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Abstract: In the modern optimization context, this paper introduces an optimal PID-based control
strategy for a two-tank installation, namely ASTANK2. The process model was identified by using
raw and spline smoothed measured data, respectively. Two PID controller configurations, a standard
(regular) one (PID-R) and a non-standard one (PID-N), were considered for each type of model,
resulting in four regulators. The optimal tuning parameters of each regulator were obtained by a
searching approach relying on a combination of two metaheuristics. Firstly, an improved version of
the Hill Climbing algorithm was employed to comprehensively explore the searching space, aiming
to find fairly accurate tuning parameters. Secondly, an improved version of the Firefly Algorithm
was proposed to intensively refine the search around the previously found optimal parameters.
A comparative analysis between the four controllers was achieved in terms of performance and
robustness. The simulation results showed that all optimal controllers yielded good performance
in the presence of exogenous stochastic noise (bounded error tracking, setpoint tracking, reduced
overshoot, short settling time). Robustness analysis is extensive and illustrates that the PID-R
controllers are more robust to model uncertainties, whilst PID-N controllers are more robust to
tracking staircase type references.

Keywords: multivariable nonlinear system; PID control; Hill Climbing; Firefly Algorithm

1. Introduction

Although there is a variety of complex control strategies (such as model predictive,
sliding mode, adaptive control, neural and fuzzy control [1]), in control engineering
practice, the Proportional–Integral–Derivative (PID) control structures are the most widely
used (over 95% from industrial applications [2]), owing to their simple structure, good
stability [3], high reliability, reasonable closed loop performance and robustness [4–6].

The key problem in designing a PID controller ensuring these features is to tune
the parameters accurately and efficiently. This is a challenging task when dealing with
industrial processes that usually are modelled as multi-variable systems, with nonlinear
dynamics and a large number of tunable variables [5]. Adjusting controller parameters
in Multi-Input–Multi-Output (MIMO) process can become a difficult problem, especially
in case of strong coupling of the output channels, for which Single-Input–Single-Output
(SISO) decoupled loops might affect the performance [4].

Over the years, the PID tuning methods evolved from empirical (Ziegler–Nichols [7,8],
Cohen–Coon) and analytical (internal model, pole placement, gain-phase margin [9])
to adaptive and optimization-based [5]. Unlike the empirical and analytical methods
that provide weak or only satisfying performance, the optimization techniques applied
to PID tuning yield good performance (disturbance rejection, set-point tracking) and
robustness [4,10,11]. Therefore, in recent decades, the problem of designing an optimal
PID controller that drives the systems into a desired behavior has increasingly captured
the interest of the automatic control community.
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To find the optimal PID controller, a multi-objective optimization problem with con-
straints has to be solved [4,12–14]. Although there is no clear methodology to define the
cost function to optimize [12] (usually, to minimize), most of them rely on the tracking
error variation (both on transient and steady-state zones in signal dynamics). For example,
root mean square error (RMSE) and integral RMSE are basic minimization criteria, from
which different variants have been derived, such as integral absolute error, integral square
error, integral time square error [1], integral time weighted square error and integral time
absolute error [3,6]. By default, minimizing these criteria guarantees the trade-off between
of a set of desired but conflicting control performance indexes (e.g., overshoot, settling time,
rise time, decay ratio, steady-state error) [3,15,16]. Moreover, in real applications, since the
process outputs are affected by environmental and/or measure disturbances (exogenous
noises) that are stochastic in nature, the performance indexes cannot be computed by
means of closed form expressions. In this case, building the multi-objective cost function is
not an easy task. A compromise between opposite desired performances has to be found.
Usually, a weighted sum criterion, with some experimentally set weights, is defined for
this aim [12].

Two main classes of optimization techniques are mostly referred to in the literature
for optimal PID controller design. The first one is represented by traditional (exact) opti-
mization methods, being applied in context of linear/nonlinear control theory. The second
one is concerned with metaheuristics.

Interestingly, some methods usually employing state space representations can be
adapted to find optimal PID controllers. For example, one can mention the methods to
synthesize Linear Quadratic Regulators of H-infinity controllers (with the help of the Linear
Matrix Inequality optimization procedure) [11,17]. This approach has been successfully
employed to design multivariable and multiloop PID controllers implemented either in
continuous time [10,11] or in discrete time [18]. Nevertheless, this approach involves
an elaborated mathematical foundation and complex algorithms [12]. Additionally, the
proposed solutions seem to be insufficiently tested for noisy output signals.

The second class deals with non-traditional optimization techniques, also referred to as
metaheuristics, mainly based on Artificial Intelligence [14], which led to evolutionary com-
puting. In the last two decades, metaheuristics has gained increasing attention in various
research domains, including control engineering, due to its capacity to find optimal solu-
tions (often close to global optima) in multidimensional search spaces [12], with reasonable
computational burden and a good trade-off between multiple performance objectives [5,14].
Many metaheuristics use the swarm intelligence revealed by the natural (individual and
social) behavior of some living entities (insects, animals) [9]. A wide range of metaheuris-
tics has been used in optimal PID design, as reported in the literature [5]. For example,
the following metaheuristics were preferred: the Genetic Algorithms [19] in [6,8,16,17,20];
Particle Swarm Optimization [19] in [8,13,21]; Ant Colony Optimization [19] in [6,9]; Artifi-
cial Bee Colony [19] in [3,13,21,22]; Differential Evolution [23] in [8]; Firefly Algorithm [19]
in [4,15,24]; Cuckoo Search [25] in [2,24]; Bat Algorithm Optimization [19] in [13,22]; Sym-
biotic Organisms Search [26] in [9]; and Grey-Wolf Optimization [27] in [3]. In some of
these references, two or more metaheuristics were combined.

Intensive research has been reported in the literature for tuning the parameters of PID
or Fractional Order PID [1] controllers using metaheuristics in the genuine or improved
versions. Additionally, numerous comparative studies highlight the superiority of a
metaheuristic over the others [6,8,21,22,24] or over empirical tuning methods [2,9,16,21].

Most contributions deal with continuous time SISO PID controllers [6,9,12,13,15,21,22,24].
To the best of our knowledge, few contributions are concerned with designing optimal PID
controllers for the real-world MIMO processes [4,9,20]. In this case, the plant constructive
characteristics, the operating conditions and, moreover, the noises corrupting the useful
signals impose significant restrictions. Moreover, real-world processes often fail to verify
some sufficient hypotheses usually employed to prove robustness of designed controllers.
This involves the necessity to test robustness for each controller. Generally, the control
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strategy either is of the multi-loop PID type (decentralized) [4] or is based on decoupled
SISO loops [3].

In this paper, two multivariable PID-based control strategies for a laboratory instal-
lation (ASTANK2 [28]) were designed and implemented starting from the identification
models proposed in [29]. This resulted in two control strategies for each type of identifica-
tion model. Based on the modern optimization context, to find the optimal PID parameters,
a combination of two metaheuristics was proposed. The first is the Advanced Hill Climbing
Algorithm (AHCA) [29], aiming to widely explore the search space and to find a suffi-
ciently accurate optimal point. The second is an improved version of the Firefly Algorithm
(FA) [19,30], employed to efficiently refine the exploitation around the previously found
optimum point and to improve accuracy.

The article is structured as follows: Within the next section, the context of research
development is described at length. Additionally, the optimization problem is formu-
lated, and the methods to find optimal solutions, based on AHCA and improved FA
metaheuristics, are proposed. Section 3 is entirely devoted to simulation results analysis.
The investigations are directed towards three main directions: metaheuristics behavior,
PID controllers performance for step references (such as bounded tracking error of step ref-
erences, commands smoothness, short transient response, reduced overshoot, disturbance
rejection) and robustness. The performance and robustness are comparatively analyzed.
Four types of robustness are considered: to sudden change of references, to stochastic and
constant disturbances, as well as to model uncertainties. To this aim, automatic procedures
to define and detect fairly accurate robustness margins are introduced. The supplementary
explanations are given in three appendices. Some concluding remarks, together with future
developments are included into the last section of article.

2. Materials and Methods
2.1. Main Framework

The present study aims to design and implement a PID-based control strategy of a
two-tank system, starting from the identification models determined in [29]. Actually, this
research was already mentioned as possible future development in the end of that article.

The two-tank system, namely ASTANK2, is a laboratory installation, as illustrated in
the functional diagram in Figure 1a.

Figure 1. (a) ASTANK2 block-diagram. (b) ASTANK2 global identification scheme.

