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Abstract: This paper is concerned with estimating the achievable resolution in the reconstruction
of strip sources from the knowledge of its radiated field and strip objects from the knowledge of its
scattered field. In particular, the study focuses on the evaluation of the point spread function (PSF),
providing the reconstruction of a point-like unknown. Since this can be performed only numerically
for most geometries, an approximate closed-form evaluation is introduced and compared with the
exact one. Numerical results confirm the approximation accuracy, at least in the main lobe region
of the PSF, which is the most important, as far as the discussion about resolution is concerned. The
main results of the analysis concern the space invariance of the PSF of the considered geometries,
which means that resolution is the same over the whole investigation domain, and the appreciation
of its values for the inverse source and scattering problems.

Keywords: inverse source problem; inverse scattering problem; point spread function; resolution

1. Introduction

The study of inverse problems is widespread in science and engineering, and has
been considered by mathematicians, statisticians, and engineers. It arises in a variety of
significant applications in science [1] and industry [2]. The inverse source [3,4] and inverse
scattering problem [5,6] are two principle issues in electromagnetics problems.

The inverse source problem is a linear one that consists of reconstructing a current
source from the knowledge of its radiated field in the frequency domain and some prior
information. For instance, it requires determining an antenna’s current distribution from
its radiation pattern. Therefore, it is significant and has many applications, such as antenna
design, and their testing and diagnostics.

Indeed, the inverse scattering problem is aimed at determining the dielectric features
of an unknown scatterer, like its material, geometry (shape), and position, from information
about its scattered fields under known excitation fields. Generally speaking, it turns out
nonlinear unless an approximate scattering model is adopted as a small perturbation from
a reference embedding medium, both homogenous (the classical Born approximation) or,
even, inhomogenous (see [7]). The resulting problem has a wealth of applications in radar,
subsurface, medical, acoustic, and synthetic aperture radar imaging, computer tomography,
seismic, and electromagnetic geophysical exploration.

For instance, in optical communication theory, the transfer features of imaging systems
are described as the point spread function (PSF) in the spatial domain. The computation of
the output of the system corresponding to a given input in the spatial domain requires the
convolution of the input with the PSF of the system, i.e., the system response to a point-
like object. In the frequency domain, the output is calculated by multiplying the input
amplitude spectrum by the modulation transfer function of the system [8], i.e., the Fourier
transform of the PSF. Since the imaging system determines the achievable image quality,
the PSF is an appropriate tool for understanding the performance of the optical system.
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The PSF has been utilized to represent the impulse response of an optical imaging
system to a point-like target object for imaging problems in optics [9]. In these circumstances,
when the relevant imaging operator is the Fourier transform, a closed-form expression of the
PSF is commonly available. In [10], the PSF has been used for earthquake source imaging.

A comparison [11] has been considered to analyze the resolution of geophysical images
between the region of the data influence index, which is a nonlinear strategy, and the PSF,
which is a linear approach.

The best-known consensus on image measurement in electrical impedance tomogra-
phy uses PSFs, which are calculated over the whole domain as responses to a small circular
anomaly moving around the entire domain [12]. A versatile criterion has been studied for
estimating the quality of images in electrical impedance tomography. The PSF is calculated
throughout the domain based on the scattering of energy as responses to a small anomaly
spirally moved from the center to the boundary.

In [13], an analytical expression for the PSF of ultrasonic pulse-echo imaging has
been addressed.

The imaging of a point-like scatterer in a medium under the Born approximation in
the far-field by applying the PSF has been considered [14]; furthermore, the PSF has been
used as a migration Green’s function, and it has been shown, because of the image point
positions and source-receiver configuration, to help identify migration artifacts.

The resolution issues in the inverse electromagnetic source problem have been consid-
ered, for instance, in [15], dealing with the problem of estimating depth-resolving power
for the reconstruction of an electric current from Fresnel fields, or in [16], where it has
shown how specific symmetry and support prior affect the number of degrees of freedom,
the PSF and the Kolmogorov entropy.

The role of the source aspect ratio and the representation of different variables on the
number of degrees of freedom (NDF), the PSF behavior, and the spectral content in the
far-zone observation domain has been examined in [17] for different source geometries.

In [18], an analytical estimation for achievable resolution and linking it to configuration
parameters has been addressed using the PSF for the magnetic and electric strip sources.

