comparing between replacing NDN edge nodes and IP edge nodes.
Both NDN routers and IP routers are deployed as containers over KubeEdge. We chose
the EIGRP routing protocol [34] for IP networks because it has been proven to be the fast-
est convergence IP routing protocol by several studies [35,36]. Network convergence time
is calculated from the moment when the replaced node joins the KubeEdge cluster until
the routing advertisement process is completed. The equation for calculation is:

TNC = TCJ + TRD + TA (1)

Figure 12. New NDN device management sequence diagram.

5. Evaluation

5.1. Network Convergence Time in Case of Node Replacement

During a disaster, network nodes are usually damaged and need to be replaced.
Network convergence time after replacement should be as fast as possible to re-enable
emergency communication through the network. Hence, we evaluated our system network
convergence time by comparing between replacing NDN edge nodes and IP edge nodes.
Both NDN routers and IP routers are deployed as containers over KubeEdge. We chose the
EIGRP routing protocol [34] for IP networks because it has been proven to be the fastest
convergence IP routing protocol by several studies [35,36]. Network convergence time is
calculated from the moment when the replaced node joins the KubeEdge cluster until the
routing advertisement process is completed. The equation for calculation is:

TNC = TCJ + TRD + TA (1)

where TNC is network convergence time, TCJ is cluster joining time, TRD is containerized
router deployment time and TA is advertisement time. We gradually increased the amount

Electronics 2021, 10, 335 13 of 19

of replaced nodes at the same time to evaluate the performance. The network convergence
time of our system is shown in Figure 13 and the comparison between it and the IP system
is shown in Figure 14.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 19

where TNC is network convergence time, TCJ is cluster joining time, TRD is containerized
router deployment time and TA is advertisement time. We gradually increased the amount
of replaced nodes at the same time to evaluate the performance. The network convergence
time of our system is shown in Figure 13 and the comparison between it and the IP system
is shown in Figure 14.

Figure 13. Our system network convergence time.

Figure 14. The comparison of network convergence time between NDN and IP network.

Figure 13 illustrates that our system achieved a very fast convergence time even
when multiple nodes needed to be replaced simultaneously. The network can recover to
a normal state after replacement in less than 2 s and the impact of increasing the amount
of replaced nodes simultaneously is trivial (only 0.1 s per node). Compared with the IP
network, Figure 14 shows that the NDN network with NLSR routing protocol converges
much faster than the IP network with EIGRP routing protocol. The NDN network only
requires 1.8 s to converge while the IP network requires 10.5 s when the amount of re-
placed nodes is 7. Moreover, when the number of replaced nodes at the same time in-
creases, the convergence time for the NDN network increases slightly while it increases
significantly for the IP network. The difference is caused by NLSR faster advertisement
time thanks to its multipath routing calculation feature [37].

Figure 13. Our system network convergence time.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 19

where TNC is network convergence time, TCJ is cluster joining time, TRD is containerized
router deployment time and TA is advertisement time. We gradually increased the amount
of replaced nodes at the same time to evaluate the performance. The network convergence
time of our system is shown in Figure 13 and the comparison between it and the IP system
is shown in Figure 14.

Figure 13. Our system network convergence time.

Figure 14. The comparison of network convergence time between NDN and IP network.

Figure 13 illustrates that our system achieved a very fast convergence time even
when multiple nodes needed to be replaced simultaneously. The network can recover to
a normal state after replacement in less than 2 s and the impact of increasing the amount
of replaced nodes simultaneously is trivial (only 0.1 s per node). Compared with the IP
network, Figure 14 shows that the NDN network with NLSR routing protocol converges
much faster than the IP network with EIGRP routing protocol. The NDN network only
requires 1.8 s to converge while the IP network requires 10.5 s when the amount of re-
placed nodes is 7. Moreover, when the number of replaced nodes at the same time in-
creases, the convergence time for the NDN network increases slightly while it increases
significantly for the IP network. The difference is caused by NLSR faster advertisement
time thanks to its multipath routing calculation feature [37].

Figure 14. The comparison of network convergence time between NDN and IP network.