The plant is composed of two main tanks (#1 and #2) located above an auxiliary
storage reservoir, a main inverted-driven pump P (acting in the [0, 10] V range), two
auxiliary on-off pumps (P1, P2) and a flexible pipeline network handled by seven manual
taps (R11, R12, R13, R21, R22, R23, R). By acting the taps, different configurations of the
installation can be set, such as serial/cascaded tank connection or independent tanks. The
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water is continuously recycled from the storage reservoir by means of the main pump
P through the main vertical pipe that forks at the upper side and feeds the upper tanks.
The supply flows of both tanks can be controlled by means of the two electro-valves (e-v)
FC1 and FC2 (the voltage of which can also vary in the [0, 10] V range). The water can be
evacuated from the main tanks either by a communication horizontal pipeline (in cases of
serial configuration) or directly in the storage tank through the emptying pipes (operated
by the manual taps R11, R21). The water level data are acquired by means of transducers
LT1 and LT2. Additionally, the feeding water flows can be monitored thanks to FT1 and
FT2 transducers. A detailed description of ASTANK2 can be found in [28].

As explained in [29], the two-tank system can be represented as a nonlinear MIMO
system with 2× 2 I/O channels. The inputs are the voltages u1 and u2 of the two e-v. The
outputs are the water levels in the upper tanks, h1 and h2, respectively. Note that the main
pump voltage U is kept constant to protect the pump against sudden variations or shocks.

Despite the nonlinear dynamics, in [29], a linear MIMO Box-Jenkins (BJ) identification
model (idmo) of ASTANK2 were determined and implemented for simulations. In order to
identify the MIMO system, two Multi-Input Single-Output (MISO) systems corresponding
to each output channel y1 and y2, namely MISO1 and MISO2, respectively, were identified,
starting from the experimental data. A comprehensive block diagram of the global model
identification is illustrated in Figure 1b.

Each MISO component model includes three additive filters. Each input (u1, u2)
stimulates two useful linear filters of B/A type. A noise linear filter of the C/D type
modifies each output after processing two uncorrelated Gaussian white noises (e1, e2). For
each output channel yj (j ∈ {1, 2}), the MISO model relies on polynomials Aj, Bj1, Bj2, Cj
and Dj, of degrees naj, nbj1, nbj2, ncj and ndj, respectively, with intrinsic delays nk j1, nk j2,
defined as: 

Aj
(
q−1) = 1 + a1,jq−1 + · · ·+ anaj ,jq

−naj

Bj1
(
q−1) = q1−nkj1

(
b1,j1q−1 + b2,j1q−2 · · ·+ bnbj1,j1q−nbj1

)
Bj2
(
q−1) = q1−nkj2

(
b1,j2q−1 + b2,j2q−2 · · ·+ bnbj2,j2q−nbj2

)
Cj
(
q−1) = 1 + c1,jq−1 + · · ·+ cncj ,jq

−ncj

Dj
(
q−1) = 1 + d1,jq−1 + · · ·+ dndj ,jq

−ndj

. (1)

Two types of experimental data were employed to identify the BJ models: raw (directly
acquired from the sensors) and smoothed. The smoothed data were built from the raw
data by using a least squares optimal stochastic cubic spline model [29]. In both cases,
the optimal structure of the BJ models was obtained by means of a metaheuristic that
maximizes the Signal-to-Noise Ratio (SNR). Table 1 illustrates the structural indices of each
optimal MISO subsystem for both raw and smoothed data (whilst nk j1 = nk j1 = 1), as well
as the variances of both Gaussian white noises.

Table 1. Structural indices of optimal MISO BJ models and estimated noise variances.

Channel Output
Data Type

Optimal
(na,nb1,nb2,nc,nd)

Noise Variance
(λ2)

1 Raw (30,22,16,65,0) 0.0067
1 Spline Smoothed (3,21,47,89,0) 0.006
2 Raw (27,7,26,95,0) 0.006
2 Spline Smoothed (2,2,46,95,0) 0.0063

The simulation results showed that when using smoothed data, the useful models
have significantly fewer poles than when using raw data (see the first structural index,
na). Such models are expected to yield better performance in closed loop than the models
identified from raw data.
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In addition to the idmo of ASTANK2, a static input/output (I/O) map was built
experimentally. This map includes quadruples (u1,s, u2,s, y1,s, y2,s) with the following
meaning: if the tanks #1 and #2 need to be filled with water at constant levels y1,s and y2,s,
respectively, then, in the absence of perturbations, the corresponding constant voltages
of e-v FC1 and FC2 are u1,s and u2,s, respectively. This map is extremely useful in setting
nominal functioning points of installation, around of which the dynamics of nonlinear
installation are almost linear. Hence, if some reference water levels y1,ref and y2,ref are
prescribed, then, from the static map, one can obtain the necessary voltages u1,ref and u2,ref
to be applied on each e-v. If y1,ref and/or y2,ref do not correspond to the static points in the
map, then the voltages u1,ref and u2,ref are obtained by linear interpolation. The static map
includes 49 combinations of static water levels (7 for each tank), between 7 cm and 11 cm.
This range was preferred to avoid water turbulences in tanks, which may provide wrong
acquired data. Moreover, the linear models above were identified for the same level range.

The static map also revealed some constructive limitations of the ASTANK2 plant, to
be considered as constraints in the design of any controller. The most important of them
are as follows: (a) the e-v voltages are saturated at 2 V and 10 V (below 2 V, the e-v does
not react any more); (b) the water levels in any tank can vary between 0 cm and 15 cm
only; (c) to avoid hard saturation of voltages on e-v, the absolute difference between level
references, |y1,ref − y2,ref|, is bounded by 2 cm; (d) to protect e-v against premature failure,
any voltage cannot jump from the current value to the next one with more than ±3 V.

2.2. Selected PID Controllers and Closed Loop Configurations

The proposed control strategy relies on PID type controllers. Since the ASTANK2
plant is a multivariable system, two PID-based control configurations were designed
and investigated (among many possible others) in order to meet certain performances,
such as bounded tracking error of step references, smooth commands, short transient
response, reduced overshoot, disturbance rejection, robustness against reference shocks,
external perturbations and model uncertainties. An extended analysis of performance
indicators is made in Section 3, devoted to simulation results. Note, however, that the
optimal PID controllers were synthesized by means of a cost function, referred to as fitness,
defined in the next subsection. The fitness does not consider all possible performance
indicators, especially because many of them are defined for systems with smooth I/O
signals. Alternatively, ASTANK2 installation works with noisy signals, as shown later.

The two selected PID are described by the schemes in Figures 2 and 3. They are
depicted for SISO continuous time systems to allow for easy understanding. In both
configurations, H is the transfer function of system to regulate, u is the input (the command),
y is the output, yr is the reference signal, ε ≡ yr− y is the tracking error, whereas Kp > 0 (the
proportionality constant), Ti > 0 (the integral constant), Td ≥ 0 (the derivative constant)
and Nd > 0 (the derivative divisor) are parameters of the PID controller.
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The derivative component is filtered by a first order system to yield physical realiz-
ability. The derivative divisor Nd usually is an integer at least equal to 10. Thus, the time
constant of filter (Td/Nd) is small enough (i.e., its bandwidth is large enough) to minimally
distort the derivative component of the command. Here and hereafter, Nd was set to 10.

The fist PID structure, as seen in Figure 2, is a regular (standard) one, being abbreviated
by PID-R. The characteristic transfer function of the PID-R controller, from tracking error ε
to command u, is:

HPID−R(s) = Kp

1 +
1

Tis
+

Tds
Td
Nd

s + 1

 = Kp
TiTd(Nd + 1)s2 + (Td + NdTi)s + Nd

TdTis2 + NdTis
. (2)

The second structure, illustrated in Figure 3, is non-standard and was considered
for its main feature; the derivative component of the command is furthermore filtered by
the other two components (P, I), which results in quite smooth commands (with as few
spikes as possible). The acronym for this structure is PID-N, and the corresponding transfer
function is:

HPID−N(s) = Kp
Tis + 1

Tis

[
1− Td(Nd+1)s+Nd

Tds+Nd

]
. (3)

Unlike PID-R, the transfer function of PID-N is of the MISO type, with two inputs: the
reference signal yr and the system output y. This allows for working with two regulation
blocks of the SISO type: one on feedback, HR (the ”pure” regulator), and another one in
front of the system, HS (the ”sensitive” controller), providing the command u:

HPID−N(s) = HS(s)
[

1−HR(s)
]
, with :

{
HS(s) = Kp

Tis+1
Tis

HR(s) =
Td(Nd+1)s+Nd

Tds+Nd

. (4)

Since the idmo of the ASTANK2 plant is discrete, it is suitable to discretize the
PID regulators. A fairly accurate discretizing method is the bilinear Tustin method, in
which s ' 2

Ts
1−z−1

1+z−1 , for some sampling period Ts > 0. After discretization, the transfer
functions (2) and (4) become:

HPID−R(s) � HPID−R(z) =
Q(z)
P(z)

and HPID−N(s) � HPID−N(z) =
QS(z)
PS(z)

[
1− QR(z)

PR(z)

]
, (5)

where Q, P, QS, PS, QR, PR are polynomials of the second degree at most. Their coefficients
are expressed as follows, depending on the controller type:

1. P controllers (Ti = ∞, Td = 0):{
QS(z) = Q(z) = Kp
PS(z) = P(z) = 1

;
{

QR(z) = 1
PR(z) = 1

. (6)
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2. PI controllers (Td = 0):{
Q(z) = QS(z) = Kp[(Ts + 2Ti)z + (Ts − 2Ti)]
P(z) = PS(z) = 2Ti(z− 1)

;
{

QR(z) = 1
PR(z) = 1

. (7)

3. PD controllers (Ti = ∞):{
Q(z) = KpQR(z) = Kp{[NdTs + 2(Nd + 1)Td]z + [NdTs − 2(Nd + 1)Td]}
P(z) = PR(z) = (NdTs + 2Td)z + (NdTs − 2Td)

;
{

QS(z) = Kp
PS(z) = 1

. (8)

4. PID controllers (general case):
{

Q(z) = q2z2 + q1z + q0
P(z) = p2z2 + p1z + p0

, with:


q2 = Kp

[
2 (Nd+1)TiTd

NdTs
+ Ts

2 + Td
Nd

+ Ti

]
q1 = Kp

[
Ts − 4 (Nd+1)TiTd

NdTs

]
q0 = Kp

[
2 (Nd+1)TiTd

NdTs
+ Ts

2 −
Td
Nd
− Ti

];


p2 = 2 TiTd

NdTs
+ Ti

p1 = −4 TiTd
NdTs

p0 = 2 TiTd
NdTs
− Ti

; (9)


QS(z) = Kp[(Ts + 2Ti)z + (Ts − 2Ti)]
PS(z) = 2Ti(z− 1)
QR(z) = [NdTs + 2(Nd + 1)Td]z + [NdTs − 2(Nd + 1)Td]
PR(z) = (NdTs + 2Td)z + (NdTs − 2Td)

. (10)

For ASTANK2 installations, the selected closed loop configurations are displayed
in Figure 4, for the two PID structures. There are 4 characteristic polynomials for the
configuration in Figure 4a: Q1, P1, Q2 and P2. Additionally, in Figure 4b, 8 polynomials have
to be set: QS,1, PS,1, QR,1, PR,1, QS,2, PS,2, QR,2 and PR,2. Their coefficients are determined
by the 6 parameters of continuous time PID controllers, namely Kp,1, Ti,1, Td,1 (for the first
channel), and Kp,2, Ti,2, Td,2 (for the second channel). To compute them, Equations (6)–(10)
can be employed. Each PID controller is fed with the output and/or the tracking error of
one channel, but provides a command that applies to both MISO blocks.

2.3. Optimization Problem Statement and Cost Function Definition

One seeks to find the optimal parameters of the two PID controllers by optimizing
a cost function. There is an extensive discussion in the literature concerning the choice
of such a cost function. Most approaches rely on the RMSE applied on the tracking error
and the norm of command. Both have to be minimized. Usually, they are combined in a
cost function with some weights in their original or modified versions. Basically, the cost
function defined in this article, referred to as fitness, also employs the RMSE, but with some
refinements adapted to ASTANK2 dynamics.

Take, for example, the output signal y of Figure 5, tracking some reference yref.
The global RMSE is then:

RMSE =

√√√√ 1
N

N

∑
n=1
|y[n]− yref[n]|2, (11)

where N ∈ N∗ is the number of acquired output samples. Evidently, RMSE is a cost
function to minimize. Using definition (11) in the context of the ASTANK2 plant revealed
several disadvantages. The most important comes from the fact the tracking error can
have similar values on transient and steady-state zones, which can lead to output signals
that oscillate too much around references, while RMSE takes relatively small values. Thus,
separating the two zones is necessary. Since the output signal is corrupted by stochastic
noises, no analytical formula can be employed to compute the transient time, Nt. Therefore,
Nt has to be estimated by using statistical tools.
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Figure 5. Example of noisy output signal tracking the prescribed reference.

Let ε ≡ y− yref be the tracking error. A key parameter in estimating Nt is the backward
moving standard deviation (std) of tracking error:

σb
ε[k] =

√√√√ 1
k + 1

N

∑
n=N−k

∣∣ε[n]− µb
ε[k]

∣∣2, ∀ k ∈ 1, N − 1, (12)

where µb
ε is the backward moving average:

µb
ε[k] =

1
k + 1

N

∑
n=N−k

ε[n], ∀ k ∈ 1, N − 1. (13)
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For the signal in Figure 5, σb
ε is displayed in Figure 6a. At the right side end, the std of

final tracking error is computed, whereas the larger values obtained at the left side end
correspond to the first values of tracking error.
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Actually, the variation above was horizontally flipped, as, according to the computing
formula, the first values of std are the ones that lie at the right side end. Normally, the
transient time is given at the left entry of the flat variation in the graphic. However, finding
this entry is rather difficult, because, as one can easily notice, any of the lags between
180 and 300 can play this role. Therefore, a penalty can be applied to the std, aiming to
better isolate the transient time. Among several penalties known in the literature, the
Akaike-Rissanen (A-R) criterion seems to be suitable to the variation above. The A-R
penalized std is then:

σb,A−C
ε [k] = log

(
σb
ε[k]

)
+

k
2N

log(N), ∀ k ∈ 1, N − 1. (14)

In Figure 6b, the penalized A–R std is overlapped on normalized signal and reference
variations (in range [0, 2]). One can notice how easy it now is to find the transient time (the
minimum point of the penalized std) and how well this value corresponds to the subjective
selection performed by visual inspection of signal variation.

In the framework of the ASTANK2 plant, the two output signals y1 and y2 are tracking
the references y1,ref and y2,ref, with errors εy

1 and εy
2, respectively. To define the fitness, the

two zones of each signal dynamics are processed separately. Let Nt,1 and Nt,2 be the two
transient times detected on output signals by using the procedure above. For the transient
zone, the fitness can be defined as follows:

ϕ
y
t,j ≡

100

1 + σ

√
1

Nt,j

Nt,j

∑
n=1

∣∣∣εy
j [n]

∣∣∣2
[%], ∀ j ∈ {1, 2}, (15)

where σ > 0 is a factor that allows for scaling of the fitness. For example, the function
100/(1 + x) (on which the definition (15) relies) takes the value of 58.82% in x = 0.7; by
using the scaling factor σ = 0.5, i.e., σ x instead of x, the value can be increased to 74.07%.
Assuming both output signals have the same length, N, for the steady-state zone, the
fitness is:

ϕ
y
s,j ≡

100

1 + σ

√
1

N−Nt,j

N
∑

n=Nt,j+1

∣∣∣εy
j [n]

∣∣∣2 [%], ∀ j ∈ {1, 2}. (16)
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Now, it is natural to consider that each fitness above has a weight proportional to the
duration of its zone, which leads to the fitness of each output channel:

φ
y
j ≡

Nt,jϕ
y
t,j +

(
N − Nt,j

)
ϕ

y
s,j

N
, ∀ j ∈ {1, 2}. (17)

In the case of commands u1 and u2, the references u1,ref and u2,ref are computed
from the static map, depending on references y1,ref and y2,ref, as explained in the end of
Section 2.2. Two zones in command variation are considered as well, with transient times
Mt,1 and Mt,2. Unlike for outputs, the two commands should be analyzed as a whole, since
they are simultaneously applied to both MISO models that produce the outputs; therefore,
on the transient zones, a unique fitness is defined by means of tracking errors εu

1 and εu
2 :

ϕu
t,12 ≡

100

1 + σ

√√√√ 1
Mt,1+Mt,2

(
Mt,1

∑
n=1

∣∣εu
1 [n]

∣∣2 + Mt,2

∑
n=1

∣∣εu
2 [n]

∣∣2) [%]. (18)

Similarly, the fitness on the steady-state zone is:

ϕu
s,12 ≡

100

1 + σ

√√√√ 1
2N−Mt,1−Mt,2

(
N
∑

n=Mt,1+1

∣∣εu
1 [n]

∣∣2 + N
∑

n=Mt,2+1

∣∣εu
2 [n]

∣∣2) [%]. (19)

Finally, the fitness of both input channels is a weighted average of (18) and (19):

φu
12 ≡

(Mt,1 + Mt,2)ϕ
u
t,12 + (2N −Mt,1 −Mt,2)ϕ

u
s,12

2N
. (20)

The fitness definitions (17) and (20) can be combined into a weighted average, to
obtain the overall fitness of PID-ASTANK2 scheme:

Φ ≡ α
(
φ

y
1 +φ

y
2

)
+ βφu

1,2 [%], (21)

where 2α+ β = 1. For example, α = 0.35 and β = 0.3. The fitness of output signals has
the same weight, as no channel is more important than the other. Obviously, the fitness is a
cost function to maximize.

