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Abstract: Unmanned aerial vehicle (UAV) communication is regarded as a promising technology for
lightweight Internet of Things (IoT) communications in narrowband-IoT (NB-IoT) systems deployed
in rugged terrain. In such UAV-assisted NB-IoT systems, the optimal UAV placement and resource
allocation play a critical role. Consequently, the joint optimization of the UAV placement and
resource allocation is considered in this study to improve the system capacity. Because the considered
optimization problem is an NP-hard problem and owing to its non-convex property, it is difficult to
optimize both the UAV placement and resource allocation simultaneously. Therefore, a competitive
clustering algorithm has been developed by exchanging strategies between the UAV and the adjacent
IoT devices to optimize the UAV placement. With multiple iterations, the UAV and the IoT devices
within the coverage area of the UAV, converge their clustering strategies, which are suboptimal, to
satisfy both sides. The bordering IoT devices of the adjacent clusters are then migrated heuristically
toward each other to obtain the optimal system capacity maximization. Finally, the transmission
throughput is optimized using the Nash equilibrium. The simulation results demonstrate that the
algorithms proposed in this study exhibit rapid convergence, within 10 iterations, even in a large
environment. The performance evaluation demonstrates that the proposed scheme improves the
system capacity of the existing schemes by approximately 28%.

Keywords: UAV communication; UAV placement; Stackelberg game theory; capacity optimization;
energy efficient; Internet of Things

1. Introduction

Unmanned aerial vehicle (UAV)-assisted communications have gained widespread
attention for their contribution toward human convenience and efficient line-of-sight (LoS)
links [1] from the air to the ground. In addition, in various fields, such as agriculture and
logistics, the use of UAVs is popular and common, and virtually essential [2,3]. Therefore,
extensive research on UAV communications in wireless systems has been carried out
recently to serve mobile users in complex urban areas as well as remote locations, where
terrestrial communication is extremely difficult. This issue is more critical in Internet of
Things (IoT) systems because IoT devices are typically limited to small battery capacities
and therefore,are used in short-distance communication [4,5]. Additionally, lightweight
IoT devices are deployed to collect field information in the cases of natural disasters and
other emergency situations [6-10]. The utilization of UAVs to assist such IoT systems with
the narrowband-IoT (NB-IoT) technology is a novel solution [11,12].

The UAV placement and subchannel assignment are essential factors to be considered
in order to improve the system capacity and to achieve efficient UAV utilization and high
performance in the NB-IoT system [13]. The IoT devices form a cluster corresponding
to the deployment location of the UAV, which transitions to an optimization problem
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for efficient resource utilization. Essentially, after calculating the optimal location of
the UAV through an efficient clustering algorithm, an improved multiple UAV-assisted
NB-IoT system can be derived by solving the problem of optimal resource allocation in
clustering. In previous studies [14,15], the UAV placement was optimized by solving the
clustering problem of the IoT devices by using the K-mean traditional clustering method.
The optimal subchannel assignment was then performed for the fixed cluster set, based on
the corresponding clustering method. However, these techniques do not consider the total
system-wise optimization that can be achieved by an iterative algorithm. In addition, since
considered optimization problem is an NP-hard problem and has non-convex property, it
is difficult to optimize both the UAV placement and resource allocation simultaneously.
In particular, the positional relationship between the UAV and the IoT devices, which is
initially determined, affects the throughput in communication [16-20]. Therefore, this
paper proposes a heuristic algorithm that iteratively converges to a suboptimal UAV
placement based on a game-theoretic approach to overcome this problem.

The Stackelberg game model is a non-cooperative game theory model consisting
of a leader who decides the preemptive strategy and a follower who chooses the best
strategy for each or common interest according to the leader’s preemptive strategy [21,22].
The leader considers the strategies of their followers and decides on a strategy which
maximizes own profits. The determined strategy is passed on to all followers, and the
followers re-establish the strategy based on a preemptive strategy in non-cooperative and
competitive state. This process is iterated until the strategies of both side are no more
changes and converged. The convergence of the two sides to a state of strategic equilibrium
where they choose the best strategy is called the Nash Equilibrium (NE). In this model,
UAV roles the leader and IoT devices role the followers.