Figure 13 illustrates that our system achieved a very fast convergence time even
when multiple nodes needed to be replaced simultaneously. The network can recover to
a normal state after replacement in less than 2 s and the impact of increasing the amount
of replaced nodes simultaneously is trivial (only 0.1 s per node). Compared with the IP
network, Figure 14 shows that the NDN network with NLSR routing protocol converges
much faster than the IP network with EIGRP routing protocol. The NDN network only
requires 1.8 s to converge while the IP network requires 10.5 s when the amount of replaced
nodes is 7. Moreover, when the number of replaced nodes at the same time increases, the
convergence time for the NDN network increases slightly while it increases significantly
for the IP network. The difference is caused by NLSR faster advertisement time thanks to
its multipath routing calculation feature [37].

Electronics 2021, 10, 335 14 of 19

5.2. Mobility Handover Duration

We compared our mobility support method with rendezvous NDN mobility support
proposed in [15] and Mobile-IP [14]. We consider two levels of network topology to evaluate.
One topology is for a single region and the other one is for cross regions. The scenario is
group communication between two responders connecting to two border edge nodes in
the same district (Gangnam in our scenario). Then, one responder will move to another
district. The topologies and scenarios are shown in Figure 15.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 19

5.2. Mobility Handover Duration
We compared our mobility support method with rendezvous NDN mobility support

proposed in [15] and Mobile-IP [14]. We consider two levels of network topology to eval-
uate. One topology is for a single region and the other one is for cross regions. The scenario
is group communication between two responders connecting to two border edge nodes
in the same district (Gangnam in our scenario). Then, one responder will move to another
district. The topologies and scenarios are shown in Figure 15.

(a) (b)

Figure 15. Network topologies and scenario for mobility handover measurement (a) Single region topology; (b) Cross-
region topology.

For the rendezvous NDN mobility method, we deploy the rendezvous server at the
center of the topology for each region. Rendezvous servers between regions are intercon-
nected. The rendezvous server functionality is kept the same as [15]. When receiving mo-
bility handling request (routes advertisement request from a user device when it connects
to a new edge node), this server will update intermediate nodes between it and the device
with new routes. Additionally, any interest that does not has the route to the newly moved
device will be forwarded to the rendezvous server. After that, the interest will be for-
warded to the device using new updated routes.

We measured mobility handover duration based on the amount of network hops that
the mobility handling request from the device needs to go through. Figure 16 shows the
comparison between our mobility method, rendezvous NDN method, and Mobile-IP.

The comparison shows that our proposed mobility support method has the lowest
mobility handover duration. In our method, because the mobility handling process is con-
ducted right at the edge node that the moving device connects to, the number of hops
needed in both topologies is only 1. In the rendezvous NDN method, the mobility han-
dling request needs to be forwarded from the edge node to the rendezvous server. Hence,
the number of hops is 2 for single region topology and 3 for cross-region topology (one
more hop between two rendezvous servers at two regions). In the Mobile-IP method, an
announcement packet will be sent from the newly connected edge node to the previously
connected one so that the number of hops is 4 and 7 for single region topology and cross-
region topology respectively.

Figure 15. Network topologies and scenario for mobility handover measurement (a) Single region topology; (b) Cross-
region topology.

For the rendezvous NDN mobility method, we deploy the rendezvous server at the cen-
ter of the topology for each region. Rendezvous servers between regions are interconnected.
The rendezvous server functionality is kept the same as [15]. When receiving mobility
handling request (routes advertisement request from a user device when it connects to a
new edge node), this server will update intermediate nodes between it and the device with
new routes. Additionally, any interest that does not has the route to the newly moved device
will be forwarded to the rendezvous server. After that, the interest will be forwarded to the
device using new updated routes.

We measured mobility handover duration based on the amount of network hops that
the mobility handling request from the device needs to go through. Figure 16 shows the
comparison between our mobility method, rendezvous NDN method, and Mobile-IP.

The comparison shows that our proposed mobility support method has the lowest
mobility handover duration. In our method, because the mobility handling process is
conducted right at the edge node that the moving device connects to, the number of hops
needed in both topologies is only 1. In the rendezvous NDN method, the mobility handling
request needs to be forwarded from the edge node to the rendezvous server. Hence,
the number of hops is 2 for single region topology and 3 for cross-region topology (one
more hop between two rendezvous servers at two regions). In the Mobile-IP method, an
announcement packet will be sent from the newly connected edge node to the previously
connected one so that the number of hops is 4 and 7 for single region topology and
cross-region topology respectively.

Electronics 2021, 10, 335 15 of 19

Electronics 2020, 9, x FOR PEER REVIEW 15 of 19

Figure 16. The comparison of mobility handover duration.