Definition (21) has an important drawback. Theoretically, a certain value of fitness, Φ0,
can be obtained by an infinity of triplets

{
φ

y
1,φy

2,φu
1,2

}
. Thus, one of the fitness functions

from the triplet can be small, whilst, in compensation, the other two are large. Usually,
this happens when φu

1,2 is small (the commands having big oscillations) and φy
1 and φy

2
are large (tracking of references being very fast, with small overshoot or even without
overshoot). This means the e-v are worked hard in order to fasten the reference tracking.
Or, such a situation is to be avoided. It is more suitable to have smoother commands, even
though the references are tracked slower and/or with some overshoot. To deal with this
ambiguity, the characteristics of a closed loop system can be taken into consideration. For
an ASTANK2 installation, simulations have shown that good fitness values are above 75%
(for definition (21) and the scaling factor σ = 0.5). In this case, the difference between
φ

y
1 and φy

2 is less than 10% (
∣∣∣φy

1 −φ
y
2

∣∣∣ < 0.1). Moreover, commands fitness exhibit two

behaviors: (a) if φu
12 <

φ
y
1+φ

y
2

2 , then the overall fitness can take big values, although the
commands are oscillating too much (increasing the risk of e-v premature wearing out or

failure); (b) if, on the contrary, φu
12 ≥

φ
y
1+φ

y
2

2 (or, even better, if φu
12 ≥ max

{
φ

y
1,φy

2

}
), then

the commands are quite smooth, and the overall fitness can take large values. Obviously,
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the last case is suitable for finding optimal controllers. In order to drive the search towards
smooth commands and large overall fitness values, definition (21) can be refined:

Φ ≡


β
φu

12+max{φy
1 ,φy

2}
2 + 2αmin

{
φ

y
1,φy

2

}
, min

{
φ

y
1,φy

2

}
< 75

β
φ

y
1+φ

y
2

2 + 2αφu
12 , min

{
φ

y
1,φy

2

}
≥ 75 & φu

12 <
φ

y
1+φ

y
2

2

α
(
φ

y
1 +φ

y
2

)
+ βφu

12 , min
{
φ

y
1,φy

2

}
≥ 75 & φu

12 ≥
φ

y
1+φ

y
2

2

, (22)

where α ∈ (0.25, 0.5). Practically, in definition (22), the former definition (21) is only
employed to find optimal regulators with smooth commands—see the third case. For the
other two cases, the term that produce fitness ambiguity is now multiplied by large weight
(of at least 0.5), which results in smaller overall fitness values.

The fitness depends on the 6 parameters of continuous time PID controllers. Obviously,
it is not possible to visually observe the characteristics of fitness in this case. Nevertheless,
6 fitness surfaces can be drawn, by varying couples of parameters, while keeping constant
the other four. Such surfaces are depicted in Figure 7.
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task is to find an optimum with fair accuracy, while exploring large zones of search space. 
Since in case of the 6 optimal PID parameters the upper bound is unknown and the fitness 

Figure 7. Example of fitness surfaces.

The stochastic nature of the I/O measured data induces irregular variations, with
many local extremes of fitness. A mutual characteristic of all surfaces above is the alternance
between smooth slopes and fractal heights or ridges, where the maximum point lies.
Solving the maximization problem becomes a difficult task that cannot be accomplished
by using exact methods [31]. Instead, a suitable alternative to this problem is adopting
evolutionary computing techniques, referred to as metaheuristics [19]. In this article, two
metaheuristics are employed: one to widely explore the search space and another one
to exploit some narrow zones where the maximum seems to exist. Figure 8 suggests the
search strategy. For exploration, the AHCA from [29] was employed. Its main task is to
find an optimum with fair accuracy, while exploring large zones of search space. Since
in case of the 6 optimal PID parameters the upper bound is unknown and the fitness
exhibits smooth slopes where the gradient is not oscillating, AHCA fits very well. Once
the climbers have found some optima, a vicinity around them can be isolated. Now the
search can be performed within a bounded zone. To exploit this zone, the FA was selected
(and improved), due to its simplicity and effectiveness. Whilst the climbers are strongly
dependent on the local gradient of fitness, the fireflies can easily jump from one peak
to another, regardless of the gradient (which, anyway, may oscillate too much—see the
magnification on the left side of Figure 8).
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Figure 8. Exploration–exploitation strategy in fitness maximization.

It has to be outlined that both the exploration and the exploitation phases are per-
formed by varying all 6 parameters (and not only couples of them, as Figure 7 might
suggest). The improved FA (IFA) is described next.

2.4. Improved Firefly Algorithm

The FA [19,30] was inspired by the principle of mutual attraction between insects
and the phenomenon of natural attenuation of light with distance. The fireflies are small
flying beetles, usually luminescent at twilight, that produce a cold light to attract mates or
prey. They are grouped into swarms and, apparently, fly at random. In its flight, a firefly
is tempted to fly towards other shinier fireflies in the swarm, being attracted by the light
signals the latter are emitting. In this way, the shinier fireflies become targets for the current
one. The strongest target is the shiniest firefly, which attracts the entire swarm. Thus,
the swarm is more and more grouped around the firefly emitting the most intense light.
Nevertheless, the shiniest firefly flies as well and their light can fade. In this case, another
firefly becomes the shiniest. Even though the swarm was grouped around a firefly, it can
move away towards another shinier firefly. In this way, there is a good balance between
the convergence and the diversity of firefly swarms.

Figure 9 illustrates a swarm of fireflies and its evolution from current to next positions.
The current firefly is colored in blue, and the shiniest firefly is in red, whereas the other
fireflies are in orange (the shinier ones) or in yellow (the less shining ones).
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The perceived light attractiveness depends on the brilliance of the casting beetle. The
brighter a firefly, the more fireflies it attracts. The current firefly is motivated to fly towards
the shiniest one along the arrow in red (see the left side of Figure 9). Nevertheless, while
tracking the target, our firefly can perceive lights from other fireflies, especially from the
shinier ones, which constitute attraction points as well. Hence, the other fireflies in the
swarm, especially the ones in orange, could disturb the flight along the direction colored in
orange as well. By composing the two directions (in red and in orange), the final direction,
in blue, is taken by the current firefly. Meanwhile, the swarm moves to new positions
and changes light intensities, as suggested in the right side of Figure 9. It is possible that
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the shiniest firefly decreases its light intensity, whilst another firefly becomes the shiniest.
All fireflies can change not only in position, but in light intensity as well. The swarm
permanently tries to group around the shiniest firefly, but this becomes possible only if no
other firefly becomes shinier. Otherwise, the swarm can oscillate between several positions,
until a best position (of maximum light intensity) is found, eventually.

This behavior can be simulated by means of a numerical algorithm based on the
following recursive equation expressing how the position of an artificial firefly changes:

xk+1
p = xk

p + ∑
q∈Sp

βk
p,q

(
xk

q − xk
p

)
+ ηkξk(S), ∀ p ∈ 1, P, ∀ k ∈ N. (23)

The notations in Equation (23) are explained next. Assume the swarm includes P ∈ N∗
fireflies. Each firefly p ∈ 1, P takes a position xk

p at instant k ∈ N, into the search space
S ⊆ Rnx, where nx ∈ N∗ is the length of position vector. (For example, in the case of
PID-ASTANK2 configurations, nx = 6.) The search space can be specified as a cartesian
product of compact intervals:

S = [xmin,1, xmax,1]× [xmin,2, xmax,2]× · · · × [xmin,nx, xmax,nx] =
nx

∏
i=1

[xmin,i, xmax,i]. (24)

To compute the next position, the firefly will take (xk+1
p ), and the current position is

affected by two disturbances: one produced by the shinier fireflies than the current one
(including the shiniest one), referred to as diversity disturbance, and another one generated
by the entire swarm—the convergence disturbance. The sum term in Equation (23) stands for
the diversity disturbance, where all the shinier fireflies than the current one are grouped
into the set Sp. This disturbance actually contributes to swarm diversity and is expressed
as a linear combination of attraction directions from the current firefly to its shinier mates,{

xk
q − xk

p

}
q∈Sp

. Thus, the current firefly is not exclusively attracted by the shiniest firefly,

but by the other shinier fireflies as well. This phenomenon keeps the diversity of fireflies’
swarms to some extent. The corresponding coefficients,

{
βk

p,q

}
q∈Sp

, are light intensities

perceived by the current firefly from the shinier ones. According to Biology, each perceived
intensity can be computed as follows:

βk
p,q = I0 exp

−
∥∥∥xk

p − xk
q

∥∥∥
D(S)

, ∀ p ∈ 1, P, ∀ q ∈ Sp, ∀ k ∈ N, (25)

where I0 is a biological constant standing for the maximum light intensity a firefly can
produce (usually set to unit) and D(S) is the diameter of search space, defined by:

D(S) = sup
x,y∈S
{‖x− y‖} =

√
nx

∑
i=1

(xmin,i − xmax,i)
2. (26)