In previous studies [23,24], a solution of joint optimization problem for energy effi-
ciency and task allocation, and the solution of joint optimization problem for path planning
and access point selection based on quality of service (QoS) was proposed. In both studies,
due to the joint optimization problem which has nature of both NP-hard problem and
high complexity, game theoretic approach is considered with cooperative rule and deep
reinforce learning (DRL), respectively. However, in the competition system for subchannel
allocation, the coalition formation game model is not suitable. In addition, it is necessary
to consider clustering of UAVs in the total system along with UAVs that become massive.

Therefore, the algorithm proposed in this study involves the exchange of competitive
strategies between the UAV and each IoT device within the coverage of the UAV to obtain
the optimal IoT device clusters corresponding to the system capacity maximization with
Stackelberg game theoretic approach.

The contributions of this paper are summarized as follows.

*  Based on the assumption that a UAV is placed at the center of the IoT cluster within its
coverage area, we developed a competitive clustering algorithm for all the UAVs and
IoT devices in the network. The IoT devices determine the UAV that can maximize the
transmission throughput. The UAV simultaneously calculates the optimal placement
in order to minimize the power consumption (i.e., the maximum operation time) when
all the IoT devices within the coverage area are considered. Therefore, the challenges
of joint optimization of UAV-related problems can be resolved based on Stackelberg
game theoretic approach in competitive environment.

e  The adjacent clusters are then heuristically calculating to contain the non-clustered
IoT devices so as to obtain the optimal system capacity maximization. The distance
between the UAV and the non-clustered IoT devices is calculated, the UAV energy
consumption and system capacity maximization are considered, and the non-clustered
IoT devices are assigned to the appropriate cluster based on Stackelberg game theoretic
approach based on Nash equilibrium.

®  The simulation results demonstrate that the proposed algorithm exhibits rapid conver-
gence to the suboptimal solution and is observed to significantly increase the system
performance by approximately 28% when compared to the existing methods.
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This paper consists of the following sections. In Section 2, the overall clustering and
containing algorithms are formulated. The design of the total optimization of the cluster-
based multiple UAV placement is presented in Section 3. Subsequently, the performance of
the proposed algorithms is evaluated in Section 4. Finally, the conclusion and future scope
are presented in Section 6.

2. System Model and Problem Formulation

This paper proposes a multiple UAV-assisted IoT system composed of M UAVs and N
IoT nodes, as shown in Figure 1. In this system model, it is assumed that a ground station
(GS) manages and controls all the UAVs. That is, the channel state information (CSI) and
the state information of the UAVs are periodically updated to the GS. We also assume that
the CSl is constant over the timeframe. In this scenario, the coverage area of the UAV is
determined by the altitude of the UAV that manages the IoT cluster. Furthermore, it is
assumed to exclude uncertain environmental factors such as strong wind, thunder strike,
etc., because we assumed that GS also control the external environmental factors. As a
result, the energy consumption of the UAV for communication with an IoT node varies

depending on the altitude and location of the UAV.
B
'((m)l),

Figure 1. Proposed multi unmanned aerial vehicle (UAV)-assisted IoT system.
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2.1. System Model

M={12--,m- ,M—1,M} and N = {1,2,--- ,N —1,N} denote the sets
of M UAVs and N IoT nodes, respectively. h, denotes the height of UAV m from
the ground. The set of IoT nodes that are served by the UAV m is denoted by Q) =
{Qy |m=1,2,...,M}. The 3D coordinates of the UAV m and IoT node n are expressed by
A (X52V, 82V ) and (x00de, ynode) respectively. The distance between the mth UAV and
the nth IoT node on the ground can be expressed by projecting in the x-y plane as follows:

I = (a3 = X902 4 (g — )2 o
Therefore, the distance in 3D coordinates is calculated as follows:

dm,ﬂ =V 1%1,11 + th ()

In the proposed system model, it is assumed that the communication between UAVs
and IoT nodes follows the LoS link model. The channel gain, g, ,, x, from the IoT node n to
the UAV m on the subchannel k is as follows:

Smnk = d%zin (3)
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where 7 is the unit power gain over the reference distance dy (dy is unit distance, i.e.,
1m) [1,25-27].