5.3. Transmission Overhead When Exchanging Information between Cloud and Device
We evaluated the benefit of using KubeEdge to manage NDN devices by comparing

it with two other disaster management systems that do not use Edge computing plat-
forms: the normal publish/subscribe NDN management system [38] and the state-of-the-
art NDN-DM system [39]. In our system, KubeEdge uses Mosquitto as the publish/sub-
scribe framework for information exchange between cloud and devices. Meanwhile, the
NDN publish/subscribe communication framework and NDN push-based mechanism are
used in the other two systems respectively. We created two NDN device management
systems that followed these works’ design to make a comparison with our system. As
mentioned in previous parts, responders can upload an event, a requirement, or his loca-
tion to the cloud, and the commander on the cloud can update responder missions. We
considered one event/requirement/location/mission as a status. We monitored the num-
ber of transmitted packets between cloud and device when the amount of exchange status
increases. The result is shown in Figure 17.

Figure 17. Number of transmitted packets to synchronize status between cloud and devices com-
parison between our system versus NDN Publish/Subscribe framework and NDN-DM.

Figure 16. The comparison of mobility handover duration.

5.3. Transmission Overhead When Exchanging Information between Cloud and Device

We evaluated the benefit of using KubeEdge to manage NDN devices by comparing it
with two other disaster management systems that do not use Edge computing platforms:
the normal publish/subscribe NDN management system [38] and the state-of-the-art
NDN-DM system [39]. In our system, KubeEdge uses Mosquitto as the publish/subscribe
framework for information exchange between cloud and devices. Meanwhile, the NDN
publish/subscribe communication framework and NDN push-based mechanism are used
in the other two systems respectively. We created two NDN device management systems
that followed these works’ design to make a comparison with our system. As mentioned in
previous parts, responders can upload an event, a requirement, or his location to the cloud,
and the commander on the cloud can update responder missions. We considered one
event/requirement/location/mission as a status. We monitored the number of transmitted
packets between cloud and device when the amount of exchange status increases. The
result is shown in Figure 17.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 19

Figure 16. The comparison of mobility handover duration.

5.3. Transmission Overhead When Exchanging Information between Cloud and Device
We evaluated the benefit of using KubeEdge to manage NDN devices by comparing

it with two other disaster management systems that do not use Edge computing plat-
forms: the normal publish/subscribe NDN management system [38] and the state-of-the-
art NDN-DM system [39]. In our system, KubeEdge uses Mosquitto as the publish/sub-
scribe framework for information exchange between cloud and devices. Meanwhile, the
NDN publish/subscribe communication framework and NDN push-based mechanism are
used in the other two systems respectively. We created two NDN device management
systems that followed these works’ design to make a comparison with our system. As
mentioned in previous parts, responders can upload an event, a requirement, or his loca-
tion to the cloud, and the commander on the cloud can update responder missions. We
considered one event/requirement/location/mission as a status. We monitored the num-
ber of transmitted packets between cloud and device when the amount of exchange status
increases. The result is shown in Figure 17.

Figure 17. Number of transmitted packets to synchronize status between cloud and devices com-
parison between our system versus NDN Publish/Subscribe framework and NDN-DM.

Figure 17. Number of transmitted packets to synchronize status between cloud and devices compari-
son between our system versus NDN Publish/Subscribe framework and NDN-DM.

Electronics 2021, 10, 335 16 of 19

The result shows that the number of transmitted packets when using NDN Pub-
lish/Subscribe increases proportional with the number of statuses, while they are equal
when using KubeEdge and NDN push mechanism in NDN-DM. Specifically, the number
of exchange packets between cloud and devices when using the NDN Publish/Subscribe
framework is 4 times higher than our system and NDN-DM. The reason is that the NDN
Publish/Subscribe needs to exchange four interest/data packets between them to synchro-
nize one status [38], while the cloud/device only needs to push one packet containing the
status to the Mosquitto framework in KubeEdge. The same reason is applied for NDN-DM
as only one packet is needed to push a status to the destination. With lower transmission
overhead when exchange status between cloud and devices, our system can avoid conges-
tion and packet losses in high network traffic conditions in disaster scenarios. Our system
is as efficient as NDN-DM in terms of reducing information transmission overhead. The
advantage of it over NDN-DM is presented in the next part.