Definition (25) shows that the perceived light intensity is higher if the fireflies are
closer to each other. However, the current firefly also can be strongly attracted by a distant
firefly radiating an intense light. This case is not taken into consideration in definition (25).
Therefore, a first improvement consists of including the radiated light intensity into the
perceived intensity formula. Let Φk

p be the light intensity radiated by firefly p ∈ 1, P at
instant k ∈ N. Then, the intensity of light the other fireflies perceive should increase as
Φk

p increases and the distance from the current firefly decreases. A second improvement
concerns the diameter. Normally, the perceived intensity should adapt itself to the space
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the entire swarm of fireflies is taking at current instant, denoted by S k. Obviously, S k ⊆ S
and then:

S k =
nx

∏
i=1

[
min
p∈1,P

{
xk

p,i

}
, max

p∈1,P

{
xk

p,i

}]
=

nx

∏
i=1

[
xk

min,i, xk
max,i

]
; D
(
S k
)
=

√
nx

∑
i=1

(
xk

max,i − xk
min,i

)2
. (27)

With the two improvements above, definition (25) can be replaced by:

βk
p,q = I0 exp

−
∥∥∥xk

p − xk
q

∥∥∥
D
(
S k
) Φk

p

Φk
q

, ∀ p ∈ 1, P, ∀ q ∈ Sp, ∀ k ∈ N, (28)

where, evidently, Φk
q ≥ Φk

p, ∀ q ∈ Sp.
The last term of Equation (23) expresses the second disturbance, generated by the

entire swarm at each instant k ∈ N. The disturbance intensity is given by the scalar
factor ηk, uniformly selected at random in the interval [−1,+1]. Its sign encodes whether
the disturbance is direct (+1) or opposite (−1). The other factor, ξk(S) ∈ Rnx, stands
for the absolute disturbance vector generated by the swarm. According to biologists,
each component of this vector, ξk

i (S) (i ∈ 1, nx), is generated at random as well, but not
uniformly. This time, the random numbers generator uses Lévy’s (probability) distribution:

p(u) = u−λ, ∀ u ∈ R∗+, (29)

where λ ∈ [0, 3] is preset. Usually, λ = 1.5. To generate numbers with prescribed probability
distribution, Baker’s algorithms can be implemented and run [19,32]. The Lévy’s distri-
bution is assigned to each component of search space, i.e., to each interval [xmin,i, xmax,i]

(i ∈ 1, nx). Thus, ξk
i (S) ∈ [xmin,i, xmax,i] (i ∈ 1, nx), which explains why the vector ξk

depends on the search space S . However, during the run of IFA, this definition revealed
two caveats: (a) Lévy’s distribution over [xmin,i, xmax,i] yields generating the most values in
the vicinity of xmin,i, although there is no reason the fireflies should be directed to the lower
bound of the search space; and (b) as the swarm concentrates around a shiniest firefly, the
disturbing direction becomes unrealistic, because the vector ξk does not belong anymore to
the space the fireflies are moving into, i.e., S k. Therefore, two more improvements of basic
FA were made: (a) Lévy’s distribution is centered around the light center of the swarm; and
(b) instead of using S to generate the components of vector ξk, the current search space S k

is employed. The light center can be determined by using the radiated light of each firefly:

xk
c =

P
∑

p=1
Φk

pxk
p

P
∑

p=1
Φk

p

, ∀ k ∈ N. (30)

Now Lévy’s distribution is defined as follows, for each component i ∈ 1, nx:

p(u) =
∣∣∣u− xk

c,i

∣∣∣−λ, ∀ u ∈
[

xk
min,i, xk

max,i

]
, (31)

Hence, in definition (23), the factor ξk(S) is replaced by ξk
(
S k
)

. The product

ηkξk
(
S k
)

is a disturbance that ensures the swarm convergence to some extent.

After being computed, the next position xk+1
p may need to be made viable. This means

bringing back all outsider components of xk+1
p inside the corresponding min–max interval,
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according to the initial search space definition (24). Assume xk+1
p,i /∈ [xmin,i, xmax,i] for some

i ∈ 1, nx. Then, the integer below can be computed:

nk+1
p,i =

 xk+1
p,i − xmin,i

xmax,i − xmin,i

, if xk+1
p,i > xmax,i or nk+1

p,i =

 xmax,i − xk+1
p,i

xmax,i − xmin,i

, if xk+1
p,i < xmin,i. (32)

Consequently, xk+1
p,i can be replaced by the new component below:

xk+1
p,i ←

{
xk+1

p,i − nk+1
p,i (xmax,i − xmin,i) , xk+1

p,i > xmax,i

xk+1
p,i + nk+1

p,i (xmax,i − xmin,i) , xk+1
p,i < xmin,i

. (33)

It is easy to prove that the new component belongs now to the corresponding min-max
interval.

The notation for radiated light intensity is not selected at random. In fact, Φ is the
cost function to maximize among the fireflies’ swarm during the search (and will stand for
fitness, in case of PID controllers optimization).

The numerical procedure of IFA (the Algorithm 1) is summarized next.

Algorithm 1. Main steps of IFA procedure

1 Input data:
• cost function to maximize, Φ (associated with light intensity eradiated by fireflies);
• search space boundaries (see Equation (24));
• configuring parameters: swarm size P, specific light intensity I0, Lévy’s constant λ,

maximum number of iterations K, surviving (aging) factor S.
2 Initialization. Spread the fireflies approximately uniform over the search space S and

evaluate their performance (by using Φ). Save the shiniest firefly.
3 Main loop. While the number of iterations is less than K and the shiniest firefly survived

over less than S iterations, do the following:
3.1. Evaluate the current search space S k and its diameter using Equation (27).
3.2. Evaluate the mass left of swarm, by using Equation (30).
3.3. For each firefly in the swarm:

3.3.1. For each shinier firefly:
3.3.1.1. Evaluate the perceived light intensity by using Equation (28).
3.3.1.2. Compute the corresponding disturbance, according to the second term

of Equation (23).
3.3.2. Update the current position by adding all disturbances of shinier fireflies.
3.3.3. Set the swarm disturbance intensity at random, uniformly, in [−1,+1].
3.3.4. Use Baker’s algorithm to generate the absolute swarm disturbing direction with

Lévy’s distribution (31).
3.3.5. Update the current position by adding the convergence disturbance, according

to the last term of Equation (23).
3.3.6. Make viable the new position by using Equations (32) and (33).

3.4. Update the swarm performance and determine the new shiniest firefly.
3.5. If the current shiniest firefly still is shinier than the current one, increment the surviving

counter.
3.6. Otherwise, replace the current shiniest firefly by the new one and reset the surviving

factor.
3.7. Increment the number of iterations.

4 Output data:
• optimal value of Φ and position of the shiniest firefly;
• performance parameters of IFA: total number of iterations, surviving counter.

As in cases of many metaheuristics, there are no theoretical results proving the IFA is
convergent. Therefore, to terminate the numerical procedure, the stop tests of the main
loop in Algorithm 1 are necessary. Additionally, the position of the current shiniest firefly
changes only because of the convergence disturbance, and its light can fade.
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3. Analysis of Simulation Results
3.1. Simulations Setting

The simulations were performed within the MATLAB-SIMULINK™ environment.
The two closed loop configurations of Figure 4 were implemented as SIMULINK models,
as depicted in Figures 10 and 11. Unlike the schemes in Figure 4, the SIMULINK mod-
els include the characteristic limitations of ASTANK2 plant (enumerated in the end of
Section 2.1). The output references are of two types: a step for optimal PID design, and a
staircase for robustness analysis. In Figures 10 and 11, the step references are set as follows:
y1,ref = 8.5 V, y2,ref = 9.5 V. They can be switched, as displayed in the left side of both
schemes (see the block sw). Additionally, the sampling period was set to unit(Ts = 1 s) in
all simulations. Since ASTANK2 has a slow dynamic, the simulation duration was set to
T = 1000Ts = 1000 s for step references. Longer durations are employed in cases of other
references types.

In the case of staircase references, the input of each scheme is changed to the one in
Figure 12. The staircases can be designed by the user within an M-script with two variables:
one giving the height of each step (stair), and another one setting the time instants of each
step (time_steps). The staircases have to comply with ASTANK2 limitations of outputs (no
more than 2 cm difference between steps on different channels).
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Additionally, the staircases can be scaled in a suitable interval [Ymin, Ymax] (specified
by means of block Y_minmax). By default, the scaling interval is [7, 11] cm.

To the right side of schemes in Figures 10 and 11, the characteristic static map of the
ASTANK2 plant with linear interpolation is implemented (see the block u_ref). Thus, the
command references are available during the simulation, depending on output references
y1,ref and y2,ref.
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The Gaussian white noises are generated by means of corresponding blocks on each
channel. Their variances are set according to the last column of Table 1, where the estima-
tions resulted after linear identification of the ASTANK 2 plant.