The role of the geometry in the inverse source reconstruction problem for far-field
data has been analyzed in [19] for a semi-elliptic source when the observation domain
is a semi-circumference. It has been shown that, for limited observation domains, the
PSF is an angularly varying function, with different main lobes widths according to its
maximum direction, even if we use different representation variables. The capacity to
reconstruct point-like sources has also been considered in connection with the antenna
array diagnostics problem.

In the inverse electromagnetic scattering problem, the study of the achievable resolu-
tion’s depth has been considered to reconstruct the permittivity of a dielectric strip from
Fresnel fields for multifrequency [20] or multistatic [21] data.

The PSF behavior analysis is also connected to the concept of the NDF of the problem,
i.e., the number of independent pieces of information that can be reconstructed reliably by
an imaging algorithm in the presence of uncertainties in data. Once the singular values
decomposition (SVD) of the relevant operator is available, the NDF is provided by the
number of its significant singular values and can be roughly assumed as the number
of independent point-like sources that can be reconstructed reliably, so providing the
maximum achievable resolution.

The SVD also allows the computation of the PSF by means of the right singular
function [17], but, unfortunately, it can be performed in closed-form only in a few cases; for
instance, the radiation of a linear current source [22] or a circumference one [23]. In most
other instances, a numerical evaluation is required; in addition, the SVD and, then, the
corresponding PSF depends on the geometry of the source domain. Therefore it would be
beneficial to investigate whether an approximate, simpler, closed-form way of evaluating
the PSF can be found.
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This paper is aimed at a PSF analysis for far-field observations to investigate the
resolution in imaging. Furthermore, we deal with the issue of providing an approximation
of the relevant PSFs for both the inverse source and the inverse scattering problems in
the 2D scalar geometry. To this end, we consider strip geometries for a preliminary
investigation as it is possible to find the NDF in closed-form. In this way, the connection
between the NDF, the PSF, and the resolution in reconstructions can be highlighted clearly.
In order to validate the analytical evaluation of the PSFs and their role in the resolution
issue, we present some numerical simulations for each geometry.

The paper is organized as follows. Section 2 is devoted to the PSF analysis in the
inverse source problem for the following cases: one strip, two strips, and cross-strip. We
present the same analysis for the inverse scattering problem in Section 3. Finally, we give a
brief summary and conclusions in Section 4.

2. PSF Analysis in the Inverse Source Problem

This section aims to provide some mathematical preliminaries and notations to be
used in the following subsections. In particular, we recall the PSF definition, show its
connection with the NDF and introduce its approximate evaluation. To this end, since
the whole discussion is strictly linked to the radiation operator’s singular values behavior,
we investigate how to estimate them when the radiated field is collected over the whole
observation domain in the far zone.

At first, we will address a general inverse source problem which is depicted in Figure 1.
A scalar 2D source current J radiates in a homogeneous medium with dielectric permittivity
ε0 and magnetic permeability µ0, referred to as the source domain (SD). The observation
direction of the radiated far-field is denoted by θ.

Figure 1. The general diagram of the inverse source problem.

Firstly, let us consider a 2D scalar current J(x, y). At a single frequency, the electric
far-field E(θ) is provided by the linear integral operator

E(θ) =
x

SD

J(x, y) ejβ[xcosθ+ysinθ] dx dy = L(J(x, y)) (1)

The wavenumber is denoted by β = ω
√
(ε0µ0 ) = 2π/λ, where ω is the angular

frequency and λ is the wavelength.
We consider our problem in a complex Hilbert spaceH. It consists of a linear mapping

L : HJ → HE from a Hilbert space of source functions HJ to a Hilbert space of data HE
that is very general. The radiation operator mapping the vector space of current functions
into one of the radiated fields is

L : J ∈ L2([x, y] ∈ SD)→ E ∈ L2([−π, π]) (2)
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where J and E are presumed to pertain to the set of square-integrable functions signified
by L2 (.) supported over the source domain [−π, π]× [x, y] and the observation domain
[−π, π], respectively. Now, since the L operator is linear and compact, the SVD can be
defined for each source geometry and consists of the triple {vn(x, y), σn, un(θ)} [19] where
un is the n-th right singular function, σn is the n-th singular value and vn is the n-th left
singular function, respectively.