Considering the inter-channel interference, each subchannel can be assigned only
one node in a cluster, which means that the interference between the nodes in the same
cluster can be ignored. The interference among the nodes using the same subchannel in
different clusters was analyzed in a previous study [15]. Let a,, ,, x denote the subchannel
allocation indicator; &, , x = 1 implies that the IoT node, 7, is in the cluster set, (2, which
is allocated to subchannel, k. Otherwise, a,, ,, i is 0. Consequently, the interference, I,,, ,, r,
in the transmission from the IoT node 7 to the UAV m on the subchannel k can be denoted

as follows:
M

N
Lk =Y Z Njjk X PijkSijk 4)
i=1,j=1

i#£m
where p,, ,  is the transmission energy consumption of the subchannel k between the UAV
m and IoT node n. Therefore, the signal to interference and noise ratio (SINR) between the
mth UAV and the nth IoT node on the subchannel k can be denoted as follows:

Pmnj X Smnk

SINR,,  k = —

©)

where 02 is the variance of additive white Gaussian noise (AWGN).

2.2. Problem Formulation

In this section, we devise the clustering problem for IoT nodes by considering the
placement of UAVs to maximize the total capacity and minimize the total energy con-
sumption of a multi-UAV-assisted IoT network. Following Shannon’s capacity theorem,
the communication capacity Cy,,, between the UAV m and the IoT node # is calculated
as follows:

B
Cm,n,k = E 10g2 (1 + SINRm,n,k) (6)

Consequently, the total capacity of the system, Cy,,, can be expressed as follows:

Ctotul Xm,n,k 1082 1 + SINRm n k) (7)

N\UU

b}y

According to Equation (7), the following constraints should be considered to maximize
the total system capacity: The minimum height of the UAVs should be determined to avoid
conflict with various physical obstacles such as trees, telegraph poles, and transmission
towers. Conversely, if the UAVs are too high, the UAVs are much more difficult to control
and the battery consumption is increased. Therefore, the height constraint of the UAVs can
be represented as follows:

HM§

hiin < hm < hpax, Ym €M (8)

where h,,,;,, and hy,5 denote the minimum and maximum heights of UAV m, respectively.
Because a multi-UAV-assisted communication system is considered in this study, the hori-
zontal distance between UAVs that are close to each other must be constrained to avoid
collisions. Therefore, the constraint of the horizontal distance among the UAVs can be
represented as follows:

lml,mz > ,B/ vml/ my € M/ mq 7é my (9)
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where f is the minimum distance between two different arbitrary UAVs. To avoid man-
agement conflicts, each IoT node should be included in only one cluster. This constraint is
expressed as follows:

M K
Z Z a0 =1 VneN (10)
i=11=1

As mentioned earlier, each subchannel can be assigned only one node in a cluster.
Therefore, the constraint can be expressed as follows:

N
Y <1, VYmeM,VkeK (11)
j=1

As shown in Figure 2, R,, denotes the radius of the coverage area of the UAV m, and it
can be calculated by the beamwidth that is received from the UAV’s antenna as follows:

Ry = hy tan puyy (12)

Therefore, the distance [, , between the UAV m and the IoT node 7 is adjusted from 0
to R,; as follows:
0<lpyn <Ry, YmeM, VneQy (13)

UAV m

— g—

A
185
him

Ground

€

Rin = Ny tan(iyy, )

N

A 4

Coverage Area of UAV m

Figure 2. Coverage area of UAV m on the ground. h;; denotes the altitude of the UAV m. p;, denotes a half beamwidth

received from the UAV’s antenna. m. Therefore, h, tan (i, ) is calculated as the radius of the UAV’s coverage area.

Finally, a capacity threshold is set for each IoT node to avoid unnecessary resource
assignment. Let pj,x and p,,i, denote the maximum and minimum capacity requirements
of each IoT node, respectively. Therefore, the capacity requirement constraint can be
expressed as follows:

K
pmin S Z Cm,n,k S pmgx, Vm E M, Vi’l E Qm (14)
k=1
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Consequently, the objective function to maximize the total capacity of the system can
be constructed as follows:

maximize 2 Z 2 lxmnklogz (1+SINR,, ,, ) (15)

hmnk“mnk)m 1n=1k=

satisfying the above constraints (8)—(11) and (13).

This problem contains the binary indicator «,, , x and the interference model within the
sum of the logarithmic functions. That is, the problem is non-convex, and the optimization
of clustering has been proved to be an NP-hard problem [28,29]. To overcome this issue,
a competitive clustering algorithm is proposed to obtain the optimal 3D coordinates of the
UAUVs that are resolved by the Stackelberg game theoretic approach in Section 3.

