
electronics

Article

Creating Customized CGRAs for Scientific Applications

George Charitopoulos 1,*, Ioannis Papaefstathiou 1 and Dionisios N. Pnevmatikatos 2

����������
�������

Citation: Charitopoulos, G.;

Papaefstathiou, I.; Pnevmatikatos,

D.N. Creating Customized CGRAs

for Scientific Applications. Electronics

2021, 10, 445. https://doi.org/10.33

90/ electronics10040445

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 31 December 2020

Accepted: 4 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Computer Engineering, Technical University of Crete, 73100 Chania, Greece;
ygp@ece.auth.gr

2 School of Electric and Computer Engineering, National Technical University of Athens, 15780 Zografou,
Greece; pnevmati@cslab.ece.ntua.gr

* Correspondence: gcharitopoulos@isc.tuc.gr

Abstract: Executing complex scientific applications on Coarse Grain Reconfigurable Arrays (CGRAs)
offers improvements in the execution time and/or energy consumption when compared to optimized
software implementations or even fully customized hardware solutions. In this work, we explore
the potential of application analysis methods in such customized hardware solutions. We offer
analysis metrics from various scientific applications and tailor the results that are to be used by
MC-Def, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA architecture that
leverages the advantages of CGRAs and those of FPGAs by utilizing a customized cell-array along,
with a separate LUT array being used for adaptability. Additionally, we present the implementation
results regarding the VHDL-created hardware implementations of our CGRA cell concerning various
scientific applications.

Keywords: CGRA design; reconfigurable computing; application analysis

1. Introduction

Specialized hardware accelerators of scientific applications often improve the per-
formance and reduce energy consumption [1]. However, designing and implementing
accelerators is a difficult process that requires in-depth knowledge of the application,
multiple programming languages, and software tools. Throughout the years, several alter-
natives have been proposed in order to make this process easier. The dataflow paradigm
is a promising and well-established alternative towards customized hardware solutions.
Several frameworks that create dataflow graphs (Dataflow Graphs (DFGs)) and map them
on specialized hardware have been proposed [2–5].

Still, the direct mapping of complex DFGs on FPGAs is a tedious process. A more
convenient alternative target platform is Coarse-Grain Architectures (CGAs). CGAs exploit
hardware customization to achieve faster and more energy efficient execution. While they
are appropriate and efficient for many applications (especially with loop-based parallelism),
their main drawback is the use of fixed and pre-defined hardware that limits their flexibility
and versatility when compared to other solutions. Coarse-Grain Reconfigurable Architec-
tures (CGRAs) are a step towards adding flexibility while retaining many of the efficiency
advantages of CGAs. Being reconfigurable, CGRAs can be re-defined to better match
particular applications or domains. Typical CGRAs are template architectures, with some
degrees of customization.

A key disadvantage of current CGRA approaches stems from the underlying mapping
algorithm that is used to map the compute functions/operations of the original application
on computational nodes of the CGRA architecture. Because early reconfigurable architec-
tures, e.g., programmable logic arrays (PLA), typically this mapping used 1-to-1 to fashion
a single application gate/function onto a single gate of the architecture. CGRA application
mapping, although improved, continues to follow this paradigm limiting the capabilities
of CGRAs. This is due to the design premise of CGRA cells that typically include a single
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compute element, i.e., an ALU or a micro-processor, an instruction/configuration memory
and input/output registers. Additionally despite their massive customization CGRAs still
strive to achieve efficient mapping while being as generic as possible. This intentional
lack of customized hardware leads to sub-optimal designs in terms of offered acceleration
and general execution time. Therefore, we need a CGRA definition framework that is able
to: (a) map multiple nodes in one cell and (b) offer customized cell functionality, while
maintaining a degree of flexibility.

Before exploring the ways to map applications on CGRAs, one must be able to tailor
the underlying framework and be able to construct a feasible and effective way to de-
termine how the compute element of the CGRA is defined. In order to achieve this, the
researchers focus on application graph analysis used to extract all of the necessary infor-
mation. However, this approach may not always be feasible or even effective. The nodes
appearing in an application data-flow graph can yield misleading results in terms of fre-
quency of appearance when compared to the physical resources used. In this paper, being
motivated by this conundrum, we attempt to use preliminary application analysis before
building our framework in order to tailor it and create a more accurate algorithm when
defining the CGRA cells. This preliminary analysis aids in determining how particular
application nodes impact the application’s resource utilization and which nodes appear
frequently across applications from different domains. Additionally, because this analysis
is integrated in our framework, it aids the user in predicting the resource utilization of an
application using only a specific DFG representation, without requiring the expensive and
time-consuming step of implementation on the actual platform.

The obtained results are then integrated to our CGRA definition framework, MC-DeF
(Mixed-CGRA Definition Framework). MC-DeF is a novel framework that performs all of
the necessary steps in order to define a customized CGRA for a target application utilizing
a mixed-CGRA architecture. A mixed-CGRA architecture combines the advantages from
both the CGRA and the FPGA paradigms, using both a coarse-grain cell structure and
an amount of (LUT-based) reconfigurable logic, for added flexibility, connected with a
fast and high-bandwidth communication infrastructure. Once defined, the Mixed-CGRA
can be implemented either as an ASIC or as an overlay in FPGA technology. The ASIC
approach transforms the CGRA into a CGA as the cell functionality cannot be adapted
any more. In this case, the array retains some flexibility through the use of the adjacent
reconfigurable LUT array. The overlay option creates a reconfigurable CGRA design that is
able to map a target application; each new targeted application must be recompiled and
configured again on the FPGA. Additionally, by fine-tuning the threshold values that are
used by MC-DeF, the user can perform design space exploration in order to find a suitable
hardware solution based on area or energy restrictions. Our work stands in the boundary
of this space: prototyping with overlays is great for verifying the results of the design-space
exploration and an ASIC is the ideal final product. However, the overlay approach still has
an advantage from the tools/programming perspective.

This paper expands our previous work [6], making the following contributions:

• an application analysis methodology and results that helped to define the functionality
and fine-tune our framework, and

• a complete description of the created framework and baseline results showcasing its
use, and

• VHDL implementation results of implemented CGRA cells created by MC-DeF.

The rest of the paper is structured, as follows: Section 2 presents related work on
the field of CGRA architectures and graph analysis tools, while Section 3 presents the
preliminary application analysis and the obtained results. MC-DeF and the targeted Mixed-
CGRA are described in Section 4. Section 5 presents a set of evaluations of MC-DeF and
CGRA architectures produced with its use. Moreover, in Section 6, we present the VHDL
implementation results of MC-DeF created CGRA architectures, and Section 7 concludes
our work and presents our final remarks.
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2. Related Work

Several novel Coarse-Grain Architectures have been proposed and the respective field
is active for many years. More recently, the emergence of High-Performance Computing
and its accompanying applications have led to a rekindling of the CGRA approach. This
is due to the large amount of commonalities between HPC applications and also their
ability to be easily implemented while using the data-flow paradigm. The presented
related work for this paper can be divided in two different parts, works that propose novel
CGRA architectures and works that address application analysis and static source code
analysis techniques.

2.1. CGRA Architectures

Stojilovic et al. present a technique to automatically generate a domain-specific coarse-
grained array from a set of representative applications [7]. Their technique creates a shortest
common super-sequence found among all of the input applications based on weighted
majority merge heuristic. Using this super-sequence, the framework creates a cell array
that is able to map the application’s instructions.