Many signals are displayed in both schemes. Nevertheless, when simulation is em-
ployed to evaluate the regulators fitness, signals plotting is suppressed in order to speed
up the search.

For the two metaheuristics (AHCA and IFA), the configuring parameters are listed in
Table 2, where, beside P, K, S, I0, λ, the following notations are used: M is the maximum
number of mutations per climber, δ is the climber’s altitude relative accuracy, Pe is the
number of elite climbers (see [29] for details of AHCA), ρmin is the relative lower bound of
the search space, ρmax is the relative upper bound of the search space.

Table 2. Configuring parameters of metaheuristics.

AHCA—Exploration IFA—Exploitation

P K S M δ Pe P K S I0 λ ρmin ρmax

40 30P 30 30 1% 3 25 100 30 1 1.5 0.5 2

The last two notations are useful to confine the search space for IFA. Assume AHCA
provided a sufficiently accurate optimal solution, xAHCA

o . Then the boundaries of search
space for fireflies are: xmin = ρminxAHCA

o and xmax = ρmaxxAHCA
o .

3.2. Metaheuristic Optimization Results

Before running AHCA and IFA, the PID-R regulators were tuned by means of the
well-known Ziegler–Nichols empirical method [7]. The resulting parameters of PID-R
controllers are listed in Table 3 (where Ku is the critical gain that pushes the system to
stability limit, with oscillations of period Tu).

Table 3. Parameters of PID-R controllers tuned by the Ziegler–Nichols method.

Identification
Model Channel Ku Tu[s] Kp Ti[s] Td[s] Φ[%]

<raw>
1 1.3851 355.31 0.83106 177.66 44.41

70.122 1.2519 40.83 0.75114 20.41 5.10

<spline> 1 1.233625 57.09 0.740175 28.54 7.14
73.122 2.479675 28.15 1.487805 14.07 3.52

After simulation with step references, the I/O signals of PID-R controllers are dis-
played in Figure 13 (<raw> idmo) Figure 14 (<spline> idmo). Channels 1 and 2 are
represented on top and at bottom of figures, respectively. Additionally, variation of com-
mands and outputs are depicted to the left side and right side of figures, respectively. The
commands are represented in blue (left side) and the outputs in red (right side). All refer-
ences are tracked in both cases, but the I/O signals are smoother for <spline> idmo than for
<raw> idmo. This is proven by the corresponding fitness values in Table 3 as well (73.12%
versus 70.12%). It is well known that Ziegler–Nichols method usually yields oscillating
commands, but the variations for <raw> idmo are unacceptable (Figure 13). In the case of
<spline> idmo (Figure 14), while the first command can be marginally accepted, the second
command is still too variable. The results after running the two metaheuristics are now
analyzed. In Table 4, some running performances of AHCA and IFA are given, such as
the final number of iterations, k; the surviving counter of best climber/firefly, ns; the total
number of mutations applied to climbers, m; the total number of fitness evaluations nΦ;
and the optimal fitness, Φo.
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The algorithms were run on a regular computer at current technological levels. Usually,
the exploration by AHCA takes about 20 min, whereas the exploitation by IFA is about
90 min long. (The optimal PID-N controllers were found to be a few minutes faster than the
optimal PID-R controllers.) The difference between the two durations is due to the fact that
the climbers are only employed to find the most promising zone where the optimum could
exist. Inside that zone, as the fitness rather exhibits fractal variations, the climbers cannot
use their compasses based on local gradient evaluation and, therefore, AHCA usually
oscillates. Fireflies do not use the gradient to fly, but IFA is not as efficient as AHCA.
Consequently, the configuring parameters were set to allow longer search durations and,
thus, to increase the optimal point accuracy. The number of fitness evaluations, nΦ, is much
higher for IFA than for AHCA, which means the search for optimum is more intense in the
case of fireflies than in the case of climbers. One can see that both algorithms complete the
search after the best optimal climber or firefly has survived at maximum (see parameters
S and counters ns in Tables 2 and 4, respectively) and not after maximally iterating the
positions updating (see parameters K and counters k, respectively). There is one exception;
the optimal PID-R for <spline> idmo was found with a maximum number of iterations
(100), but the surviving factor was almost maximum too (29 instead of 30). For AHCA,
an interesting parameter is m, with values starting from 4192. Mutations are applied to
blocked climbers on local peaks, for which the fitness cannot increase by using the gradient.
The purpose of mutation is to throw the climber on another slope of fitness hyper-surface
in the hope that, from there, it can continue to climb. Good exploration of search space
is thus ensured. This short analysis proves that, very likely, the best local optimum was
found by combining the two metaheuristics.

Looking again at Table 4, one can see that the optimal fitness of climbers is smaller
than the optimal fitness of fireflies. Nevertheless, the difference is not so big. Furthermore,
this difference can barely be observed when comparing the corresponding I/O signals
in Figures 15–18. (The signals are arranged exactly like in the case of Figures 13 and 14.)
Additionally, the optimal PID controllers for <spline> idmo are slightly fitter than the
optimal ones for <raw> idmo, as expected. However, one can notice that both PID-N
and PID-R controllers exhibit almost the same fitness for the same idmo, which does not
meet the initial expectations. Normally, the commands the PID-N controller provides
should have been smoother than the commands of the PID-R controller. Or, the command
smoothness is almost the same for both PID controllers. One can notice, though, a slight
improvement for PID-N commands in the case of <spline> idmo.

The parameters of optimal PID controllers found by IFA are listed in Table 5. The
optimal PID-R parameters are very different from the ones in Table 3, especially in the
case of derivative time constant (Td). Not only the parameters are different, but the I/O
signals are as well, as revealed by Figures 15–18. Interestingly, the best PID controller
found (PID-N for <spline> idmo) works with a PI rule on the first channel (see the null Td,1
in Table 5), whilst the derivative time constant on the second channel is at least 70 times
larger than the other derivative time constants on that channel. Simulations proved that
the command on channel 2 mastered very well both output channels, which, in turn, were
less sensitive to the variations of command on channel 1.
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Table 5. Parameters of optimal PID controllers found by means of IFA.

PID Identification
Model Kp,1 Ti,1 [s] Td,1 [s] Kp,2 Ti,2 [s] Td,2 [s]

R
<raw> 0.2413502 45.6150814 0.0001611 1.4740651 42.7184059 0.0005492

<spline> 0.397183 76.6958348 0.00002 0.6197605 28.9826891 0.0012607

N
<raw> 0.0406009 3.1435647 45.1171123 1.1140813 37.4705655 0.0013905

<spline> 0.2778442 55.2662226 0 0.6518653 28.9044758 0.1017565
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Moreover, as seen in Figures 15 and 17, corresponding to <raw> idmo, the command
u2 exhibits saturation of e-v voltage at 10 V on the first 100 s of transient zone. Though this
may have speeded up the references tracking on output channels, saturating the voltages
at their upper limit is to be avoided in order to protect the e-v. Fortunately, saturation does
not occur in the case of <spline> idmo (Figures 16 and 18), which constitute an important
advantage of this model.

Another interesting characteristic concerns the outputs. In all variations above, the
output signals are like step responses of a second order system, corrupted by some noises.

This allows some supplementary performance parameters (beside the fitness) to
be estimated, provided that the noise can be filtered. Such a filter can be designed by
identification of each noisy output with the ideal step response of order II.

In Appendix A, the identification method is briefly described. Let y(ζ,ω,τ)
j,II ) be the

identified step response of order II corresponding to output yj (j ∈ {1, 2}. Then, after
performing identification on outputs in Figures 15–18, the matched step responses of order
II are depicted in Figure 19.
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Starting from y(ζ,ω,τ)
j,II (j ∈ {1, 2}), several specific performances can be evaluated. In

Appendix B, the most important performance parameters are defined. Table 6 encompasses
the values of performance parameters corresponding to signals in Figure 19.

Table 6. Optimal PID controllers performance parameters related to second order step response.