3. Competitive Clustering-Based Uav Placement with Stackelberg Game
Theoretic Approach

This section presents a heuristic and an iterative game theoretic method to obtain
the suboptimal 3D coordinates of the UAVs. Initially, the UAVs and the IoT nodes are
distributed randomly through the air and the ground, respectively. Each of the individual
IoT nodes and UAVs consider only their own profit to serve their tasks. The objective of
the UAVs is to achieve high capacity and low energy consumption and the objective of the
IoT nodes is to achieve a high beamwidth. Therefore, an iterative exchange is performed
between the UAVs and the IoT nodes within the coverage of the UAVs until the objectives of
both the UAVs and IoT nodes are satisfied. These heuristic clustering strategies are applied
with respect to the total system throughput achievement and adjust the 2D locations and
the altitudes of the UAVs.

3.1. Initial Uavs and Iot Nodes Deployment

In the proposed system, the UAVs and IoT nodes are initially deployed in air and on
the ground with random coordinates. As described in Algorithm 1 lines 1-3, the perfect
information situation is assumed, such that the state information such as the location of the
UAVs and the IoT nodes is already known to the GS (i.e., information sharing procedure,
association procedure, etc.). Therefore, the initial IoT node cluster is automatically set.
To focus on maximizing the total capacity of the system, we consider the initial clustering
method that is concerned with channel gain. From (3), it can be inferred that the channel
gain is inversely proportional to the distance. Therefore, the usage of the mean-shift
clustering method, which has the advantage of low complexity to form the initial IoT node
clusters, is preferred. Notably, the proposed mean-shift clustering method is applicable
to other algorithms such as the K-means algorithm and random clustering with using

Gaussian kernel as follow: R

k(x) = e 22 (16)

However, the proposed algorithm considers dense ground areas, due to which the
mean-shift clustering algorithm is used as the initial method. The state information of the
UAV in 2D coordinates is then automatically located at the center of the cluster, as follows:

Z ( node,yzode> (17)

neQy,

1
uav uav —
(xm rJm ) |Qm | X

where |Q);,| denotes the size of the set ;.
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Algorithm 1 Stackelberg Game Theoretic Clustering Algorithm

Step 1: Initiation state information of UAVs and IoT nodes
1: The GS obtains CSI of all UAVs and IoT nodes.
2: The transmission power is fixed.
3: According to the previous mean-shift clustering method, the initial deployment is
defined.
Step 2 : UAV placement and IoT subchannel allocation.
4 FORm=1toM
5: By Equation (18), the height of the UAV is updated to maximize the total system
throughput corresponding to the minimization of the energy consumption.
6: FORn=1to Oy
7: By Equation (19), the IoT nodes determine the subchannel resources to maximize
their own beamwidth.
8: ENDFOR
9: until convergence.
10: ENDFOR
Step 3 : Assigning the non-clustered IoT node.
11: Assign the non-clustered node to (), after which UAV}, is calculated by considering
the total system throughput for all the UAVs using Equations (18) and (19), as shown

in Figure 3¢

3.2. Optimization of Uav Placement

The basic concept of the underlying algorithm is to calculate the capacity and energy
consumption for all the placements. From the initial cluster, each UAV calculates its capacity
and energy consumption. The capacity problem has already been defined, as shown earlier.
However, the energy consumption is related to the channel gain. As the channel gain is
inversely proportional to the height of the UAYV, the height of the UAV must be as low as
possible while still satisfying the constraints. In order to perform clustering with the game
theoretic approach, A, ; is considered as a set of strategies «,, ,, x from a game-theoretic
perspective. It is assumed that the GS controls the strategy exchange and shares the
information. As shown in Algorithm 1 line 5, it is assumed that the profit of the UAV is the
maximization of the total throughput of all the IoT nodes within the coverage of the UAV.
Therefore, the utility function of the UAV is defined as follows:

QO
maximize um(Am,n,k/ mmn, k Z Z Xpm e X 'Ym X Cm nk — (1 - ')’m) X hm,n,k) (18)

hm,n/k n=1k=

where 7, is the weight factor of the UAV, and h,, ,,  is the optimal height of the UAV m that
satisfies the constraints (8). Similarly, as shown in Algorithm 1 line 7, it is assumed that the
objective of the IoT nodes is the maximization of the capacity and the beamwidth received
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from the UAV with which the IoT node aims to establish a stable subchannel. Therefore,
the utility function of an IoT node is defined as follows:

K
ma)gmize uﬂ (Am,n,kr hm,n,k) = Z K1 m k X (’Yn X Cm,n,k + (1 - ')/Vl) X lmfn) (19)
m.k k=1

where 7, is the weight factor of the IoT node, and fln,m,k is the provisional height received
from the UAV. Consequently, the UAVs and IoT nodes attempt to maximize the capacity of
the total system and also derive optimal clustering by considering their own objectives.
As shown in Algorithm 1 lines 4-9, UAV}, and each of the IoT nodes exchange their strate-
gies via the GS until the optimal solution is found. In this competitive and non-cooperative
game theoretic scheme, empirical stability must be established from the average value of
the best strategies determined by the Stackelberg equilibrium (SE), which is near-optimal,
rather than by deriving the NE [22]. Subsequently, as shown in Algorithm 1 line 11, op-
timization is performed for the remaining UAV cluster for total capacity maximization
considering the maximum capacity between the remaining IoT nodes that are not included
in the UAV cluster. Therefore, each individual IoT device and U AV}, can find their subopti-
mal cluster set (), and do not change their strategy at every iteration. Because the proposed
algorithm is an NP-hard problem and owing to its non-convex property, the convergence
and stability are confirmed through the simulation in Section 4.

@)

«“p )

(c) Clustering results with proposed method

Figure 3. Comparison of the placement optimizing algorithm. Based on the traditional clustering method, the non-clustered
node is included in Cluster 1 because d; is shorter than d, as shown in Figure 3a. However, after clustering, the distance di
differs from dj, as shown in Figure 3b. Therefore, optimal clustering cannot be ensured. However, suboptimal clustering
can be guaranteed if the proposed method is followed by considering the capacity and energy consumption, denoted as C;
and Cy, respectively.
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4. Simulation Results

This section demonstrates the performance of the proposed algorithm using a sim-
ulator that is developed using MATLAB and C++. In the simulations, the field size of
the proposed system model was 1000 m x1000 m, and a diverse number of IoT nodes
were randomly distributed in the 2D-field. The fixed beamwidth of the receiving antenna
was set to 77/3 for each UAV, and the altitude constraint of each UAV was in the range
of h,;, = 50 m and hyy5 = 500 m. The minimum distance between two different UAVs
was set to f = 50 m to prevent collisions. The weight factor v,; andy, of UAV and IoT
devices are set to between 0 to 1. The unit power gain was set to 7 = 1.4 x 10~ [15]. The
bandwidth B was also assumed to be 20 MHz for each cluster. The simulation parameters
mentioned above are listed in Table 1.

Table 1. Simulation Parameters.

Parameters Value
Field Size 1000 m x 1000 m
Beamwidth of Antenna /3
Nnax 500 m
hmin 50 m
B 50 m
Omin 10 kbps
Omax 50 kbps
B 20 MHz
'Ym/ r}/n [O/ 1]
K 100
o? —174 dBm
I 1.4 x 1074

With the Stackelberg game theoretic approach, the number of iterations to achieve
the suboptimal convergence is shown in Figure 4. The actual number of iterations of the
algorithm demonstrates that the algorithm can achieve a suboptimal clustering solution
after a finite number of iterations. The simulation result is obtained by setting M = 3,4,5
and setting the number of IoT nodes from N = 100 to N = 1000, that is from a small
environment to a large environment. The detailed description of the simulation setup is
provided in Section 4. As shown in the Figure 4, the number of iterations required for
the convergence of the total throughput of the system increases according to the number
of UAVs and IoT nodes. However, the number of UAVs has little effect on the number
of iterations when compared to the number of IoT nodes. In addition, the number of
iterations converges when N = 700, regardless of the number of UAVs. The evaluation
was performed 100 times for each distribution of the IoT nodes, and then the results were
averaged. The evaluated results show that the proposed algorithm can obtain suboptimal
results within 10 iterations, even with a large number of IoT nodes.

Additionally, the total system capacity was compared with that of another relevant
scheme proposed in [15]. Duan et al. [15] applied non-orthogonal multiple access (NOMA)
technology to increase the total system capacity through competitive resource allocation
and UAV placement. This model uses a method of allocating subchannels within the
cluster through M:N matching. At this time, each channel creates a preference list for IoT
devices based on the channel gain, and subchannels are allocated to IoT device according
to the created preference list. They then conducted a performance comparison between the
OMA and the NOMA schemes. For comparison with this model, the experimental setup
was established and the proposed algorithm was applied to the OMA scheme and the
Stackeblerg game theoretic approach-based clustering algorithm was applied to the NOMA
scheme, as depicted in Figure 5. The results demonstrate that the proposed algorithm
improves the overall performance of Duan’s scheme as well as the performance of the
OMA scheme by applying the joint clustering and subchannel allocation algorithm when
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compared to the original NOMA scheme. In particular, the performance of the NOMA and
OMA schemes were improved by approximately 17.0% and 28.3%, respectively.