In [8], the authors present REDIFINE, a polymorphic ASIC in which specialized
hardware units are replaced with basic hardware units. The basic hardware units are
able to replicate specialized functionality through runtime re-composition. The high-level
compiler invoked creates substructures containing sets of compute elements. An enhance-
ment of REDIFINE is presented in [9]. In this work, HyperCell is a framework used to
augment the CGRA compute elements with reconfigurable macro data-paths that enable
the exploitation of fine grain and pipeline parallelism at the level of basic instructions in
static dataflow order.

In [10], the authors present RaPiD, a novel architecture that was designed to implement
computation intensive and highly regular systolic streaming applications while using an
array of computing cells. The cell consists of a multiplier unit, two ALUs, six registers, and
three small memories. The connectivity of RaPiD is based on 10 basses connecting the cells
through connectors in a Nearest-Neighbor (NN) fashion.

The SCGRA overlay [11] was proposed to address the FPGA design productivity issue,
demonstrating a 10–100× reduction in compilation times. Additionally, application specific
SCGRA designs that were implemented on the Xilinx Zynq platform achieved a 9× speed-
up compared to the same application running on the embedded Zynq ARM processor.
The FU used in the Zynq based SCGRA overlay operates at 250 MHz and it consists of an
ALU, multiport data memory (256 × 32 bits), and a customised depth instruction ROM
(72-bit wide instructions), which results in the excessive utilization of BRAMs.

QUKU [12] is a rapidly reconfigurable coarse-grained overlay architecture that aims
to bridge the gap between soft-core processors and customized circuit. QUKU consists of a
dynamically reconfigurable, coarse-grained FU array with an adjacent soft-core processor
for system support. QUKU’s evaluation was done using Sobel and Laplace kernels, and the
generated QUKU overlay was designed based on datapath merging of the two kernels.
QUKU’s datapath merging overlay on top of FPGA fabric paves the way for fast context
switching between kernels.

FPCA [13] uses a PE that can either be a Computation Element (CE) or a Local Memory
Unit (LMU). FPCA takes advantage of the Dataflow Control Graph of the application to
create even more customized elements for the reconfigurable array. Customizable elements
are a category of CE’s in the FPCA architecture, with the other being heterogeneous
ALUs. The communication network is divided in two different parts, first one is used for
transferring data between LMUs and CEs and it is a permutation network, while the other
one is a global NN network for general PE communication.
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2.2. Application Analysis and Static Source Code Analysis

As mentioned, MC-DeF can be used for static source code analysis and for the defini-
tion of application or domain specific CGRAs. Static source code analysis is quite common
in software applications, and many language-specific tools have been released.

LLVM is one of the earliest approaches in source code analysis [14]. LLVM is a
collection of modular and reusable compiler and tool-chain technologies. Through code
analysis, LLVM is able to provide the user transparent support life-long program analysis
and transformation for arbitrary programs. Additionally, LLVM support libraries are able
to perform extensive static optimization, online optimization using information from the
LLVM code, and idle-time optimization while using profile information that is gathered
from programmers in the field.

However, the cases that our work mostly relates to are those of VHDL or hardware
code analysis. A similar approach is that of the SAVE project [15], which is a static source
analysis tool used to measure and compare models to assure the satisfaction of quality
requirements of VHDL descriptions. Similarly to SAVE, RAT [16] uses static source code
analysis in order to maximize the probability of success for an application’s migration
to an FPGA. Efficient post-synthesis resource estimation has been the target of Xilinx
research groups.

Schumacher and Jha formulate a fast and accurate prediction method for the resource
utilization of RTL-based designs targeting FPGAs in [17]. Their work utilizes Verific [18],
which is a parser/elaborator tool, to parse and elaborate RTL-based designs. The presented
results record 60 times faster tool run-time as compared to a typical synthesis process and
slice utilization within 22% of the actual hardware design.

Finally, Quinpu [19] is a novel high-level quantitative prediction modelling scheme
that accurately models the relation between hardware and software metrics, based on
statistical techniques. The error in utilization prediction that is recorded by Quinpu ranges
from 15% to 34%.

3. Application Analysis

A key aspect of this work is to find out whether modern applications can actually
benefit from a coarse-grained reconfigurable architecture. To answer this, the first step of
our research was extensive application analysis. The performed analysis is valuable in
creating the underlying framework that will ultimately be able to map modern scientific
applications in a customized CGRA architecture. Additionally, the intention of the analysis
is to find similarities in the composition of these application or to find “key” functionality
that often appears in the application’s dataflow graph.

This part of the work is done in collaboration with Maxeler Technologies Ltd., a UK-
based HPC company that specializes in Multiscale Dataflow Computing (MDC). Maxeler
offers the Maxeler Platform board solution, which provides the user with multiple dataflow
engines as shared resources on the network, allowing for them to be used by applications
running anywhere in a cluster. In their platform, they also implement various HPC appli-
cations using the MDC paradigm. Their platform allows for high-speed communication
between CPUs and the data-flow engines (DFEs). One Maxeler Dataflow Engine (DFE)
combines 104 arithmetic units with 107 bytes of local fast SRAM (FMEM) and 1011 bytes of
six-channel large DRAM (LMEM) [20].

Maxeler Technologies provided us with a large number of application Dataflow
Graphs (DFG) that we later performed analysis on to find similarities between different
applications or DFG nodes that have a high frequency of appearance. Additionally, we
performed memory analysis, closely monitoring the applications’ needs in memory space
and distinguishing the needed memory in FIFO, RAM, and ROM structures. Finally, we
recorded the input and output nodes of the graphs and measured the amount of input and
output bits at each clock tick in order to determine the I/O needs of the applications at
hand.
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In this section, we first present a preliminary analysis to support our claim that a CGRA
definition framework can indeed provide a viable hardware implementation solution for
modern scientific applications. Subsequently, we will present the four applications used
to demonstrate the usage of Impact Factor, a metric that is used to differentiate a node’s
frequency of appearance in the application’s DFG with the actual resource utilization of said
application. Additionally, we will present the results that were obtained that demonstrate
how the Impact Factor metric can accurately indicate the resource utilization coverage of an
application. The following step in our application analysis is to perform Resource Utilization
Prediction to demonstrate how MC-DeF can accurately predict an application’s resource
utilization by using the application’s data-flow graph and the built-in resource usage node
library created after our Impact Factor analysis. Finally, we steer a discussion summarizing
the key findings and observations of our analysis.

3.1. Preliminary Analysis

We have obtained over 10 commercial applications from Maxeler to perform appli-
cation profiling. MaxCompiler, i.e., the high-level synthesis tool that was developed by
Maxeler, outputs in an .xml file, a detailed graph representation of an application and the
hardware modules it uses, at a higher abstraction level. The modules used in this abstract
representation are high-level constructs, such as adders, counters, multipliers, etc. This
graph representation makes it easier to profile and find similarities among applications
from different domains. In this section, we present the results that were obtained by
resource profiling of these applications.

The preliminary resource analysis has made apparent that the research performed
shows promising results. First, we found that some hardware modules are used in every
profiled application, indicating the necessity of including them in our CGRA cells. The vari-
ance in the numbers is due to the application size, e.g., Spec-FEM 3D is the largest and
most computationally intensive application that we have profiled scoring off the charts
in almost all element categories. As stated, we also opt for fine-grain reconfigurability
within a CGRA cell. This is necessary, because some hardware elements appear in several
applications, but they have a high variance in their number—such as multipliers—as we
can see in Figures 1 and 2. We can see that, generally, FIFO elements are used in all of the
application cases studies; this is clear in Figure 2, where the usage of FIFO elements in all
of the available applications is shown.