5.4. Packet Recovery Capability in Intermittent Network

During the disaster response phase, the network is not reliable. Packet recovery
capability is a key feature to avoid valuable information loss. We kept comparing our
system with the NDN Publish/Subscribe system and NDN-DM to show the advantage of
using KubeEdge to recover packet loss in an intermittent network. In the cross-regional
topology, we disconnected several network links, performed 50 packets exchange between
cloud and devices. Then, we monitored the successful status exchange ratio between them
after reconnecting the network links (the amount of received status over the amount of
sent status). The result is shown in Figure 18.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 19

The result shows that the number of transmitted packets when using NDN Pub-
lish/Subscribe increases proportional with the number of statuses, while they are equal
when using KubeEdge and NDN push mechanism in NDN-DM. Specifically, the number
of exchange packets between cloud and devices when using the NDN Publish/Subscribe
framework is 4 times higher than our system and NDN-DM. The reason is that the NDN
Publish/Subscribe needs to exchange four interest/data packets between them to synchro-
nize one status [38], while the cloud/device only needs to push one packet containing the
status to the Mosquitto framework in KubeEdge. The same reason is applied for NDN-
DM as only one packet is needed to push a status to the destination. With lower transmis-
sion overhead when exchange status between cloud and devices, our system can avoid
congestion and packet losses in high network traffic conditions in disaster scenarios. Our
system is as efficient as NDN-DM in terms of reducing information transmission over-
head. The advantage of it over NDN-DM is presented in the next part.

5.4. Packet Recovery Capability in Intermittent Network
During the disaster response phase, the network is not reliable. Packet recovery ca-

pability is a key feature to avoid valuable information loss. We kept comparing our system
with the NDN Publish/Subscribe system and NDN-DM to show the advantage of using
KubeEdge to recover packet loss in an intermittent network. In the cross-regional topol-
ogy, we disconnected several network links, performed 50 packets exchange between
cloud and devices. Then, we monitored the successful status exchange ratio between them
after reconnecting the network links (the amount of received status over the amount of
sent status). The result is shown in Figure 18.

Figure 18. Packet recovery capability comparison between our system versus NDN Publish/Sub-
scribe and NDN-DM.

The figure shows that KubeEdge can successfully recover every dropped packet
caused by network disconnection. Meanwhile, for the other two systems, the successful
percentage of information exchange gradually drops down when the number of discon-
nected links increases. This result shows the effectiveness of the cloud-edge transmission
reliability design of KubeEdge which can resend packets after network links are recov-
ered. Information exchange through the other two NDN networks suffers from packet
loss because there is no recovery support.

Figure 18. Packet recovery capability comparison between our system versus NDN Publish/
Subscribe and NDN-DM.

The figure shows that KubeEdge can successfully recover every dropped packet
caused by network disconnection. Meanwhile, for the other two systems, the successful
percentage of information exchange gradually drops down when the number of discon-
nected links increases. This result shows the effectiveness of the cloud-edge transmission
reliability design of KubeEdge which can resend packets after network links are recovered.
Information exchange through the other two NDN networks suffers from packet loss
because there is no recovery support.

Electronics 2021, 10, 335 17 of 19

5.5. System Performance Discussion

In this part, we aggregate our system performance evaluation presented in four
previous parts in Table 3 to highlight our system contribution based on comparison with
other relevant systems.

Table 3. Our system aggregated results.

Compared Aspects Our System Features Compared Features Results

Network convergence time
after replacing

damaged nodes
NDN’s NLSR routing protocol IP’s EIGRP routing

protocol [34] Faster

Mobility handover time Our NDN mobility
support design

Mobile-IP [14]
NDN rendezvous mobility

mechanism [15]
Faster than both

Information transmission
overhead

NDN devices’ information
management over Edge

platform (KubeEdge)

NDN Publish/Subscribe [38]
NDN-DM’s push
mechanism [39]

Equal to NDN-DM, lower
than NDN Pub/Sub (4 times)

Information recovery
capability

NDN devices’ information
management over Edge

platform (KubeEdge)

NDN Publish/Subscribe [38]
NDN-DM’s push
mechanism [39]

Ensure recovery while NDN
Pub/Sub and NDN-DM

can not

To summarize, in this work, our system shows the advantages of integrating NDN and
Edge Computing infrastructure in disaster management, especially in the disaster response
phase. Firstly, we demonstrated the benefit of using NDN over IP to achieve fast network
convergence time in case of damaged network node replacement. This aspect has not been
studied before in any works according to our research. Secondly, we designed a better
mobility support mechanism for NDN compared with previously proposed solutions.
Thirdly, we show edge computing effectiveness in NDN device information management.
Compared with other recent proposed NDN management systems, the usage of edge
computing platform not only reduces transmission overhead but also ensures recovery
ability in case of intermittent network conditions. Finally, we deploy our proof-of-concept
system on real platforms with KubeEdge as the chosen edge platform while most related
works are only simulation studies.