PID Identification
Model Channel ζ

ω
[rad/s]

τ
[s] T RO

[%]
τp
[%]

τd
[s]

τr
[s]

τs
[s] Nt

R
<raw> 1 0.8243590 0.0243468 11.03 49.82 1.030554 238.98 75.8 195.32 175.57 165

2 0.6028431 0.0309242 0 53.64 9.31346 127.33 45.98 89.89 172.81 195

<spline> 1 0.8506410 0.0267793 9.03 43.90 0.620133 232.16 68.60 192.84 168.76 165
2 0.6946152 0.0304711 0 47.25 4.814988 143.32 48.78 106.69 157.10 108

N
<raw> 1 0.8287348 0.0250022 11.03 48.26 0.954089 235.55 74.23 193.10 183.62 165

2 0.6724633 0.0338145 0 43.98 5.759211 125.53 43.49 92.23 144.98 192

<spline> 1 0.8506410 0.0262748 9.03 44.74 0.620133 236.45 69.75 196.37 171.83 165
2 0.6787924 0.0305118 0 48.28 5.480398 140.21 48.35 103.41 159.55 194

The damping factor ζ in the table shows that all outputs are under damped, although
the relative overshoot RO is noticeably bigger on the second channel compared to the
first channel (where this parameter is very small). Nevertheless, the maximum RO is
less than 10% of reference for all controllers, which constitutes a good performance. The
natural pulsationω is slightly bigger on the second channel. This property is confirmed
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by the parameter Tu in Table 3 (smaller for the second channel) and the small, damped
oscillations of y2 in Figures 15–19. On channel 1, an intrinsic delay τ between 9 and 11 s was
detected, which corresponds to variations of y1 in Figures 15–19. The controllers working
with <spline> idmo seem to be slightly faster than the ones synthesized for <raw> idmo,
not only in terms of intrinsic delay, but also when looking at the other time parameters:
shorter time delay τd, rise time τr and settling time τs. However, PID-N controllers are
not necessarily better than PID-R controllers, according to the parameters in Table 6. In
the last column of the table, the estimated transient time Nt is shown for each controller.
This parameter is compared with the settling time, τs, to validate the estimation method
described in Section 2.3 One can notice that the approximation is fair. Nevertheless, recall
that τs is computed for a clearly specified tolerance tube around the reference in the
steady-state zone (set to ±5%), whereas this specification is not employed in estimation
of Nt.

3.3. Robustness Analysis

Controllers can or cannot be robust in several respects. Four types of robustness are
investigated within this subsection: (a) against sudden change of references; (b) against
constant perturbations on outputs; (c) against stochastic perturbations on outputs; and
(d) against idmo uncertainties (stochastic variations of model parameters). The reason
such an analysis is developed hereafter is twofold. On one hand, very often, installations
like ASTANK2 do not comply with the theoretical hypotheses founding the very sound
robustness theory devised in the literature. The hypotheses regarding the nature and
power of exogenous noises usually are violated. Since such hypotheses only are sufficient
(but not necessary) conditions of robustness, the fact they are not verified does not mean
the controller cannot be robust to some extent. So, robustness has to be tested in order to
estimate robustness margins without employing theoretical results in this aim. On the other
hand, robustness analysis of such a real-world plant (especially the robustness against
model uncertainties) are very useful in practice. Knowing the robustness margins, even
with satisfactory accuracy, can help in predicting the mean time before failure or the right
instant to act in correcting defects (not too soon, not too late). This may result in a better
maintenance of installation, with optimally small costs.

3.3.1. Robustness against Sudden Change of References

The Simulink model of Figures 10 and 11 with inputs of Figure 12 were employed
to test this type of robustness. More specifically, the step references were replaced by
staircases. The performance of each PID controller was evaluated by means of fitness.
Unlike fitness in (22), in this case, the fitness was computed according to the procedure
described in Appendix C. Several staircase references were tested. Overall, if the references
steps comply with ASTANK2 limitations, in all tested scenarios, the outputs succeed to
track them, which means this type of robustness is accomplished (although with different
fitness values, for different references).

To illustrate the tracking performance, the matrices of variations in Figures 20 and 21
were built. In Figure 21, the results correspond to switched staircase references of Figure 20.
Additionally, each row of matrix exhibits I/O signals of a controller, as specified on the
graphical windows. (Many of the following figures have the same structure.)

The best fitness values are obtained by the PID-N controller with <raw> idmo (77.84%
and 76.96%), for which the commands better follow their static references and the outputs
better track the specified references. The second best is the PID-R controller with <spline>
idmo (75.18% and 74.99%). Additionally, one can easily see that channel 1 is less robust than
channel 2, where the references are sensibly better tracked. This phenomenon probably is
due to the fact the first tank of installation, with a slanted face, induces stronger dynamic
non linearities than the second tank (a regular parallelepiped). Hence, the first linear MISO
idmo is not as accurate as the second MISO idmo when approximating the nonlinearities
of the ASTANK2 plant.
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Figure 20. PID-ASTANK2 performance for a configuration of staircase references.

3.3.2. Robustness against Constant Perturbations on Outputs

Two constant perturbations were artificially added to each output, while keeping
constant the reference: the first one above the reference and the second one, later, beneath
the reference. Additionally, the perturbations were not synchronized between channels.
The simulation results are displayed by the matrix of variations in Figure 22. All four
controllers succeeded in rejecting the constant perturbations, but no one had sensibly better
fitness. The commands were slightly smoother in the case of <spline> idmo.

3.3.3. Robustness against Stochastic Perturbations on Outputs

The previous simulations were performed by using two sources of Gaussian white
noise with variances estimated after ASTANK2 identification (see the last column of
Table 1).

To investigate controllers robustness against stochastic perturbations, the variances of
noises generators were varied in range

[
0, λ2

max

]
, where λ2

max was experimentally set to 1
(after few simulations). The problem is how to define and estimate the robustness margin.
The fitness can be used for this aim. Obviously, the fitness decreases when noises increase
in power, as the variation in Figure 23a illustrates. Here, the horizontal index points to
the noise variance. In this example, N = 31 noise variance levels are employed within
the interval [0, 1]. Thus, if the index is set to n ∈ 1, N, then the two noises have the same
variance λ2

1,n = λ2
2,n.
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Figure 21. PID-ASTANK2 performance for switched references of the previous figure.

The problem with fitness is that, apparently, the robustness margin can only be set
by subjective means while visually inspecting the I/O signals of the plant. Clearly, the
marginal behavior of a closed loop system is expressed by outputs that oscillate around
references with approximately constant amplitudes. However, there is a fine line between
various oscillating behaviors. Hence, setting the right robustness margin becomes a difficult
task. To remove the subjectiveness, a supplementary parameter can be employed. Consider
the tracking errors on the steady-state zone for all I/O signals (commands and outputs).
Evidently, when the noise variance increases, the std of each tracking error increases as well.

Therefore, a global std on the steady-state zone can be computed as follows (with
natural notations related to I/O signals):

σssz = α
(
σssz
εy,1

+ σssz
εy,2

)
+
β

2

(
σssz
εu,1

+ σssz
εu,2

)
, (34)

where the weights α and β are the ones employed to compute fitness (see definition (21)),
e.g. α = 0.35 and β = 0.3. Such a global std varies as shown in Figure 23b. The variation is
increasing with the noise index, as expected.
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Figure 23c shows the variation of cost function J . The maximum point, maxn , can 
be set to the index of robustness margin. The robustness margin is then defined as 
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Figure 23c shows the variation of cost function
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{nmax, Φ[nmax]}. If the exogenous noises lead to fitness values at least equal to Φ[nmax],
then one considers the controller is robust. Otherwise, the controller is not performing
well. Nevertheless, it is possible that the closed loop system remains at stability limit even
outside the robustness zone.

After simulations with step references and variable noise variances, the results in
Figure 24 were obtained. In fact, in the figure, the noise variance was replaced by the
estimated SNR, on each channel, computed on the steady-state zone of outputs. The
fitness surfaces in Figure 24 are split in two regions by a horizontal plane determined

after maximization of cost function
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Figure 23c shows the variation of cost function J . The maximum point, maxn , can 
be set to the index of robustness margin. The robustness margin is then defined as 

[ ]{ }max max,n nΦ . If the exogenous noises lead to fitness values at least equal to [ ]maxnΦ , 
then one considers the controller is robust. Otherwise, the controller is not performing 

. One considers that all points on the surface above
the plane are due to the robust behavior of controller. The height of each separation
plan is listed in Table 7, together with the corresponding marginal SNR. The lower the
separation plan height, the larger the robustness zone of the controller. One can notice
that the PID-N controller for <spline> idmo is slightly more robust than the other three
controllers. Additionally, every controller can be robust if one noise is strong while the
other one is weak.
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Table 7. Robustness margins of PID controllers depending on output SNR.

PID Identification
Model

Marginal Fitness
[%]

Marginal SNR
[dB]

Optimal Fitness
[%]

SNR1
[dB]

SNR2
[dB]

R
<raw> 65.37 25.99 83.90 40.37 41.34

<spline> 64.12 25.95 85.01 40.80 41.23

N
<raw> 66.45 25.98 83.84 40.34 41.46

<spline> 64.01 25.96 85.07 40.80 41.25

Another remark concerns the robustness surface: large fitness values cover a larger
area for <raw> idmo than for <spline> idmo. This means that, in general, the stochastic
noises are better rejected by PID-R and PID-N controllers determined for <raw> idmo than
by the other two controllers.

The I/O signals at the robustness margin are shown by the matrix of variations in
Figure 25. Such behavior is considered as robust. Many other situations with similar I/O
variations exist, but the robustness is decided by fitness margins in Table 7.