Figure 1. Spider graphs reporting the number of adder/subtractor and multiplier elements used in
the 10 sample applications.

The above graphs represent a sub-set of the applications that were used for analysis in
order to define the key features that we wanted to include in MC-DeF. A first observation
that was important in the early stages of development was that the number of instances of
a particular node type does not correlate with high LUT consumption. For example, the
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Hayashi-Yoshida application has 80 nodes that implement some type of logic gate in its
DFG, five adder or subtractor nodes, and two multiplier. However, analysis showed that
logic gate elements only occupy 12% of the total application’s LUT utilization while the
adder and subtractor nodes make up for 94%.

Figure 2. Spider graphs reporting the number of FIFO and logic gate elements used in the 10
sample applications.

3.2. Benchmark Description

We used four scientific applications in order to carry out our preliminary analysis.
The applications used were provided by Maxeler and they were FPGA-ready application
designs. In this section, we will give brief descriptions of the applications used.

• Hayashi-Yoshida coefficient estimator: the Hayashi-Yoshida coefficient estimator [21]
is a measurement of the linear correlation between two asynchronous diffusive pro-
cesses, e.g., stock market transactions. This method is used to calculate the correla-
tion of high-frequency streaming financial assets. Hayashi-Yoshida does not require
any prior synchronization of the transaction-based data; hence, being free from any
overheads that are caused by it. The estimator is shown to have consistency as the
observation frequency tends to infinity. The Maxeler implementation [22] for this
application creates 270 Nodes in total.

• Mutual Information: mutual Information of two random variables is a measure of
the mutual dependence between the two variables. More specifically, it quantifies
the “amount of information” (in units, such as shannons, more commonly called bits)
obtained approximately one random variable, through the other random variable.
This is commonly used in the detection of phase synchronization in time series analysis
in social networks, financial markets, and signal processing. This is the smallest of the
applications analyzed in terms of DFG nodes, with 199 Nodes [23].

• Transfer Entropy: transfer entropy was designed in order to determine the direction
of information transfers between two processes, by detecting asymmetry in their
interactions. Specifically, it is a Shannon information-theory quantity that measures
directed information between two time series. This type of metric is used for mea-
suring, information flow between financial markets or measuring influence in social
networks. Formally, transfer entropy shares some of the desired properties of mutual
information, but it takes the dynamics of information transport into account. Similar
to Mutual Information, the Transfer Entropy has 225 Nodes [23].

• SpecFEM3D: SpecFEM3D [24] is a geodynamic code that simulates three-dimensional
(3D) seismic wave propagation. The algorithm can model seismic waves that pro-
pogate in sedimentary basins or any other regional geological model following earth-
quakes. It can also be used for non-destructive testing or ocean acoustics. This appli-
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cation is the largest and most complex of the ones that we analyzed with MC-DeF.
The DFG of this application contains 4046 Nodes.

• LSH: Locality Sensitive Hashing (LSH) is a common technique in data clustering,
nearest neighbor problem, and high dimension data indexing. The application uses
a hash function h(x) and combination of several hash functions to make sure that
similar data have a larger possibility to be in the same bucket after hashing.

• Capture Client: this is the client’s hardware implementation of a Line Rate Packet
Capture application. The Line Rate Packet Capture is able to perform logging on all of
the incoming data.

• Linear Regression: linear regression is a compute intensive statistical method that
creates a linear model between a scalar response variable y, and one or more explana-
tory variables x. The goal is forecasting or regression for values of y for which no data
are available yet.

• Fuzzy Logic Generator: fuzzy logic extends boolean logic with probability. Instead of
just 1 or 0, every truth value may be any real number between 0 and 1. The numbers
are often replaced by linguistic terms.

• Breast Mammogram: Breast Mammogram is an image segmentation application
used to simplify the representation of an image into something that is easier to
analyze. In this case image segmentation is used to detect microcalcification in the
mammography images in order to detect and treat lesions.

• FFT 1D: a one-dimension Fast Fourier Transformation application. It computes the
discrete Fourier transform, converts signal from its original domain (e.g., time, space)
into the frequency domain. It is widely used in engineering, science, and mathematics.

3.3. Impact Factor and Sub-Graph Analysis Results

As mentioned during our preliminary analysis, we observed that, while certain nodes
appear many times in an application’s DFG, their contribution in the application’s resources
is minimum. This is often the case with logic gates and/or support logic nodes that are
used to transform signals to a different bit-width, dubbed as Reinterpret nodes. By making
this observation we decided to create a metric, called Impact Factor, which will accurately
measure the impact that a DFG node has on the application’s resources.

How repetitive is an application’s DFG is another factor that can aid in the creation
of a CGRA architecture and its definition. The authors, instead of searching for nodes
commonly found in a graph, focus on node sequences that are common, as shown in [7].
In a similar fashion, we made an analysis in order to see whether there are frequently
appearing sub-graphs in our target applications. In this sub-section, we present the results
that demonstrate how, by using the Impact Factor metric, we can observe how resources of
an application are used over a variety of different nodes and memory elements.

First, we create coverage graphs for each of our applications. MC-DeF through
resource analysis computes the Impact Factor of each node in the application DFG. Cumu-
lative impact factors for each resource are collected and presented in graph form for better
readability. These graphs demonstrate how much high-resource utilizing nodes take up
from the total resources used for application implementation. The results of this analysis
are presented in Table 1. With analysis the user can make some first observations regarding
the application, whether it is arithmetically intensive or not, or if different applications
have similarities in their hardware implementation.

In Figure 3, we present the impact factor for each application and FPGA resource
type. We group node resources according to their type, distinguishing arithmetic units
(FP adders, multipliers, etc.), random logic, FIFOs, and memory (BRAMs), and then
plot them in the x axis. The y axis indicates the effect of that node type on each resource
(LUTs, DSPs, BRAMs, Flip-Flops), as expressed in their impact factor. Each coloured bar
shows the percentage of coverage/contribution a node has on a specific physical resource.
For example, in the Hayashi-Yoshida application, the 32-bit FP Adder node utilizes 20% of
the application’s BRAMs (blue bar). The 32-bit FP Multiplier utilizes no BRAM resources;
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as a result, there is no blue bar for that compute element. These results showcase the ability
of MC-DeF to identify the hot-spots in terms of resources in an application. Moreover
information regarding the code line these hot-spots appear is also provided in text form.

In the case of Hayashi-Yoshida, Mutual Information, and Transfer Entropy, we can see
in the corresponding figures that the 32-bit Floating-Point Adders created utilize BRAM
resources. This is evident since the impact factor for the adders is above zero. However,
Synthesis reports that are provided by the vendor tools do not stress this fact, but state that
all of the BRAM utilization is for memory purposes. This information is not provided to
the user in the post-synthesis report. However, in the MC-DeF resource analysis report,
the user can see the correct BRAM utilization and the line/node that it originates from.

Table 1. Synthesis (Dataflow Graph (DFG) nodes) and Overall (FPGA resources) resource utilization
for each application.

Resource Utilization

Applications FIFOs Add. Sub. Mult. Div.

Hayashi-Yoshida 22 1 5 2 0
Mutual Information 15 6 9 15 9
Transfer Entropy 17 6 9 15 9
SpecFEM3D 530 193 18 271

Logic Gates LUT DSP BRAM

Hayashi-Yoshida 48 3912 4 0
Mutual Information 23 17,533 24 2
Transfer Entropy 17 17,677 24 1
SpecFEM3D 227 315,475 1080 1180

Figure 3. Impact Factor for each application and FPGA resource type (LUTs, DSPs, BRAMs, Flip-
Flops) is presented. Each bar depicts the contribution of a specific compute or memory element
among the different physical FPGA resources.
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Regarding sub-graph analysis, we created an algorithm to extract sub-graphs from
the DFG of the application that are frequently based on a frequency threshold. The nodes
that are selected for frequent sub-graphs are identical in terms of functionality as well as
for the operands’ bitwidth. With this process, we try to extrapolate information regarding
the connectivity of the application’s design.