6. Conclusions

This paper presented a deployment architecture of the NDN network over Edge
Computing infrastructure to provide support for the disaster response phase. We showed
a proof-of-concept system by implementing the architecture using the KubeEdge edge
computing platform. Our system assists the disaster response phase by enabling emer-
gency group communication and disaster information exchange through NDN device
management. Moreover, the experimental and analytical results showed that our proposed
architecture deals well with disaster challenges. It achieves faster network convergence
time in case of node replacement over IP-based network, faster mobility handover time
compared with MobileIP, and rendezvous NDN mobility method. Moreover, KubeEdge
features lower information exchange transmission overhead and enables packet recovery
capability in intermittent network conditions.

For future works, our system can be improved by bringing enhanced NDN features
that have been proven by simulation in previous studies into real implementation. More-
over, an edge computing platform can also be utilized to provide support for NDN IoT
devices since these devices can greatly help to collect a huge amount of information in
disaster areas.

Author Contributions: All authors contributed to the study and wrote the article. M.-N.T. proposed
the idea, designs, and performs the evaluation. Y.K. suggests directions for the detailed designs and

Electronics 2021, 10, 335 18 of 19

evaluation, as well as coordinating the work. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Government of Korea (MSIT) (No.2020-
0-00946, Development of Fast and Automatic Service recovery and Transition software in Hybrid
Cloud Environment) and under the ITRC (Information Technology Research Center) support program
(IITP-2020-2017-0-01633) supervised by IITP.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO/EHA. Disasters and Emergencies Definitions Training Package; Panafrican Emergency Training Centre: Addis Ababa,

Ethiopia, 2002.
2. Chen, J.; Arumaithurai, M.; Fu, X.; Ramakrishnan, K.K. CNS: Content-oriented Notification Service for Managing Disasters. In

Proceedings of the 3rd ACM Conference on Information-Centric Networking (ICN ’16), Kyoto, Japan, 26–28 September 2016; pp.
122–131. [CrossRef]

3. Hannan, A.; Arshad, S.; Azam, M.A.; Loob, J.; Ahmed, S.H.; Majeed, M.F.; Shah, S.C. Disaster Management System Aided by
Named Data Network of Things: Architecture, Design, and Analysis. Sensors 2018, 18, 2431. [CrossRef] [PubMed]

4. Shvartzshnaider, Y.; Ott, M. Design for change: Information-centric architecture to support agile disaster response. In Proceedings
of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 4025–4029.
[CrossRef]

5. Jahanian, M.; Chen, J.; Ramakrishnan, K.K. Graph-based Namespaces and Load Sharing for Efficient Information Dis-semination
in Disasters. In Proceedings of the 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago, IL, USA, 8–10
October 2019; pp. 1–12. [CrossRef]

6. Chen, J.; Xing, Y.; Ramakrishnan, K.K.; Jahanian, M.; Seferoglu, H.; Yuksel, M. ReDiCom: Resilient Communication for First
Responders in Disaster Management. In Proceedings of the 2019 IEEE 27th International Conference on Network Protocols
(ICNP), Chicago, IL, USA, USA, 8–10 October 2019; pp. 1–2. [CrossRef]

7. Jin, Y.; Tan, X.; Feng, W.; Lv, J.; Tuerxun, A.; Wang, K. MANET for Disaster Relief based on NDN. In Proceedings of the 2018
1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, 15–17 August 2018; pp.
147–153. [CrossRef]

8. Okamoto, K.; Mochida, T.; Nozaki, D.; Wen, Z.; Qi, X.; Sato, T. Content-Oriented Surveillance System Based on ICN in Disaster
Scenarios. In Proceedings of the 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC),
Chiang Rai, Thailand, 25–28 November 2018; pp. 484–489. [CrossRef]

9. Koizumi, Y.; Yamamoto, Y.; Hasegawa, T. Emergency Message Delivery in NDN Networks with Source Location Verifi-cation. In
Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]