—_
o

<
[l
oW

Number of Iterations
=

(9]
T
I

0
100 200 300 400 500 600 700 800 900 1000

Number of loT nodes

Figure 4. Average iteration number for convergence of the proposed algorithm with M = 3,4,5 from
N = 100 to 1000.

210

180

Total system capacity (Mbps)

1509
¢
b
Pid = % = NOMA scheme with Duan's alg. [9]
120 e —©— NOMA scheme with our proposed alg. |
-, = % —OMA scheme with Duan's alg. [9]

—©— OMA scheme with our proposed alg.

10 20 30 40 50 60
Number of IoT nodes

Figure 5. Total system capacity versus the number of IoT nodes compared with other schemes.

Figure 6 shows the improvement in the total capacity for the mean-shift clustering
method and the K-mean clustering method with the application of the proposed algorithm.
Figure 6a shows that the number of UAVs set, was changed from M = 3to M = 7,
and Figure 6b shows that the number of IoT nodes set, was changed from N = 100
to N = 500 in the field. This result shows that the proposed algorithm has improved
the performance of the traditional clustering method by approximately 28%. That is,
the proposed algorithm can be applied to existing infrastructure to increase the efficiency
of the capacity. A higher improvement ratio was observed when the result was applied to
the mean-shift method when compared to the K-mean method. Therefore, the proposed
algorithm improves performance regardless of the basic clustering algorithm.
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Figure 6. Comparison of total system capacity improvement versus the number of IoT nodes
and UAVs.

5. Discussion

Solving joint optimization problems in the multi-UAVs system is an NP-hard and
is highly complex. Therefore, it can be confirmed that many studies use game theory to
solve it heuristically. Unlike the cooperative game theoretic approach so far, the proposed
algorithm in this paper adopts a method for obtaining an equilibrium according to the
preemptive strategy of UAV in as system where IoT devices compete. In particular, in the
clustering technique, while traditional studies calculate the optimal solution through simple
physical distances, this paper proposed the method that profits and losses of UAVs and
IoT devices are actually measured not only in terms of energy consumption and allocation
channel as compensation, but also total system throughput. However, it is a practical
limitation to exclude variable factors through the assumption of variables not considered
in the objective function, such as environmental factors or interference.

The proposed clustering and joint optimization algorithm based on Stackelberg game
theoretic approach has significantly improved the performance by considering the total
system even though it has limited environmental factors and derived suboptimal equi-
librium heuristically. In addition, the proposed algorithm is not cooperative among IoT
devices, but competitive for maximizing own profits. Through this, it is noteworthy that the
proposed algorithm guarantees a satisfaction of IoT device according to the profit-seeking
strategy which is decided by itself. Moreover, the proposed algorithm can derive an equi-
librium strategy with only the number of iteration around 10 times even in an massive IoT
device environment. However, due to the iterative strategy exchange characteristics of the
Stackelberg game model, the number of iterations eventually increases as the number of
IoT or UAV increases. With investigating previous studies of NOMA scheme, it can be
demonstrated that it has well performance with considering the total system throughput.
However, it is necessary to check whether the individual performance and satisfaction of
each IoT device is even.

In addition, it is considered that it will be a much novel study if we analyze per-
formance results and simulation results for various scenarios through not only Gaussian
kernels, but also variety kernels for mean-shift application. If so, the results in Figure 6
will be more diverse and accurate analysis can be performed. Furthermore, it is necessary
to more accurately analyze the superiority and limitation of the proposed algorithm by
increasing the number of comparison models. Although the NOMA scheme is a novel
multiple access technique in the IoT networks using UAV, the proposed algorithm also
should be compared and analyzed in other channel allocation environments.

However, as a result, the mean-shift clustering method and joint optimization using
Stackelberg game theoretic approach showed 28% performance improvement compared
to the previous model applied to the most popular NOMA scheme. In addition, it also
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proved that the convergence of equilibrium is fast even in a relatively large environment of
1,000 IoT devices.