During our research, we concluded that sub-graphs that have a high occurrence
frequency consist of simple logic gates and/or reinterpret nodes. On the other hand, by
broadening the search space in lower frequency of appearance, we were able to discover
more complex constructs and sub-graphs that utilize more resources. Table 2 shows
the results obtained for each application’s highest frequency and highest utilization sub-
graphs.

Table 2. Frequent sub-graph characteristics for each application.

Highest Frequency

Applications Frequency #Nodes Resource Utilization
(LUT, DSP, BRAM)

Hayashi-Yoshida 11 2 2 0 0
Mutual Information 9 2 2 0 0
Transfer Entropy 11 2 2 0 0
SpecFEM3D 162 3 4 0 0

Highest Utilization

Frequency #Nodes Resource Utilization
(LUT, DSP, BRAM)

Hayashi-Yoshida 4 7 615 2 0
Mutual Information 4 2 615 2 0
Transfer Entropy 5 2 615 2 0
SpecFEM3D 95 2 290 0 4

The highest frequency sub-graphs for all applications consist of simple nodes, like
reinterpret nodes, logic gates, slices, and multiplexers. The highest utilization sub-graphs
usually contain complex abstract nodes, like FIFOs and subtractors (Mutual Information,
Transfer Entropy, and Hayashi Yoshida), or add-multiply chains (SpecFEM3D). In the case
of Hayashi-Yoshida, besides complex abstract nodes, the highest utilization sub-graph
contains low-resources nodes, like multiplexers and reinterpret nodes.

3.4. Resource Utilization Prediction

The aforementioned analysis yields another attribute of MC-DeF, that of utilization
prediction. During the initial steps of our analysis we used a Maxeler Compiler generated
resource annotated source code file to extrapolate information regarding the DFG nodes’
resource utilization. The resource annotated source code provides information on physical
resources (LUTs, Flip-Flops, BRAMs, DSPs) used per line. However, the user cannot
perform a one-to-one match between the physical resources and nodes. This is due to the
fact that many nodes can be instantiated in one line of code.

However, MC-DeF is able to perform application analysis and cell definition without
the source-annotated code. Through extensive testing, we were able to measure the LUT,
DSP, and BRAM resource utilization of key computation elements, such as adder nodes,
multiplier nodes, etc. Based on this pre-analysis, MC-DeF is able to extrapolate data for
unknown nodes and create a “resource library” of nodes that is also bit-width dependent.
Accordingly, for every new application entered by the user, if no source annotated code
exists, MC-DeF uses its own “resource library” during the CSFD phase.

This “resource library” has lead our research in an interesting side-product, resource
utilization prediction. By only the application’s DFG, the user can have an early prediction
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of how much resources will be utilized. This can be prove to be useful in early stages of
application development and for scheduling algorithms developers. In order to examine
the validity of the prediction performed by MC-DeF, we test its accuracy when compared
to a commercial tool. The current Maxeler framework uses the Altera Synthesis toolchain.
Based on the baseline models, the resource annotated source files, and the MC-DeF’s
“resource library”, we measured MC-DeF’s error margin from 5–10% as compared to the
actual synthesized design, while the execution time of the resource analysis step is 40
times faster than the Synthesis process. When comparing with other resource prediction
tools, we find that MC-DeF achieves 2–3 times better error margin as compared to [17] and
Quinpu [19], while being slower when compared to [17].

Additionally, a case can be made on the amount of abstract nodes covered by the
highest frequency sub-graphs as compared to the total nodes of the application. On average,
according to the applications analyzed, the highest frequency sub-graphs cover ≈ 10% of
the total application nodes.

The resulting frequent sub-graphs can aid the user in identifying patterns in the high-
level code and common sequences of arithmetic operations. However, frequent sub-graphs
are more useful when considering a CGRA implementation of the application. First a high-
utilization sub-graph, when replicated, can cover a large amount of the application’s total
resources. For example, the Hayashi-Yoshida highest utilization sub-graph uses 615 LUTs
and appears four times; this results in an impact factor of 57%. The other applications’
high-utilization subgraphs have an impact factor of approximately 10%. The nodes used
for the common sub-graph combined with the ones that were discovered as high impact
factor nodes during the resource analysis can lead to an almost 100% application coverage
and create a CGRA “cell” that is capable of accommodating the target application.

3.5. Discussion

So far, we have described the preliminary analysis used to tailor MC-DeF and provided
results regarding the Impact Factor metric and the Sub-graph mining process. The applica-
tions that are used for our experiments can be divided into three categories, a large complex
application (SpecFEM3D), two similar applications (Transfer Entropy, Mutual Information),
and a low resources application (Hayashi-Yoshida).

The execution time of MC-Def is dependant on the DFG size and the frequency
threshold that is applied for sub-graph mining. For the small and medium sized graphs
used (Hayashi Yoshida, Mutual Information, and Transfer Entropy), execution time was
recorded at an average of 10 s, while, for SpecFEM3D, was 30 s when the frequency
thresholds for frequent occurring sub-graphs was set at 95. We observed that, when
lowering the frequency threshold, execution time further increased since the tool needed
to process and extrapolate an increasing number of sub-graphs.

When considering the Impact Factor analysis results, we make the following observa-
tions: (a) In small or medium applications it is evident which nodes have a clear impact to
the physical resource utilization, and (b) BRAM modules are primarily used by memory re-
lated nodes, such as FIFOs and RAM/ROM memories, with a small fraction used by some
floating-point arithmetic nodes, and (c) DSP resources are solely used by floating-point
multiply and division units.

Point (a) is evident in the Hayashi-Yoshida coverage graph, where we can see most
of the LUT resources on floating point addition, the impact factor of the 32-bit adder
node is 86%. Transfer Entropy and Mutual Information spend their LUT resources in
a common way. Most of the LUTs are utilized for floating-point division and addition
nodes, a combined impact factor of 78%. Additionally, point (b) can also be observed
in the Hayashi-Yoshida application, 20% of the available BRAMs are used for arithmetic
operations, with the rest being used for pipelining, input/output and FIFOs. Finally,
for point (c), we can see that in the Transfer Entropy coverage graph floating-point division
units use more than 60% of the DSPs, while the rest are used by floating-point multipliers.
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The same observations hold for our largest application, SpecFEM3D. Nodes that
perform 60-bit floating-point addition and multiplication take up to 90% of the applications
total LUTs used, when we include the 64-bit floating-point units, and the impact factor
increases to 96.7%. The multiply units used for 60-bits operation combined with the ones
for 64-bits use is 99.9% of the application’s DSPs. The BRAM usage distribution is unique,
since, in the Maxeler case, BRAM circuitry is used for memory related nodes, i.e., FIFOs
and RAM/ROM memories, but also from some addition units. The impact factor of FIFO
nodes on the BRAMs is 67.56% and, for RAM/ROM memories, is 14.18%, while the rest
spans across the addition units of the DFG.