In particular, the un functions provide the class of achievable far-field functions and
the vn functions, the set of possible currents. Moreover, the behavior of the singular values
σn provides the number of independent currents/patterns that the source can radiate. Thus,
since they decay exponentially fast, the NDF of the source can be introduced.

The adjoint mapping of L, L+ : HE → HJ ,

L+ : E ∈ L2([−π, π])→ J ∈ L2([x, y] ∈ SD) (3)

is defined as
〈E|L J〉HE

=
〈
L+ E

∣∣ J
〉
HJ

(4)

where the standard definitions of the inner products in the two spaces are assumed.
Therefore, because of (1),

L+(E) =
∫ π

−π
E(θ) e−jβ[x′ cos θ+y′ sin θ] dθ (5)

Next, from the spectral theorem for compact self-adjoint operators applied to the
cascade L+L, we can compute

L+L(J(x, y)) =
∫ π

−π
e−jβ[x′cosθ+y′sinθ]

[
x

SD

J(x, y) ejβ[xcosθ+ysinθ] dx dy

]
dθ =

x

SD

J(x, y)
[∫ π

−π
ejβ[(x−x′)cosθ+(y−y′)sinθ] dθ

]
dxdy

(6)
whose kernel is

K
(

x− x′, y− y′
)
=
∫ π

−π
ejβ[(x−x′)cosθ+(y−y′)sinθ] dθ = 2π J0

(
β

√
(x− x′)2 + (y− y′)2

)
(7)

where J0 is the zeroth-order Bessel function of the first kind.
Finally, substituting Equation (7) to (6), it reads as

L+L(J(x, y)) =
x

SD

J(x, y)
[

2π J0

(
β

√
(x− x′)2 + (y− y′)2

)]
dxdy (8)

Now, in order to assess the performance of the reconstruction algorithm, the PSF is
considered. In the inverse source problem, the PSF analysis is performed to realize how the
source geometry and the observation domain may affect the resolution. Here, we intend to
analyze only the influence of the source geometry. The aim is to get an analytical estimation
for the achievable resolution and connect it to the geometrical parameters. To this end,
we start to consider the PSF for a general 2D source and then apply it to the other simpler
source geometries.

The PSF is the observed current distribution in the SD for a point source located at x0
and y0. From the mathematical point of view, the PSF in the source domain is defined as
the impulsive response of the system provided by the cascade operator L−1L, as

PSF(x, xo, y, yo) =
(
L−1 L

)
δ(x− xo)δ(y− yo) (9)

where L−1 is the regularized inverse operator of L and δ is the Dirac delta-function.
Thus, since the minimum–norm solution of the inverse source problem is a projection

of the actual source onto the singular function vn having non-zero singular values, the
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PSF for the inverse source problem is given by the completeness relation truncated to
the singular functions having non-zero singular values; therefore, in general, the PSF is
dependent on the number of retained singular values, which, in turn, is connected to the
noise level. Then if a truncated SVD (TSVD) [24] inversion scheme is adopted to implement
the regularized inversion step, Equation (9) can be written explicitly as

PSF(x, xo, y, yo) =
N

∑
n=1

vn(x, y) v∗n(x0, yo) (10)

where ∗ means conjunction operation and N is a truncation index, which can be estimated
as the knee of the singular values curve. Therefore, the N value can be selected in terms of
the NDF.

Equation (10) requires the knowledge of the singular functions, which can be com-
puted in closed form only for limited instances of source geometries. On the other hand,
if the adjoint operator may approximate the inverse operator in Equation (9), it can be
considered to build a good approximation of the PSF [15,25]. This occurs when the singular
values of the radiation operator exhibit a nearly constant behavior before the knee of their
curve. Consequently, by replacing the adjoint operator instead of the inversion operator in
(9), we define the approximated P̃SF by

P̃SF(x, xo, y, yo) =
(
L+L

)
δ(x− xo, y− yo) (11)

Therefore, Equation (8) provides the explicit analytical evaluation of (11) for the 2D
geometry under consideration.

We now turn to provide a comparison of the exact and approximated results of PSFs
for some different geometries composed of a collection of linear sources, i.e., the one strip
case first, the two parallel strip one next, and finally the cross-strip one, in Sections 2.1–2.3,
respectively.