10. Kim, S.; Urata, Y.; Koizumi, Y.; Hasegawa, T. Power-saving NDN-based message delivery based on collaborative com-munication
in disasters. In Proceedings of the 21st IEEE International Workshop on Local and Metropolitan Area Networks, Beijing, China,
22–24 April 2015; pp. 1–6. [CrossRef]

11. Ogawara, T.; Kawahara, Y.; Asami, T. Information dissemination performance of a disaster-tolerant NDN-based distrib-uted
application in disrupted cellular networks. In Proceedings of the IEEE P2P 2013, Trento, Italy, 9–11 September 2013; pp. 1–5.
[CrossRef]

12. Deshmukh, R.; Zink, M. An information centric networking approach for sensor to vehicular network communication in
disasters. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 227–234. [CrossRef]

13. NLSR—Named Data Link State Routing Protocol. Available online: https://named-data.net/doc/NLSR/current/ (accessed on
24 November 2020).

14. Perkin, C.E.; Johnson, D.B.; Arkko, J. Mobility Support in IPv6: RFC 6275; IETF: Fremont, CA, USA, 2011.
15. Zhang, Y.; Xiz, Z.; Mastorakis, S.; Zhang, L. KITE: Producer mobility support in named data networking. In Proceedings of the

5th ACM Conference on Information-Centric Networking (ICN ’18), Boston, MA, USA, 21–23 September 2018; pp. 125–136.
[CrossRef]

16. Tran, M.-N.; Kim, Y. NDN-based Emergency Communication over Edge Computing Infrastructure. In Proceedings of the 2020
International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 21–23 October
2020; pp. 353–358. [CrossRef]

17. NdnSim—NS-3 Based Named Data Networking (NDN) Simulator. Available online: https://ndnsim.net/current/ (accessed on
24 November 2020).

18. Dinh, N.-T.; Tran, M.-N.; Park, Y.; Kim, Y. An Information-centric NFV-based System Implementation for Disaster Management
Services. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10
January 2020; pp. 807–810. [CrossRef]

http://doi.org/10.1145/2984356.2984368
http://doi.org/10.3390/s18082431
http://www.ncbi.nlm.nih.gov/pubmed/30049980
http://doi.org/10.1109/ICC.2013.6655189
http://doi.org/10.1109/ICNP.2019.8888047
http://doi.org/10.1109/ICNP.2019.8888115
http://doi.org/10.1109/HOTICN.2018.8605969
http://doi.org/10.1109/wpmc.2018.8712852
http://doi.org/10.1109/GCWkshps45667.2019.9024500
http://doi.org/10.1109/LANMAN.2015.7114733
http://doi.org/10.1109/P2P.2013.6688722
http://doi.org/10.1109/WiMOB.2017.8115849
https://named-data.net/doc/NLSR/current/
http://doi.org/10.1145/3267955.3267959
http://doi.org/10.1109/ICTC49870.2020.9289358
https://ndnsim.net/current/
http://doi.org/10.1109/ICOIN48656.2020.9016506

Electronics 2021, 10, 335 19 of 19

19. KubeEdge—An Open Platform to Enable Edge Computing. Available online: https://kubeedge.io/en/ (accessed on 24
November 2020).

20. Kubelet. Available online: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/ (accessed on 24
November 2020).

21. SQLite. Available online: https://www.sqlite.org/index.html (accessed on 24 November 2020).
22. Etcd—A Distributed, Reliable Key-Value Store for the Most Critical Data of a Distributed System. Available online: https:

//etcd.io/ (accessed on 24 November 2020).
23. Modbus. Available online: https://modbus.org/ (accessed on 24 November 2020).
24. OPC Foundation—Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua/ (ac-

cessed on 24 November 2020).
25. Eclipse Mosquitto—An Open Source MQTT Broker. Available online: https://mosquitto.org/ (accessed on 24 November 2020).
26. KubeEdge Reliable Message Delivery. Available online: https://github.com/kubeedge/kubeedge/blob/master/docs/

proposals/reliable-message-delivery.md (accessed on 24 November 2020).
27. Lim, H.; Ni, A.; Kim, D.; Ko, Y.-B.; Shannigrahi, S.; Papadopoulos, C. NDN Construction for Big Science: Lessons Learned from

Establishing a Testbed. IEEE Netw. 2018, 32, 124–136. [CrossRef]
28. Zhu, Z.; Afanasyev, A. Let’s ChronoSync: Decentralized dataset state synchronization in Named Data Networking. In Proceedings

of the 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, 7–10 October 2013; pp. 1–10.
[CrossRef]

29. Ndn-autoconfig. Available online: https://named-data.net/doc/NFD/current/manpages/ndn-autoconfig.html (accessed on 24
November 2020).