The analysis that was performed by our tool shows how physical resources are
distributed across the application’s nodes offer unique information not provided by other
vendor tools. Moreover, the prediction error recorded by MC-DeF is, on average, within
10% of the application’s actual resource utilization, the smaller compared to other related
works in the field [17,19]. Finally, after analyzing four scientific application, we have
demonstrated that:

• MC-DeF helps the user identify, abstract nodes with the highest contribution to the
application’s resource utilization,

• MC-DeF finds not only frequent, but also sub-graphs with high resource utilization,
• the high impact factor nodes and sub-graphs discovered by MC-DeF can create a

CGRA capable for accommodating the target application, and
• MC-DeF helps the user identify similarities in applications without looking at their

high-level source files.

4. Mixed-CGRA Definition Framework

This section presents the Mixed-CGRA Definition Framework and its associated
processes and algorithms, this is done in order to offer the reader a holistic view of
the framework.

Figure 4 shows the complete process carried out by MC-DeF. The grey rectangles
denote the phases of MC-DeF: (a) CSFD phase (Section 4.1) decides on the contents of the
CGRA cell, (b) the Node mapping phase (Section 4.2) creates a modified DFG graph using
the resulting CGRA cell, (c) the Routing phase (Section 4.3) creates a mapped and routed
design that is ready to place on an FPGA device and, (d) Energy & Area Estimation phase
(Section 4.4) presents the user with estimates of the created CGRA design.

Figure 4. The MC-DeF flow with its associated phases and techniques.

Figure 5 shows the resulting CGRA design. The figure depicts the cell array (CE
grid), the connectivity network, and the adjacent LUT array that enables mapping arbitrary
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functions that are not very common in the application. The picture also depicts the internal
structure of the cell with the network configuration memory (CM), the implemented
application nodes (APP_N), and the necessary FIFOs.

Figure 5. Structure of the proposed Coarse Grain Reconfigurable Arrays (CGRA).

4.1. Cell Structure and Functionality Definition (CSFD) Phase

The majority of current CGRA architectures use a static and pre-defined set of compute
elements, soft-core processors, and/or ALU elements coupled with instruction memories
to create a compute cell. While these kind of approaches have proven highly flexible
and are general enough to map a wide range of application they lack in: (a) application
scaling (b) resource utilization, and (c) the total number of operation performed in parallel.
With MC-DeF we opt towards a CGRA cell able to perform more than one operation in
parallel, includes high abstraction hardware modules and is able to implement a wide
range of applications through cell-network communication reconfiguration.

MC-DeF utilizes three techniques to create highly customized cells optimized to the
target application’s characteristics. The first one is the Impact Factor metric, introduced
in [6], which denotes the estimated resource impact that a DFG node has on the actual
resource utilization of the application, i.e., percentage of LUTs, FIFOs, BRAMs, and DSPs
used by a node, over the total resource usage of the application. Nodes with high Impact
Factor are labeled for inclusion in the cell structure.

Frequent Sub-Graphs Discovery is the second technique, a process baring strong
similarity to the one that was used to identify frequent chains of instructions [25]. In [6],
the authors run a modified version of GraMi [26], an algorithm for extracting frequent
sub-graphs from a single large graph. A graph is only extracted if it exceeds a frequency
and a resource utilization threshold, thus limiting the search space to sub-graphs that have
high occurrence frequency and use the most hardware resources.

The third technique deals with a critical issue in CGRA design: often times nodes have
the same sequence of operations, but apply it on different bit-widths. The naive approach
considers these nodes as separate, leading to CGRA designs that are harder to route due
to cell heterogeneity. To address this, we include in the CSFD phase Node Merging; an
algorithm that is designed to find whether two nodes with the same functionality should
be merged under the same bit-width and what the optimal bit-width for the current
application is described in detail in [27]. We use two metrics for Node Merging: the



Electronics 2021, 10, 445 13 of 23

bit-width difference between the two nodes and the Percentage Gain of merging these
two nodes.

Through the CSFD phase MC-DeF decides which DFG nodes will be implemented
within the CGRA cell and ensures that the functionality of the CGRA-cell is beneficial in
terms of resources, frequency of occurrence in the DFG, and bandwidth achieved among
cell communication. The threshold values applied are subject to change according the user
needs and design restrictions.

4.2. Node Mapping

Node mapping is the process of assigning DFG nodes of an application in CGRA
cells. However, CGRA cells may contain multiple independent or chained functions, which
makes the problem of mapping nodes to cells a difficult algorithmic process.

We implement a novel Node Mapping algorithm in order to efficiently allocate the
DFG nodes on the CGRA cells. Starting from an application DFG using nodes N = A, B,
C, D, MC-DeF decides on the contents of the CGRA cell on the CSFD phase, the resulting
CGRA cell contains one stand-alone node and a sub-graph (right arrow notation denotes
a sub-graph inclusion in the CGRA cell), i.e., E = A → C, B. In the mapping phase of
MC-DeF, we want to create a new graph that emits the nodes included in the CGRA cell
and substitutes them with a new node, Node E, which describes the resulting CGRA cell,
as shown in Figure 6. Ultimately, the hardware elements included in E1 and E2 are the
same but their utilization differs, as seen only with the sub-graph A→ C being used in
E2. Node Mapping finds and evaluates possible coverings/mappings of the DFG using two
cost functions:

• Unutilized cell resources: this cost function measures the amount of unused resources
among all of the CGRA cells. A CGRA cell consisting of three nodes, with only two of
them used, will have unutilized cell resources count equal to one.

• Connections between cells: this cost function measures wire connections between
different CGRA cells.

Figure 6. Node Mapping in the MC-DeF. (a) The CSFD phase decides on the CGRA cell contents,
(b) Mapping creates a DFG using the new node E, the functionality of which is equivalent to the
CGRA cell defined, (c) Placement and Routing phases place the nodes in a CGRA grid and decide
the connectivity between them.

The mapping algorithm considers all of the nodes or chains of nodes implemented
in the customized CGRA cell. If the CGRA cell contains a sub-graph, i.e., two or more
nodes explicitly connected, the algorithm finds all the corresponding nodes (nodes between
the source and destination nodes and then places them in a cell structure. Subsequently,
for each of the nodes placed already in the cell, the algorithms records all of the DFG nodes
that are adjacent, i.e., with a direct connection, or close, with minimum distance, to the
ones already in the cell, and stores them in the extra_nodes structure. These nodes are then
checked against all other placed nodes in the cell array, and the ones already placed are
removed from the structure. The remaining nodes are all inserted in the cell provided
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adequate available logic, or, if not, the algorithm chooses, at random, which ones to insert
in the current CGRA cell.

At this stage, non-inserted nodes are stored and prioritized for inclusion in subsequent
runs of the mapping algorithm. The same process is repeated if the current processed CGRA
cell logic is not a chain of nodes. For each unique mapping created, the algorithm measures
the Unutilized cell resources and the Connections between cells cost functions and chooses
the mapping that best minimizes them. This process is repeated for 100 mappings. This
number is a design time parameter that can be fixed accordingly by the user, depending on
the required effort tht was spent by the framework to find an optimal solution. Finally, with
the use of the search_non_mapped function, the mapping process records all of the nodes not
able to be placed within a cell, these node will later be placed in the LUT structure available.

Even though some nodes are not directly mapped to CGRA cells, e.g., node D in
Figure 6, CSFD phase strives to ensure that these node are but a small fraction of the total
resources used by the application. However, it is necessary to map these nodes in the
Mixed-CGRA design. MC-DeF offers the user two alternatives for “rogue” nodes.

• LUT array: an adjacent LUT array able to accommodate all the DFG nodes not directly
mapped to the cell logic.