2.1. One Strip Case

In this subsection, we address the case of the electric field radiated by a z-invariant
electric current J strip source, supported over the interval I = [−a, a] of the x-axis. So, the
problem is scalar, and the radiated electric field has only the z component. Figure 2 shows
the geometry of the problem. The aim is to compare the actual PSF and the approximated
P̃SF moreover, to verify the space invariance by numerical simulations.

Figure 2. The geometry of the problem.

We define the relevant operator for one strip case as

E(θ) =
∫ a

−a
J(x) ejβxcosθ dx = L1s(J(x)) (12)
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where L1s is a linear operator, and the adjoint operator L+1s of L1s is obtained by

L+1s =
∫ π

−π
E(θ) e−jβxcosθ dθ (13)

By considering the approximation, as mentioned above, the PSF and P̃SF can be
easily derived by replacing L1s and L+1s instead of L and L+ in Equations (9) and (11),
respectively. The approximated P̃SF is given by

P̃SF = 2π J0(β|x− x0|) (14)

Since for a linear source, the kernel of the operator L+L has a convolutional form, the
relevant P̃SF exhibits an invariant behavior along with all the source domains. Hereafter,
we provide some numerical examples to assess the accuracy of (14) again with the exact
PSF and, hence, to appreciate the resolution. To this end, we neglect all the side lobes of
the P̃SF as it is enough to consider only its main lobe to outline the focusing properties.
Moreover, all PSFs are normalized to 1. Figure 3 shows the comparison of the PSF and P̃SF
for three different source points located at the x0 = −2λ, 0, and λ. It can be recognized that
the resolution remains unchanged as the position of xo varies.

Figure 3. Comparison of normalized actual point spread function (PSF) and approximated P̃SF for
x0 = −2λ, 0, λ, with a = 3λ.

Figure 4 confirms the results of the comparison of Equation (14) and the actual PSF,
as the main lobes overlap very well. It means that (14) is very accurate in predicting the
achievable resolution.
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Figure 4. The Rayleigh criterion for PSF and P̃SF.

In particular, while the PSF maximum value may depend on the source point, its width
does not change and is independent of the position of the point source. Consequently, since
the resolution in reconstructions of point-like sources is limited by the width of the PSF, it
can be concluded that it is the same over the whole SD.

Resolution limits in source reconstructions are commonly introduced by means of
the Rayleigh criterion as the minimum detectable separation between two close point-like
sources. It can be appreciated by referring to the degree of overlap of the main lobes of
the corresponding PSFs pattern. Two-point sources are generally regarded as resolved if
the first maximum of one PSF falls into the first minimum of the other PSF, but there is
no standard definition. However, the space invariance of the PSF can lead to introducing
a quantitive assessment. In fact, as is well known [22], the NDF of this linear source is
[4a/λ], where [·] stands for the nearest integer, and one can assume that the same number
of point-like sources can be reconstructed.

Since the PSF is space invariant, which means that the reconstruction of a point-
like source is independent of its location, these sources can be uniformly distributed
along with the 2a long SD, leading to the typical λ/2 resolution limit. Then, in order
to introduce a quantitive measure for the Rayleigh criterion, we can consider two-point
sources located in x0 = −λ/2 and x0 = 0λ and consider the level of the intersection point
of the corresponding PSFs (Figure 4). As can be observed, the intersection point of P̃SF
(dotted black line) is approximately close to the intersection point of PSF (dashed black
line) so it can be used for sampling to find the optimal position and the distance between
two samples in the source and observation domain.

2.2. Two Strips Case

The same analysis as the previous subsection is here extended to address the case of
two parallel strips along the x-axis. Let us consider two strips that are located at I1 = [−a, a]
and I2 = [−a, a], respectively, and d = 2b is the distance between them (see Figure 5). This
section aims to estimate the resolution and to compare the PSF and P̃SF; moreover, we
will show the influence of PSF of strip 1 on the other strip.
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Figure 5. The geometry of two strip sources.

We define the relevant operator

ET(θ) =
[
e−jβbsinθ L1s ejβbsinθ L1s

][ J1(x1)
J2(x2)

]
= L2s J (15)

The adjoint operator L+2s of L2s is given by

L+2s =

[
L+1s ejβbsinθ

L+1s e−jβbsinθ

]
ET (16)

Some numerical simulations are presented to confirm the analytical definition of the
PSFs. Let us consider the geometry shown in Figure 5, where a = 3λ and b = λ. The actual
PSF of strip 1 and its influence on strip 2 are shown in Figure 6 for three different point
sources, located at x0 = −2λ, 0, and λ. As can be seen, by changing the point source’s
position, the resolution does not change. Furthermore, the result shows that the PSF result
of strip 1 cannot affect strip 2.