30. Ndn-cxx: NDN C++ Library with eXperimental eXtensions. Available online: https://named-data.net/doc/ndn-cxx/current/
(accessed on 24 November 2020).

31. Named Data Networking Forwarding Daemon (NFD). Available online: https://named-data.net/doc/NFD/current/ (accessed
on 24 November 2020).

32. IBR-DTN—A Modular and Lightweight Implementation of the Bundle Protocol. Available online: https://github.com/ibrdtn/
ibrdtn (accessed on 24 November 2020).

33. Cerf, V.; Burleigh, S.; Hooke, A.; Torgerson, L.; Durst, R.; Scott, K.; Fall, K.; Weiss, H. Delay-Tolerant Networking Architecture.
Available online: https://tools.ietf.org/html/rfc4838 (accessed on 24 November 2020).

34. Enhanced Interior Gateway Routing Protocol. Available online: https://www.cisco.com/c/en/us/support/docs/ip/enhanced-
interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.html (accessed on 24 November 2020).

35. Asabere, E.D.; Panford, J.K.; Hayfron-Acquah, J.B. Comparative Analysis Of Convergence Times Between OSPF, EIGRP, IS-IS and
BGP Routing Protocols in a Network. Int. J. Comput. Sci. Inf. Secur. 2017, 15, 225–227.

36. Vukotic, I.T.; Scepanovic, S. Measurements of convergence time for RIP and EIGRP protocols. Scr. Scientiarum Naturalium 2011,
2, 71–83.

37. Wang, L.; Lehman, V.; Hoque, A.K.M.M.; Zhang, B.; Yu, Y.; Zhang, L. A Secure Link State Routing Protocol for NDN. IEEE Access
2018, 6, 10470–10482. [CrossRef]

38. Shang, W.; Gawande, A.; Zhang, M.; Afanasyev, A.; Burke, J.; Wang, L.; Zhang, L. Publish-Subscribe Communication in Building
Management Systems over Named Data Networking. In Proceedings of the 2019 28th International Conference on Computer
Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–10. [CrossRef]

39. Ali, Z.; Shah, M.A.; Almogren, A.; Din, I.U.; Maple, C.; Khattak, H.A. Named Data Networking for Efficient IoT-based Disaster
Management in a Smart Campus. Sustainability 2020, 12, 3088. [CrossRef]

https://kubeedge.io/en/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://www.sqlite.org/index.html
https://etcd.io/
https://etcd.io/
https://modbus.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://mosquitto.org/
https://github.com/kubeedge/kubeedge/blob/master/docs/proposals/reliable-message-delivery.md
https://github.com/kubeedge/kubeedge/blob/master/docs/proposals/reliable-message-delivery.md
http://doi.org/10.1109/MNET.2018.1800088
http://doi.org/10.1109/ICNP.2013.6733578
https://named-data.net/doc/NFD/current/manpages/ndn-autoconfig.html
https://named-data.net/doc/ndn-cxx/current/
https://named-data.net/doc/NFD/current/
https://github.com/ibrdtn/ibrdtn
https://github.com/ibrdtn/ibrdtn
https://tools.ietf.org/html/rfc4838
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.html
http://doi.org/10.1109/ACCESS.2017.2789330
http://doi.org/10.1109/ICCCN.2019.8846951
http://doi.org/10.3390/su12083088

	Introduction
	Related Works
	Named Data Networking Advantages over IP-Based Network in Disaster Response
	Previous Research Efforts
	KubeEdge

	System Design
	NDN Deployment over KubeEdge Architecture
	NDN Emergency Communication Design
	NDN Mobility Support Design
	NDN Device Management Using KubeEdge as Edge Computing Platform

	Implementation
	System Topology and Configuration
	NDN Network Deployment
	KubeEdge Extension for NDN Device Management

	Evaluation
	Network Convergence Time in Case of Node Replacement
	Mobility Handover Duration
	Transmission Overhead When Exchanging Information between Cloud and Device
	Packet Recovery Capability in Intermittent Network
	System Performance Discussion

	Conclusions
	References