• LUTs-in-cell: the remaining rogue nodes are implemented in small LUT array structures
placed inside the CGRA cells.

The LUT-array approach is straightforward in terms of implementation from MC-DeF.
First, during the Node Mapping phase any node that is not included in the cell array is
labeled for LUT-based implementation on the LUT-array. Subsequently, the Routing phase
establishes the grid network that is responsible for transferring data to and from the LUT-
array. Node implementation and mapping within the LUT array structure is similar to
mainstream FPGAs. The LUT array is not treated as a CE, because the intention is to offer
a degree of reconfigurability that CGRA cells do not.

The LUTs-in-cell (L-i-C) option is more complex. First, we have to take the size of
the individual LUT-structures into consideration and keep an almost uniform distribution
among the CGRA cells. The inspiration for this idea was the Stitch architecture [28] and its
ability to create heterogeneous and configurable core-tiles. Additionally, we ideally want
to place rogue nodes inside cells that have a direct connection with, e.g., RN 1 takes inputs
and gives output to nodes that are placed in Cell 2, so we intuitively want to place it in the
cell’s 2 LUT structure.

For more complex decisions, we invoke the cost functions implemented in the Routing
phase of MC-DeF and make placement decisions accordingly. The routing cost functions
are taken in consideration, because, for rogue nodes, there are no resource-related restrictions.
For routing purposes, a separate network is implemented working transparently from the
cell network. The two networks communicate via dedicated buffers.

The algorithm tries to find a mapping that minimizes the cost functions and terminates
its execution after discovering at least 100 mappings. Each mapping is different, depending
on which of the adjacent nodes will be selected for cell inclusion. The above number is
empirically used through experimentation with the applications used to evaluate MC-DeF.
A further increase of the number of minimum mappings discovered could yield better
overall mapping results but at the cost of increased execution time. This number can be
tailored by the end user of the framework.

4.3. Cell Routing

In this phase, MC-DeF establishes the connections that are needed to route the cell
array, as well as the input/output infrastructure of the design. The Routing phase of MC-
DeF uses two cost functions in order to create designs with low communication overhead:
the number and size of synchronization FIFOs used in each cell and the distance of two
communicating cells.

Dataflow execution dictates that operands arrive at compute nodes synchronized.
However, operands from different paths may observe different compute and communica-
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tion latencies. MC-DeF uses synchronization FIFOs where needed to re-time inputs in each
CGRA cell. Synchronizing cell-node inputs could be remedied—but not fully solved—by
latency-aware mapping of the cells; however, this would lead to increasing the overall
latency of all the cell-array. By inserting synchronization FIFOs inside the cells, we ensure
unobstructed parallel and pipelined execution.

Cells are recognised by their position in the array, i.e., vertical and horizontal coordi-
nates. For two cells that exchange data between them, their distance is equal to the number
of D-Mesh bi-directional crossbar switches between them. For example, the distance of
cell A (0, 0) and cell B (2, 1) is 2. After calculating the cell distance between two connect-
ing cells, the synchronization FIFOs are formulated accordingly. Distance between cells
and Input/Output nodes and the LUT array is three, since communication is achieved
over the slower grid network. The distance between the nodes within the LUT array is
not considered.

These cost functions are used for improving the communication infrastructure. The next
step of the routing process is to minimize them using a Mapping Improvement algorithm.
Through multiple trials, we observed that simultaneously minimizing both of the metrics
is not possible. Instead, we focused the minimization on the metric with the largest vari-
ance among its values. Consequently, the Mapping Improvement Algorithm focuses on
minimizing the distance of two communicating cells.

For the two cells mentioned before, we move one of them along the axis that shows the
largest distance. For example, moving Cell A to the (1, 0) position reduces the distance by
1. After this cell movement, we need to re-calculate the average distance per cell compared
with the previous value and perform more cell movements if necessary. The process is
repeated until a local minimum value is found, after a finite number of movements.

4.4. Area & Energy Estimations

The overall cost of the resulting CGRA architecture is evaluated by measuring the area
of the resulting architecture and the energy consumption. Similar to other state of the art
related works [29,30], we estimate the area occupancy of our architecture while assuming a
7 nm lithography technology. Thus, a 6T SRAM bit cell unit’s size is 30 nm2, i.e., 38.5 Mb
in 1 mm2. For example, a 1 k × 8 bit FIFO will occupy approximately 250 µm2, while
the area needed to implement a fused double precision Multiply-Accumulate on 7 nm is
0.0025 mm2. Additionally, we consider two 19.5 mm2 Input/Output infrastructures at the
top and bottom of the CGRA with 13 mm length and 1.5 mm width. Additionally, the LUT
array area is calculated based on [31,32]. The numbers reported by the area evaluation
phase of MC-DeF are: CGRA-only, CGRA+I/O and Total (CGRA+I/O+LUT) Area in mm2.

Calculating the energy consumption of the resulting Mixed-CGRA design is based
on the individual computing elements used. Bill Dally, in [33], shows how the 64-bit
double precision operation energy halved from 22 nm to 10 nm. Additionally, in [34], Dally
et al., accurately measure the energy consumption of several electronic circuits on a 10 nm
lithography technology. The numbers reported in this study are the basis of our energy
consumption estimations and they constitute a pessimistic estimate for a 7 nm lithography.

In Tables 3 and 4, we present the area and energy estimations that were considered
by our MC-DeF framework. The nodes presented in these tables are the ones found in the
application DFGs used for our studies and initial calibration of the MC-DeF. The system
interconnect access requires 1000 pJ. Additionally, in the MC-DeF energy and area con-
sumption estimations, we assume 100% utilization of the Cell and LUT arrays on a fully
utilized pipeline dataflow path. These values are worst case scenarios, so they correspond
to highly overestimated scenarios. Additional optimizations at the implementation level
would allow for more efficient designs.
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Table 3. Energy Consumption of Electronic Circuits used in MC-DeF

Circuit (32-Bit Double Percision) Energy (pJ)

Node Add/Sub 10
Node Multiply 9
Node Division 13

Logic Gates Nodes 0.5
64-bit read from an 8-KB SRAM 2.4
Data movement between cells 0.115 pJ/bit/mm

Table 4. Area Occupancy Estimations of Electronic Circuits used in MC-DeF

Circuit Area (µm2)

Node Add/Sub
Node Multiply/Divide 2500

FIFO (Bits)

Width Depth

≤8 ≤1000 250
>8 ≤1000 250
≤8 >1000 [Depth/1000] × 250
>8 >1000 [Depth/1000] × [Width/8] × 250

4.5. Discussion

The Mixed-CGRA reconfigurable designs that are produced by MC-DeF are tech-
nology agnostic. Two main avenues for the implementation of these designs are (a) on
FPGAs and (b) as custom ASICs. The former option is typical in the CGRA research field
and we can take advantage of the FPGA reprogramming and use MC-DeF results as an
overlay structure. The overlay, together with the data transfer protocol and framework,
forms a complete system. The latter option is to produce a highly optimized, one time
programmable accelerator for a specific application domain. However, the certain level
of reconfigurability remains in the LUT array and the programmability of the Cell Array
switch boxes.

Throughout its execution, MC-DeF uses several metrics, thresholds, and cost-functions.
In Table 5, we list the name, type, and MC-DeF phase each of them is used. The parameters
used can be divided in two categories: those used to create a more compact and resource
efficient array and those that are used to create a fast and high bandwidth communica-
tion framework.