Figure 6. The influence of the PSF of strip 1 on strip 2.

The same simulation as in the previous subsection is here provided to compare the
results of the relevant PSF and the P̃SF for different positions of x0. As demonstrated in
Figure 7, the main lobes of the approximated P̃SF (dotted lines) and the actual PSF (solid
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lines) are approximately overlapped. Again, we observed that the width of PSFs does not
vary when the position of the point source changes.

Figure 7. Comparison of normalized actual PSF and approximated P̃SF for x0 = −2λ, 0, λ.

In order to relate the above-discussed concepts and numerical simulations to a practi-
cal application concerning the resolution issue in inverse source problems, we provide a
numerical example concerning the diagnostics of faulty elements within an array antenna.
It is composed of two sub-arrays of isotropic elements: one is located along the left part
of strip 1 and is composed of 7 elements spaced at a uniform λ/2 step, while the other
one is located along the right part of strip 2 and is composed of 16 elements spaced at
a uniform λ/5 step. The elements of each sub-array are excited according to (different)
constant values, chosen in such a way that each sub-array radiated the same power. Then,
we suppose that two elements are inactive in each sub-array, as plotted in Figure 8, and
we require them to be located by inversion of (15) by the truncated singular values decom-
position (TSVD) algorithm. Here, since the array source is considered a particular case
of a continuous source function, we can introduce a threshold value (dotted line) for the
reconstructed amplitude of the current at half of its maximum values and decide that an
element is off whenever the current value at its location is lower than the threshold. It can
be expected that when the distance between two elements is lower than the λ/2 resolution
limit, it is not possible to reconstruct them reliably. Thus (see Figure 8), the diagnostics
procedure is reliable for the sub-array of strip 1, as the presence of defective elements can
be unambiguously detected. In contrast, it is impossible to reconstruct every set of the
excitation coefficients of the sub-array of strip 2. Since an antenna testing engineer must be
confident that every collection of the excitation coefficients of the array must be retrievable,
the reliability of the inversion algorithm can be significant and useful.
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Figure 8. The reconstruction (red and green lines) of the amplitude of the currents along each strip.
The black dots indicate the position of the active array elements.

2.3. Cross-Strip Case

The subsection deals with the cross-strip geometry made of two identical 2a long
strips, with one along the x-axis and one along the y-axis (see Figure 9). They are considered
to represent a connected source geometry.

Figure 9. The geometry of the cross-strip.

Recalling Equation (12), the radiated far-field by the horizontal strip and the vertical
one are defined, respectively, by

Eh(θ) =
∫ a

−a
Jx (x) ejβxcosθ dx = Lx(Jx (x)) (17)

and
Ev(θ) =

∫ a

−a
Jy(y) ejβysinθ dy = Ly

(
Jy(y)

)
(18)

We can consider the operator (19)

E(θ) =
[

Eh(θ) Ev(θ)
]
=
[
Lx Ly

][ Jx(x)
Jy(y)

]
= Lxy J (19)
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where the PSF and the P̃SF are defined as in the previous subsections.
Figure 10 shows the influence of the PSF of the horizontal strip on the vertical strip.

As shown, the PSF of x0 = 0λ can equally affect both strips. On the other hand, the PSF of
the other point scatterer cannot affect the vertical strip. We observe again that by changing
the position of the point scatterer, the width of the PSF remains constant; however, the
amplitude varies.

Figure 10. The influence of the PSF of the horizontal strip on the vertical strip, with a = 3λ.

Figure 11 illustrates a comparison between the relevant PSF and the P̃SF for dif-
ferent positions of x0. The main lobes of the P̃SF (see dotted curves) are approximately
overlapped with the actual one, which means the P̃SF is very accurate in predicting the
achievable resolution.

Figure 11. Comparison of normalized actual PSF and approximated P̃SF for x0 = −2λ, 0, λ.

As can be observed in Figure 12, the intersection point of P̃SF (dotted black line) is
approximately close to the intersection point of PSF (dashed black line).
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Figure 12. The Rayleigh criterion for PSF and P̃SF.