6. Concluding Remarks

In this paper, we proposed a competitive game-theoretic optimization of the UAV
placement and subchannel allocation for multiple UAV-assisted NB-IoT systems. The UAV
placement is decided based on the suboptimal strategies exchanged with the IoT devices
to maximize the system capacity and profits. With mean-shift clustering using Gaussian
kernel and joint optimization algorithm based on Stackelberg game theoretic approach,
the proposed algorithm significantly improves the system capacity by up to 28% and
ensures that the optimization is achieved within 10 iterations even in various large environ-
ment such as agriculture and logistic field, massive smart manufacturing. In future work,
energy harvesting and the beamwidth adjusting capabilities of UAVs should be considered
in a comprehensive scenario considering more constants such as weather. Moreover, mean-
shift application not only using Gaussian kernel but the other varius kernels that were not
covered in this study should be analyzed in future works. In addition, heterogeneous IoT
devices and their mobility should be facilitated.

Author Contributions: Conceptualization, C.L. (Chunghyun Lee) and G.J.; methodology, C.L.
(Cheol Lee) and G.].; validation, N.-N.D. and D.S.L.;writing—review and editing, C.L. (Chunghyun
Lee); supervision, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Chung-Ang University Research Scholarship Grants
in 2018 and was supported through BK21 FOUR (Fostering Outstanding Universities for Research)
Program funded by Ministry of Education of Korea (No.120SS7609062).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Lin, X;; Yajnanarayana, V.; Muruganathan, S.D.; Gao, S.; Asplund, H.; Maattanen, H.-L.; Bergstrom, M.; Euler, S.; Wang, Y.-P.E.
The sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun. Mag. 2018, 56, 204-210. [CrossRef]

2. Perz, R.; Wronowski, K. UAV application for precision agriculture. Aircr. Eng. Aerosp. Technol. 2018, 91, 257-263. [CrossRef]

3. Pouya, B.; Mehdi, F; Kate, S.-M.; Vladimir, E. A transformation technique for the clustered generalized traveling salesman
problem with applications to logistics. Eur. J. Oper. Res. 2020, 285, 444-457.

4. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787-2805. [CrossRef]

5. Dao, N.-N.; Na, W.; Tran, A.-T.; Nguyen, D.N.; Cho, S. Energy-efficient spectrum sensing for IoT devices. IEEE Syst. ]. 2020.
[CrossRef]

6. Chandrasekharan, S.; Gomez, K.; Al-Hourani, A.; Kandeepan, S.; Rasheed, T.; Goratti, L.; Reynaud, L.; Grace, D.; Bucaille, I.;
Wirth, T.; et al. Designing and implementing future aerial communication networks. IEEE Commun. Mag. 2016, 54, 26-34.
[CrossRef]

7. Zeng, Y.; Zhang, R; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36-42. [CrossRef]

8. Gupita, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 2015,
18,1123-1152. [CrossRef]

9. Lakew, D.S.;Sa’ad, U.; Dao, N.-N.; Na, W.; Cho, S. Routing in flying ad hoc networks: A comprehensive survey. IEEE Commun.
Surv. Tutor. 2020, 22, 1071-1120. [CrossRef]

10. Dao, N.-N.; Park, M,; Kim, J.; Cho, S. Adaptive MCS selection and resource planning for energy-efficient communication in
LTE-M based IoT sensing platform. PLoS ONE 2017, 12, e0182527. [CrossRef]

11. Sharama, V.; Kumar, R.; Kaur, R. UAV-assisted content-based sensor search in IoTs. Electron. Lett. 2017, 53, 724-726. [CrossRef]

12.  Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV-based IoT platform: A crowd surveillance use case. I[EEE Commun. Mag. 2017, 55,
128-134. [CrossRef]

13. He, H.; Zhang, S.; Zeng, Y.; Zhang, R. Joint altitude and beamwidth optimization for UAV-enabled multiuser communications.
IEEE Commun. Lett. 2017, 22, 344-347. [CrossRef]

14. Wang, J.; Liu, M; Sun, J.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Multiple unmanned aerial vehicles deployment and user
pairing for non-orthogonal multiple access schemes. IEEE Internet Things ]. 2020, 22, 1071-1120. [CrossRef]