The applied threshold values can be used for design space exploration in order for
the user to find a hardware solution that is tailored to either area or energy restrictions.
This feature is also aided by the fast execution and simulation times of MC-DeF averaging
below two minutes.
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Table 5. MC-DeF metrics, thresholds and cost-functions. Entries annotated with ∗ are used for
Communication infrastructure optimization, and with † for CGRA array optimization.

Name Type MC-DeF Phase

Impact Factor † metric CSFD
Application Analysis

Utilization of frequently
occurring sub-graphs † threshold CSFD

Sub-graph Discovery
Frequency of frequently
occurring sub-graphs † threshold CSFD

Sub-graph Discovery

Percentage Gain † metric
(threshold applied)

CSFD
Node Merging

Bit-difference † metric
(threshold applied)

CSFD
Node Merging

Connections between Cells ∗ cost function Mapping
Unutilized Cell Resources † cost function Mapping
Cell Distance ∗ cost function Routing
Number and Size
of Sync. FIFOs ∗ cost function Routing

5. MC-DeF Baseline Results

We verified MC-DeF’s functionality using nine scientific applications’ DFGs that were
provided by Maxeler Ltd. Initially, MC-DeF determines the structure and functionality of a
CGRA cell, as well as the in-cell LUTs or the adjacent LUT-array used for mapping non-cell
nodes. Afterwards, the MC-DeF continues to map the nodes to cells and eventually specify
the connectivity network of the design and finalize the mapping of the cells while using
the novel Mapping Improvement Technique. Finally, MC-DeF provides the user with area
occupancy and energy consumption estimations and presents a final report.

Using the finalised MC-DeF reports from each of the nine applications, we report
the customized CGRA cell functionality, the size of the cell array, the mapping of non-cell
nodes, the utilization of a cell in the array, i.e., average output/cell, and the achieved clock
frequency. Also, MC-DeF provides the user with insight regarding the communication
network’s utilization we report the average distance/cell, synchronization FIFO size/cell
and finally the internal bandwidth recorded. Energy consumption of the resulting designs
is calculated using the amount of input data of each application supplied by the user.
Energy consumption estimations is based on the amount of floating-point operations
performed and the cell array’s network energy consumption, i.e., the energy required for
transferring the data through the cell array. Each cell of the cell array performs pipelined
and parallel operations. MC-DeF design can be implemented either as a overlay or a
standalone design following the architecture shown in Figure 6, for this case the target
board for our designs is a Stratix V FPGA. MC-DeF design results for all nine applications
are presented in Table 6.

For each of the cell structures implemented, we calculate the energy consumption
and area occupancy based on the tables presented in Section 4.4, for nodes that do not
appear in this section we use energy and area estimation as derived from simple VHDL
implementation of the node, such as equality nodes. The right arrow annotation between
certain nodes denotes a sub-graph inclusion in the cell, e.g., NodeEq→ NodeAnd in the
Hayashi Yoshida application.

For the majority of applications, the communication infrastructure is configured
using 32-bit channels (breast mammogram and client server use 8 and 24-bit channels
respectively). MC-DeF decides on the communication infrastructure after enumerating
input and output bit-widths for each node implemented in the cell array. Also this choice
is made considering that the majority of operations performed for each application, which,
in most cases, is 32-bit double precision floating-point.
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Table 6. MC-DeF experimental results.

Hayashi Yoshida Mutual Information Transfer Entropy

Resources
(LUT, BRAM, DSP) (3912, 0, 4) (17,677, 2, 4) (17,533, 2, 4)

DFG Nodes 270 225 199

Cell Structure NodeEq→ NodeAnd
NodeAdd/Sub

NodeAdd/Sub
NodeMul→ NodeDiv

NodeAdd/Sub
NodeMul→ NodeDiv

CGRA Dimensions 6 × 6 4 × 4 4 × 4
Clock Frequency 290 MHz 270 MHz 270 MHz
LUT Array size 357 320 399

Total chip area mm2 144 125 125
Energy Consumption 22.165 J 22.245 J 22.245 J

Avg. distance/cell 3 5.4 5.6
Avg. FIFO size/cell 4 9.4 10.9
Avg. Outputs/cell 1 2.5 2.5

Internal Bandwidth 29 GB/s 43.2 GB/s 43.2 GB/s

Linear Regression Fuzzy Logic Generator Breast Mammogram
Resources

(LUT, BRAM, DSP) (6841, 22, 10) (26,442, 66, 29) (3410, 24, 0)

DFG Nodes 87 199 109

Cell Structure NodeAdd/Sub
NodeEq→ NodeMux NodeBits→ NodeAdd

NodeAnd→ NodeMux
NodeDiv

NodeGte→ NodeAnd
CGRA Dimensions 4 × 4 7 × 7 4 × 4

Clock Frequency 270 MHz 250 MHz 270 MHz
LUT Array size 881 1073 803

Total chip area mm2 122 184 122
Energy Consumption 21.793 J 21.650 J 21.830 J

Avg. distance/cell 7.1 3.4 7
Avg. FIFO size/cell 15.3 6.6 2.5
Avg. Outputs/cell 1.5 1 2.5

Internal Bandwidth 19.4 GB/s 38 GB/s 19.4 GB/s

LSH Capture
Client FFT 1D

Resources
(LUT, BRAM, DSP) (36,488, 144, 112) (170, 0, 0) (68,003, 285, 44)

DFG Nodes 294 118 3209

Cell Structure NodeAdd/Sub
NodeMul NodeBits→ NodeEq NodeAdd/Sub→ NodeCat

NodeAdd/Sub
CGRA Dimensions 9 × 9 3 × 3 12 × 12

Clock Frequency 270 MHz 320 MHz 270 MHz
LUT Array size 3525 85 15,374

Total chip area mm2 227 121 293
Energy Consumption 23.519 J 32.848 J 32.522 J

Avg. distance/cell 8.8 3 10.03
Avg. FIFO size/cell 18.9 0 0
Avg. Outputs/cell 1.2 1 1.5

Internal Bandwidth 70.2 GB/s 15.3 GB/s 80.2 GB/s

The obtained results verify the correct functionality of our framework. For each
application, we can see that cells perform different operations which results in different
clock frequencies achieved. The highest frequency, 320 MHz, is achieved in the smallest
application, High-Speed Capture Client, while Fuzzy Logic Generator records the lowest
frequency, 250 MHz. Additionally, fluctuations in area occupancy and energy consumption
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estimations are based on the type of operations performed and the size of the cell array;
the most expensive application in terms of energy and area is the FFT one. Some interesting
observations we can make by analyzing the results that are shown in the tables is the energy
and area trade-off evident in the Hayashi Yoshida application. As seen in Table 6, Hayashi
Yoshida has similar energy consumption with the Mutual Information and Transfer Entropy
application; this is due to the larger cell array size of Hayashi Yoshida when compared to
the other two application and the fact that the Equality and logical AND operations are
64-bit wide, thus utilizing two 32-bit circuits for each operation.

6. A Mixed-CGRA VHDL Implementation

The main objective of our work is to provide a tool that creates CGRA architectures
efficient enough that will bridge the gap between FPGA and ASIC design, as mentioned
in Section 1. This is why great effort while developing MC-DeF was spent in creating
abstractions from the user while transparently using the abstracted knowledge to create
energy, area, and/or performance efficient CGRA designs.

The last step to complete this process is the extension of MC-DeF with the ability to
create synthesizable VHDL descriptions of the identified structures. Although this is a
challenging process, in this chapter we present the first crucial steps towards this direction,
i.e., in creating a framework that is not only able to define a CGRA architecture, but also
working alongside a commercial toolflow, like Xilinx, to create downloadable bitstream
design files for the targeted application.