3. PSF Analysis of the Inverse Scattering Problem

In this section, firstly, we define and formulate general inverse scattering problems
(Figure 13). Secondly, we define the actual PSF and approximated P̃SF for 2D geometry.

Figure 13. The general inverse scattering problems.

Let us consider that an unknown scatterer is located in a domain referred to as
the investigation domain (ID), and the incident plane wave Ei, propagating along the θi
direction illuminates it; then, for each angle of illumination, the scattered fields Es are
observed at the θs observation angles in the scatterer’s far zone.

Hence, the scattered far-field under the Born approximation can be recast as

Es(θs) =
x

ID

χ(x, y) Ei(x, y, θi) ejβ(xcosθs+ysinθs)dxdy (20)

where χ(x, y) and Ei(θi) are the contrast function and the incident plane wave, respectively.
The scattering object has a relative permittivity of εs (x, y), so that χ(x, y) = 1− (εs (x, y))ε0 ,
and is located in a homogeneous background, which has the free space permittivity ε0. The
incident plane wave is provided by

Ei(θi) = e−jβ(xcos θi+ysinθi) (21)
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Now, the substitution of Equation (21) in (20) gives

Es(θs, θi) =
x

ID

χ(x, y) ejβ[x(cosθs−cosθi)+y(sinθs−sinθi)]dxdy = T (χ(x, y)) (22)

where T is the linear operator for the multi-view and single frequency scattering configura-
tions of our present interest. As in Section 2, since T is a linear and compact operator, the
SVD can be applied to express the PSF in terms of the singular functions of the operator.

In [26], we studied the behavior of the singular values of the considered operator,
evaluated its NDF, investigated how many plane waves are needed to achieve the NDF,
and introduced the optimal directions of the plane waves for the same geometries that we
will analyze in this section.

The adjoint operator of (22) is

T +(Es) =
πx

−π

Es(θs, θi)e−jβ[ x ′(cosθs−cosθi)+ y ′(sinθs−sinθi)] dθsdθi (23)

and then, from the spectral theorem for compact self-adjoint operators applied to T +T , it
follows that

T +T (χ(x, y)) =
s π
−π e−jβ[x′(cosθs−cosθi)+y′(sinθs−sinθi)]

[s
ID χ(x, y) ejβ[x(cosθs−cosθi)+y(sinθs−sinθi)]dxdy

]
dθs dθi =

s
ID χ(x, y)

[s π
−π ejβ[(x−x′)(cosθs−cosθi)+(y−y′)(sinθs−sinθi)] dθs dθi

]
dxdy

(24)

where the kernel of the Equation (24) is

k(x− x′, y− y′) =
s π
−π ejβ[(x− x′)(cosθs−cosθi)+(y− y′)(sinθs−sinθi)] dθs dθi =∫ π

−π ejβ[(x−x′)cosθs+(y−y′)sinθs ]dθs
∫ π
−π e−jβ[(x−x′)cosθi+(y−y′)sinθi ]dθi =

(
2π J0

(
β

√
(x− x′)2 + (y− y′)2

))2 (25)

is provided by the square of the Bessel function of the first kind and zeroth order.
Finally, substituting Equation (25) to (24) results as

T +T (χ(x, y)) =
x

ID

χ(x, y)
(

2π J0

(
β

√
(x− x′)2 + (y− y′)2

))2
dxdy (26)

In the inverse scattering problem, the PSF analysis is performed to understand how
the scatterer geometry and the observation domain may affect the resolution. Here we
consider only the influence of scatterer geometry on the resolution. The PSF represents the
reconstruction of a point scatterer. The adjoint operator T + can be used to approximate
the inverse operator T −1 as in Section 2, so that an approximate P̃SF can be introduced as
well. In the following, we compare both PSFs for the same geometries that are considered
in the previous section: Section 3.1 provides the single strip case, whereas the two parallel
strips and cross-strip are considered in Sections 3.2 and 3.3, respectively.

3.1. One Strip Case

Let us consider that one strip is located on the x-axis, as shown in Figure 14. First, we
analyze the theoretical of the problem to estimate the resolution and then simulate it numerically.
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Figure 14. The geometry of the problem.