15. Duan, R; Wnag, J.; Jiang, C.; Yao, H.; Ren, Y.; Qian, Y. Resource allocation for multi-UAV aided IoT NOMA uplink transmission

systems. IEEE Internet Things J. 2019, 6, 7025-7037. [CrossRef]


http://doi.org/10.1109/MCOM.2018.1700643
http://dx.doi.org/10.1108/AEAT-01-2018-0056
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/JSYST.2020.2986030
http://dx.doi.org/10.1109/MCOM.2016.7470932
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/COMST.2015.2495297
http://dx.doi.org/10.1109/COMST.2020.2982452
http://dx.doi.org/10.1371/journal.pone.0182527
http://dx.doi.org/10.1049/el.2016.3487
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/LCOMM.2017.2772254
http://dx.doi.org/10.1109/JIOT.2020.3015702
http://dx.doi.org/10.1109/JIOT.2019.2913473

Electronics 2021, 10, 356 13 of 13

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Jiang, B.; Yang, J.; Xu, H.; Song, H.; Zheng, G. Multimedia data throughput maximization in Internet-of-Things system based on
optimization of cache-enabled UAV. IEEE Internet Things ]. 2018, 6, 3525-3532. [CrossRef]

Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless
coverage. [EEE Commun. Lett. 2016, 20, 1647-1650. [CrossRef]

Tuyishimire, E.; Bagula, B.A.; Ismail, A. Optimal clustering for efficient data muling in the Internet-of-Things in motion.
In Proceedings of the International Symposium on Ubiquitous Networking, Hammamet, Tunisia, 2-5 May 2018, pp. 359-371.
Ebrahimi, D.; Sharafeddine, S.; Ho, P-H.; Assi, C. UAV-aided projection-based compressive data gathering in wireless sensor
networks. IEEE Internet Things ]. 2018, 6, 1893-1905. [CrossRef]

Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Internet of Things: Can UAVs provide an energy-efficient mobile
architecture? In Proceedings of the Global communications conference (GLOBECOM), Washington, DC, USA, 4-8 December
2016; pp. 1-6.

Gibbons, R. A Primer in Game Theory; Harvester Wheatshead: New York, NY, USA, 1992.

Lee, C.; Park, L.; Cho, S. Light-Weight Stackelberg Game Theoretic Demand Response Scheme for Massive Smart Manufacturing
Systems. IEEE Access 2018, 6, 23316-23324. [CrossRef]

Luan, H.; Xu, Y;; Liu, D.; Du, Z; Qian, H.; Liu, X.; Tong, X. Energy Efficient Task Cooperation for Multi-UAV Networks:
A Coalition Formation Game Approach. IEEE Access 2020, 8, 149372-149384. [CrossRef]

Zhu, S.; Gui, L.; Cheng, N.; Sun, F.; Zhang, Q. Joint Design of Access Point Selection and Path Planning for UAV-Assisted Cellular
Networks. IEEE Inernet Things ]. 2020, 7, 220-223. [CrossRef]

Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next generation cellular
networks. In Proceedings of the International Conference on Communications (ICC), KualaLumpur, Malaysia, 2227 May 2016;
pp- 1-5.

Wang, J.; Jiang, C.; Wei, Z.; Pan, C.; Zhang, H.; Ren, Y. Joint UAV hovering altitude and power control for space-air-ground IoT
networks. IEEE Internet Things J. 2018, 6, 1741-1753. [CrossRef]

Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans.
Wirel. Commun. 2018, 17,2109-2121. [CrossRef]

Karp, R.M. Reducibility among combinatorial problems. In Proceedings of the a Symposium on the Complexity of Computer
Computations, Yorktown Heights, New York, 20-22 March 1972; pp. 85-103.

Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-051-180-444-1.


http://dx.doi.org/10.1109/JIOT.2018.2886964
http://dx.doi.org/10.1109/LCOMM.2016.2578312
http://dx.doi.org/10.1109/JIOT.2018.2878834
http://dx.doi.org/10.1109/ACCESS.2018.2828798
http://dx.doi.org/10.1109/ACCESS.2020.3016009
http://dx.doi.org/10.1109/JIOT.2019.2947718
http://dx.doi.org/10.1109/JIOT.2018.2875493
http://dx.doi.org/10.1109/TWC.2017.2789293

	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Competitive Clustering-Based Uav Placement with Stackelberg Game Theoretic Approach
	Initial Uavs and Iot Nodes Deployment
	Optimization of Uav Placement

	Simulation Results
	Discussion
	Concluding Remarks
	References