The target applications for which we performed VHDL implementations of their MC-
DeF defined CGRA cells are: Hayashi Yoshida, Mutual Information, and Transfer Entropy.
In Table 6, we can see the nodes that are contained in each CGRA cell. For each node,
we first created the correct VHDL code and verified its correct execution. Subsequently,
for each node we used several implementation strategies, which were provided in the Xilinx
toolflow, to explore trade-offs between performance, area, and energy. The implementation
strategies used are:

• Area_Explore: Uses multiple optimization algorithms to get potentially fewer LUTs
• Area_ExploreWithRemap: Similar to Area_Explore but adds the re-map optimization

to compress logic level
• Power_DefaultOpt: Adds power optimization (power_opt_design) to reduce power

consumption
• Power_ExploreArea: Combines sequential area optimization with po-wer optimiza-

tion (power_opt_design) to reduce power consumption
• Performance_Retiming: Combines retiming in phys_opt_design with extra place-

ment optimization and higher router delay cost
• Performance_ExtraTimingOpt: Runs additional timing-driven optimi-zations to po-

tentially improve overall timing slack
• Performance_ExploreWithRemap: Uses multiple algorithms for optimization, place-

ment, and routing to get potentially better results, also adds the remap optimization
to compress logic level

For each implementation strategy, we record resources utilization (LUT, Flip-Flops,
DSP, and BRAM), the Clock Frequency, and, finally, power usage, both passive and active,
as seen in Vivado’s post-implementation report. All of the nodes were implemented
as synchronous designs using clocked registers, and the designs for the cells are also
synchronous using the appropriate synchronization FIFOs wherever needed. For Hayashi
Yoshida CGRA cell, we implement the NodeAnd→ NodeEquality as asynchronous gates
that receive and deliver inputs/outputs from/to clocked registers. In Table 7, we can see
the results of the Power_DefaultOpt implementation strategy as compared to the results
that were recorded when the same node/cell is implemented using the Maxeler framework
on a MAX4 technology device.

For the applications’ cell implementations, we use the Maxeler generated nodes,
and their resource utilizations, combine them in a cell structure, and then record the
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results. From the results above, we can see that the overall the VHDL code produced for
the purposes of an MC-DeF CGRA design is on par with the commercial Maxeler FPGA
implementation. For every application cell, we can see that MC-DeF creates designs with
higher clock frequency; for Mutual Information and Transfer Entropy, we have a 21.26%
improvement and for Hayashi Yoshida 48.45%. Additionally the resource overhead is
negligent, 14.43% for Mutual Information and Transfer entropy and 6.22% for Hayashi
Yoshida. The resource overhead that is reported in Table 7 only refers to LUT resources.
Regarding DSP resources, we can see that, for Mutual Information and Transfer Entropy,
MC-DeF uses 2 as compared to MAX4 6, while, for Hayashi Yoshida, MC-DeF again
uses 2 DSPs compared to 1. For BRAMs, we can observe a big difference in the two
implementations, since MC-DeF uses no BRAMs, while, for Mutual Information and
Transfer Entropy, MAX4 uses 6 BRAM instances and for Hayashi Yoshida 1.

The results obtained during the VHDL implementations of three CGRA cells and the
comparisons performed with a commercial FPGA tool leads us to believe that the LUT/area
overhead and subsequent improvement in clock frequency, MC-DeF CGRA designs are
similar in performance and area with the MAX4 FPGA ones. Additionally, different imple-
mentation strategies from the MC-DeF’s side yield different utilization, clock frequency,
and power estimation results, which provide the user with a variety of trade-off choices
and metrics in order to choose the appropriate scenario implementation for the specified
design requirements and restrictions.

Table 7. Comparative results between MC-DeF VHDL implementation and the Maxeler MAX4. * Operations are 32-bit
floating point (24-bit mantissa, 8 bit exp.) ** Positive numbers are favorable to the MC-DeF implementation.

MC-DeF

Node (FP 32-bit) * LUT FF DSP BRAM Clock (MHz)

Node Add 790 130 0 0 250
Node Sub 790 130 0 0 250
Node Multiply 42 119 2 0 302
Node Divide 247 271 0 0 1912
Mutual Information Cell 1047 506 2 0 254
Transfer Entropy Cell 1047 506 2 0 254
Hayashi Yoshida Cell 786 236 2 0 291

MAX 4 Implementation

Node (FP 32-bit) * LUT DSP BRAM Clock (MHz) LUT Difference (%) **

Node Add 615 0 1 - −28.46
Node Sub 615 0 1 - −28.46
Node Multiply 107 1 0 - 60.75
Node Divide 193 5 5 - −27.98
Mutual Information Cell 915 6 6 200 −14.43
Transfer Entropy Cell 915 6 6 200 −14.43
Hayashi Yoshida Cell 740 1 1 150 −6.22

* Operations are 32-bit floating point (24-bit mantissa, 8 bit exp.) ** Positive numbers are favorable to the MC-DeF implementation.

7. Conclusions

Coarse-grained FPGA overlays have emerged as one good solution to virtualize FPGA
resources, offering a number of advantages for general purpose hardware acceleration,
because of software-like programmability, fast compilation, application portability, and
improved design productivity. As a result, these architectures allow for rapid hardware
design at a higher level of abstraction. However, this comes at the cost of area and
performance overheads. Moreover, in this work we wanted to present the preliminary
analysis methodology and the results obtained that aided towards designing such a CGRA
definition framework, a process that is often not mentioned in related works. In this



Electronics 2021, 10, 445 21 of 23

paper using an application’s DFG representation, we create a customized CGRA design,
to summarize the key aspects of our research presented in this paper are:

• The application analysis made in order to tailor our CGRA definition framework,
• a holistic description of MC-DeF, our Mixed-CGRA Definition Framework, and the

key algorithms and techniques used in its execution flow,
• a set of baseline results that were obtained by creating customized CGRA designs for

nine scientific applications, and
• a set of VHDL implementation results showcasing the validity and performance

increase of our generated CGRAs as compared to a commercial solution.

The preliminary analysis results showed the necessity of distinction between high
frequency and high importance nodes. This observation leads us to define the Impact Factor
metric, a number used to define the importance of a DFG node when defining the contents
of the CGRA cell. Moreover, we observed that several design aspects and thresholds used
during the execution of MC-DeF are a matter of choice and preference of the end-user.
Finally, the preliminary analysis revealed that MC-DeF is capable of predicting the resource
utilization of an application by using just the input DFG.

The baseline results showcased the validity of our framework and presented several
CGRA designs. Moreover, by presenting and analyzing the VHDL implementation results,
we see that, in terms of resources, MC-DeF designs are marginally less efficient than those
of a ready-to-use commercial solution. Specifically, a MC-DeF design is, at most, 14%
more expensive than a MAX4 implementation while recording better clock frequency.
These results can be further improved by using an ASIC-only implementation or further
improving the currently created FPGA overlay structure.

The communication infrastructure is a key issue that we plan on working in the future.
Currently, MC-DeF uses a 2D-Mesh network with diagonal connections. Drawing inspira-
tion from other CGRAs in the field and considering the uniqueness of each application’s
DFG shape and structure, we plan to explore and evaluate alternative network topologies,
connectivity, etc. Additionally we want to observe how our designs scale in terms of
resources and performance, either by creating duplicate CGRAs that execute in parallel
or by creating a larger CGRA that is able to utilize the entirety of the available hardware
for better bandwidth and execution times. Finally, we want to create a suite of available
Mixed-CGRA designs from various benchmark scientific applications.
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