The scattered far-field of one strip is derived from Equation (22)

Es(θs, θi) =
∫ a

−a
χ(x)ejβx(cosθs−cosθi)dx = T1s(χ(x)) (27)

The adjoint operator T +
1s of the operator T1s is

T +
1s =

πx

−π

Es(θs, θi) e−jβx′(cosθs−cosθi) dθsdθi (28)

The PSFs were previously defined for the 2D case in Section 2 so that it can be easily
derived from Equations (9) and (11) for one strip case by replacing T −1

1s and T +
1s instead of

L−1 and L+, respectively. The approximated P̃SF for one strip is obtained by

P̃SF = (2π J0(β|x− x0|))2 (29)

The analytical PSF is verified using a numerical implementation of the imaging
process when it can be assumed that one or more-point scatterers are located at an arbitrary
position of the investigation domain. The PSFs for three-point scatterers located at x0 =
−2λ, 0, and λ are shown in Figure 15. Since the PSF is a function only of x− x0 we have
arbitrarily selected the point scatterer locations along the x-axis. It can be observed that the
resolution remains unchanged as the position of xo varies. All point-like scatterers can be
imaged in the same way, independent of their positions.

Figure 15. A comparison between the PSF (solid lines) and the P̃SF(dotted lines), with a = 3λ.
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A comparison between PSF and P̃SF is plotted in Figure 15 to check the accuracy of
the resolution estimations. As can be recognized, the P̃SF approximately overlapped with
the actual ones. This means that the relevant approximated P̃SF is acceptably accurate in
predicting the available resolution.

In the inverse scattering problem, as can be seen in Figure 16, the width of the main
lobe of PSF and P̃SF for a point scatterer is equal to λ/4; thus, it can be defined that the
minimum distance between two-point scatterers should be λ/4 to achieve a resolvable
resolution. Then, the image can be made by the combination of both PSFs of two-point
scatterers. To this end, we consider two-point scatterers located in x0 = −λ/4 and x0 = 0λ
to show the Rayleigh criterion (see Figure 16). As can be observed, the intersection point
of the P̃SFs (dotted black line) is approximately close to the intersection point of the PSFs
(dashed black line).

Figure 16. The Rayleigh criterion for PSF and P̃SF.

3.2. Two Strips Case

The same analysis as Section 3.1 is here extended to address the case of two parallel
stripes along the x-axis, as shown in Figure 17. We suppose two strips are located at
I1 = [−a, a] and I2 = [−a, a], respectively, and d = 2b is the distance between them. We
will show the influence of the PSF of strip 1 on the other strip.

The relevant operator is defined as follows

ET(θs, θi) =
[
e−jβb(sinθs−sinθi) T1s ejβb(sinθs−sinθi) T1s

][ χ1(x1)
χ2(x2)

]
= T2s χ (30)

while the adjoint operator T +
2s of T2s is given by

T +
2s =

[
T +

1s ejβb(sinθs−sinθi)

T +
1s e−jβb(sinθs−sinθi)

]
ET (31)
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Figure 17. The geometry of the two strips case.

We provide two numerical simulations to show the PSF technique’s capability to
estimate the resolution and to confirm the analytical predictions. Let us consider the
geometry as shown in Figure 17, in which a is equal to 3λ and the b = λ.

The first numerical simulation refers to the influence of the actual PSF of strip 1 on
strip 2. As shown in Figure 18, three different source points are located at x0 = −2λ, 0, and
λ. As can be observed, if the location of the point scatterer changes, the width of the main
lobe does not change, which means the resolution remains constant; however, the height of
the PSF can vary. Furthermore, the PSF of strip 1 cannot affect strip 2.

Figure 18. The influence of PSF of strip 1 on strip 2.

The second simulation concerns, again, the comparison of the results of both the PSF
and P̃SF for various positions of x0. As demonstrated in Figure 19, the main lobes of P̃SF
and the PSF are approximately overlapped.
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Figure 19. Comparison between the PSF (solid lines) and the P̃SF (dotted lines).

3.3. Cross-Strips Case

The subsection is concerned with the connected cross-strip case, as illustrated in
Figure 20.

Figure 20. The geometry of the problem.

Recalling Equation (27), the far-field scattered by the horizontal strip and the vertical
one is provided, respectively, by

Esh(θs, θi) =
∫ a

−a
χx(x)ejβx(cosθs−cosθi)dx = Tx(χx(x)) (32)

and
Esv(θs, θi) =

∫ a

−a
χy(y)ejβy(sinθs−sinθi)dy = Ty

(
χy(y)

)
(33)

Then the operator (34) can be considered

Es(θs, θi) =
[

Esh(θs, θi) Esv(θs, θi)
]
=
[
Tx Ty

][ χx(x)
χy(y)

]
= Txy χ (34)
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whereas the PSF and P̃SF are the same as in Section 3.1.
The influence of the PSF of the horizontal strip on the other one is plotted in Figure 21.

All of the simulation parameters are the same as the previous subsections. As can be
seen, the PSF of x0 = 0λ can equally affect both strips. On the other hand, the PSF of
the other point scatterer cannot influence the vertical strip. We observe again that by
changing the position of the point scatterer, the width of the PSF does not change, but the
amplitude varies.

Figure 21. The influence of the PSF of the horizontal strip on the vertical strip.

A comparison between both PSF and P̃SF is shown in Figure 22, showing that the
P̃SF for different point scatterers can be a good approximation of the PSF.

Figure 22. Comparison between the PSF and the P̃SF.
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Figure 23 shows that the intersection point of P̃SF (dotted black line) is approximately
close to the intersection point of PSF (dashed black line).

Figure 23. The Rayleigh criterion for PSF and P̃SF.

The practical relevance of the above discussions can be shown by the numerical
reconstruction of a cross dielectric strip with χ = 1, b = λ/10 and a = 3λ, as illustrated
in Figure 24. Then, we suppose that two cracks (free space condition, χ = 0) exist in each
strip (denoted by the red regions): along the horizontal strip, the length of each crack and
the distance between them is λ/4; along the vertical strip, the length of each crack and the
distance between them is λ/6.

Figure 24. The geometry of the dielectric cross strip with cracks.

Figure 25 illustrates the reconstructions by inversion (34) by the TSVD algorithm for
different numbers of plane waves. We expect to confirm the λ/4 resolution limit and to
show that only four plane waves are enough to achieve the best reconstructions [26]. As can
be observed, by considering only four incident plane waves (red line) along the horizontal
strip, it can be distinguished that two cracks are present; oppositely, it is impossible to
differentiate between two cracks in the vertical strip, even with the maximum number
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of incident plane waves. Therefore the resolution analysis is important for the reliable
reconstruction of defects in dielectric objects in inverse scattering problems.

Figure 25. The reconstructions for different numbers of plane waves.

4. Conclusions

The goal of this paper is more methodological than practical: it aims at investigating
the role of the PSF in both the inverse source and the inverse scattering problems. Funda-
mentally, the PSF provides the reconstruction of a point-like source/object. Accordingly, it
can be useful in array diagnostics, for instance, since it provides the minimum distance
between its elements for a reliable excitation reconstruction, or in non-destructive testing
of dielectric objects since it provides the minimum dimension of a defect that can be recon-
structed by sensing the object via electromagnetic waves, as in microwave tomography.
We have investigated the PSF’s role in the linear electromagnetic inverse for both source
and scattering problems to estimate the achievable resolution. The PSF can be computed
through the numerical solution of the pertinent inverse problem. Moreover, it depends on
the source/object geometry; then, it would be very fruitful to be able to find a closed-form,
though approximate, function. Since, in principle, it depends on the unknown function
geometry domain, in this paper, we have chosen to start with simple strip geometries made
of a collection of linear domains. In this way, some closed-form results in inverse problems
can be achieved, such as the NDF, and its connection with the PSF can be established.
However, since the exact evaluation of the PSF can be performed only numerically in most
circumstances, an approximate analytical evaluation has been introduced, and its accu-
racy is assessed against the actual PSF for each geometry by numerical simulations. The
Rayleigh criterion has also been checked for both PSFs to confirm the analytical discussion.
When the observation domain scans the full angle, space invariant PSF is achieved, which
means that the maximum resolution of the reconstruction of point-like sources/objects is
achieved independently on their locations within the investigation domain. In particular,
for the considered geometries made of parallel or cross strips, a λ/2 and λ/4 resolution is
appreciated for the inverse source and scattering problems, respectively. The presented
discussion, allowing the connection of the PSF analysis to the NDF and to the resolution in
linear electromagnetic inverse problems in simple geometries, provides the foundation to
the general 2D case. The relevance of the approach to antenna diagnostics and microwave
tomography of dielectric objects has been shown by two numerical examples.
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