3.3.4. Robustness against Identification Model Uncertainties

The uncertainties are induced by changing the coefficients of idmo polynomials.
Assume P is any of the model polynomials, expressed as:

P
(

q−1
)
= p0 + p1q−1 + · · ·+ pnpq−np. (36)

Then, the coefficient pi (i ∈ 1, np) is replaced by a (uniform) random value in the
interval [1− η, 1 + η]pi, if pi 6= 0 or in the interval [−η,+η], if pi = 0. The parameter
η ∈ [0, 1] is referred to as uncertainty power.
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The problem is to define and determine the robustness margin of a PID regulator, while
working with uncertain model polynomials and variable uncertainty powers. Obviously,
the PID performance is expressed in terms of fitness. Nevertheless, to solve the problem
of uncertainty margin detection, the fitness needs to be put into correspondence with the
reference tracking property. One can consider that the uncertainty margin is reached as
soon as the closed loop system is unable to track at least one output reference signal. In
this case, the polynomials are affected by uncertainties of some power, whilst the closed
loop system exhibits a marginal fitness. Thus, the uncertainty margin can be defined by
the smallest fitness value for which the closed loop system still manages to track all given
references. This lower limit also reveals the marginal (maximal) values of uncertainty
power. For example, the robustness margin of 75% (in terms of fitness) can be obtained
by affecting the plant model with uncertainties of estimated marginal (maximal) power of
10% (η ∈ [0, 1]). Increasing the uncertainty power leads to the incapacity of the closed loop
system to track references.

In the following, an example is given. The output y1 of ASTANK2 installation is
acquired after applying uncertainties on the numerator and denominator of the useful
transfer function in MISO1 idmo (see Figure 1b again). The uncertainties were generated at
random, by using the uniform pseudo-random generator of MATLAB (rand function).

The uncertainties can affect the 3 polynomials of useful transfer function, namely: A1,
B1,1 and B1,2. As Equation (1) shows, the first coefficient of polynomials is normalized:
1 for A1 and 0 for B1,1, B1,2. Uncertainties cannot affect this coefficient. By inducing
uncertainties on the remaining coefficients, a fitness surface can be generated, depending
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on two uncertainty powers: one affecting the denominator A1 and another one modifying
the numerators B1,1, B1,2. The ASTANK2 idmo usually have polynomials with many
coefficients (up to 50, in some cases). Trying to test all combinations of uncertainty applied
on model coefficients is unrealistic. Therefore, the Monte-Carlo method can be employed to
estimate the uncertainty margin. Hence, 100 uncertainty cases are uniformly generated at
random on each axis. The resulted fitness surface looks like that in the left side of Figure 26.
The estimated fitness margin is represented by the horizontal plane intersecting the fitness
surface. All points above the plane correspond to the robust behavior of the closed loop
system. The other fitness values, beneath the plane, rather reveal the incapacity of the
closed loop system to track at least one reference. As the figure clearly shows, there are
cases in which the robustness is preserved even though one uncertainty power is high and
the other one is low. Consequently, it is quite difficult to determine the marginal powers
if they are different. It is more suitable to determine such a marginal power along the
main diagonal of the separation plane, where the two powers are equal. In the right side
of Figure 26, the fitness variation along the diagonal (with equal uncertainty powers) is
displayed. The horizontal line refers to the separation plane.
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Figure 26. Principle of robustness margin estimation for increasing uncertainty power.

One can see that the most fitness values are beneath this line, as expected. Increasing
the uncertainty power naturally leads to the loss of robustness. Therefore, to estimate the
robustness margin, one should focus on the zone with small uncertainty powers. In the
figure above, one can easily notice that the marginal uncertainty power is less than 10%.

The problem with fitness is the same as in the previous subsection; apparently, the
robustness margin can only be set by subjective means, while visually inspecting the I/O
signals of the plant. For example, the first two output signals in Figure 27 reveal that the
system is unable to track the reference, but is very close to this goal. The fitness equals
73.98% with 5% uncertainty power and 74.03% with 4.9% uncertainty power, respectively.
By decreasing the uncertainty power, the last two output signals in Figure 27 were obtained.
At 74.37% fitness with 4.75% uncertainty power, the reference started to be tracked in the
end of variation (see the third signal of figure). Furthermore, decreasing the uncertainty
power to 4.6% leads to a fitness of 74.5% and to an output that succeeds in reaching the
reference sooner than previously (see the last signal). In this case, the robustness margin
can be set to 74.4% fitness with 4.7% uncertainty power. The estimation of uncertainty
margin is fair but subjectively set.
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The robustness margins can thus be estimated by varying the separation plane and
analyzing the cases leading to fitness values close to the plane height. If the uncertain idmo
that leads to fitness values above and beneath the plane height still allow tracking of the
references, then the plane should be lowered. On the contrary, if the idmo with fitness
values around the plane height yield loss of robustness, then the plane should be raised.
The separation plane is placed at the right height when the idmo with fitness below that
height cannot allow reference tracking, whereas for the other idmo, with fitness above the
height, the references are eventually tracked. Because of the noises corrupting the data,
such a balanced behavior can be discovered experimentally, as a theoretical approach on
this topic is difficult (if not impossible) in this case.

For ASTANK2 installation, three scenarios can be investigated: (a) affect MISO1 model
by uncertainties and the keep the genuine MISO2 model; (b) switch MISO models (keep the
genuine MISO1 and work with uncertain MISO2); (c) induce uncertainties on both MISO
models. After several simulations, it has been noticed that output y1 is more sensitive to
idmo uncertainties than output y2. This means the controller loses robustness because of
y1 in the first. Therefore, in the following figures, only y1 is displayed.

Figures 28–30 display the simulation results corresponding to the three scenarios
mentioned above. Each figure includes a matrix of variations, as usual, but with different
representations from the previous figures.

In all figures, the fitness surface obtained by Monte-Carlo method takes the first
column of matrix. The second column displays the diagonal of fitness surface. The last
two columns are devoted to output y1 in two cases: non robust (column 3) and robust
(column 4). The corresponding fitness values of closed loop system for columns 3 and 4 are
below and above the estimated marginal fitness of robustness zone, respectively.

The simulation scenarios providing the results in Figures 28–30 offer further parame-
ters allowing analyzing robustness. Hence, the robustness zone can be confined by: the
marginal fitness Φmin; the marginal uncertainty power ηmax; the relative density ρ of robust
behavior; the relative robustness margin µ. The first two parameters (Φmin and ηmax) are
determined experimentally. The height of separation plane is set to Φmin. The fitness
values Φdown and Φup corresponding to variations of output y1 in Figures 28–30 are close
to each other.

Moreover, Φdown < Φmin < Φup, which proves that Φmin is fairly accurate. The
marginal uncertainty power ηmax was determined by using the fitness diagonal drawn in
column 2 of graphical matrices. The principle illustrated in Figure 26 was used in this aim.

The other two parameters (ρ and µ), although conventionally defined, allow per-
forming a top of controllers with respect to robustness against uncertainties. Since the
Monte-Carlo method is employed to draw fitness surfaces, one can compute the ratio
between the number of robust behaviors and the number of all behaviors (10.000). If this
ratio is multiplied by 100, the relative density ρ of robust behavior is estimated. Now, one
controller is more robust than another if Φmin is as small as possible, whilst ηmax and ρ are
as big as possible. Then, the relative robustness margin µ can be defined as:

µ =
100

1 + σ Φmin
ρηmax

[%], (37)
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where σ > 0 is a constant scaling factor set to 0.04, such that µ can vary in a suitable range
(recall the explanation between Equations (15) and (16)).

The robustness parameters are listed in Table 8, for all four controllers, in all scenarios.
Without the last column, Table 8 is rather confusing and says almost nothing. The µ
parameter can enlighten the closed loop behavior against model uncertainty.
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Figure 29. Estimating the robustness margin against the uncertainties of the MISO2 model.

The first clear insight is that the PID controllers for <raw> idmo are noticeably more
robust to uncertainties than the PID controllers for <spline> idmo. This can be explained
by the fact the <spline> idmo has a reduced number of poles, which are more exposed
to the loss of stability in a way that the PID controllers cannot compensate. Secondly,
among controllers for <raw> idmo, PID-R is slightly more robust than PID-N when coping
with uncertainties that affect one MISO model at a time, whereas when both models
are corrupted, PID-N seems to be the best (62.65% versus 45.97%). Thirdly, for <spline>
idmo, the PID-R controller is better than the PID-N controller, in terms of robustness,
in all scenarios. To conclude this analysis, one can notice that, regardless of the idmo
type, robustness of MISO2 is superior to robustness of MISO1, as expected (since, in all
simulations, output y1 loses its tracking ability before output y2). Moreover, another
expectation is met: the relative robustness margin of the entire ASTANK2 idmo (in the last
scenario) is the smallest one (compared to the other two scenarios).
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Table 8. Parameters of robustness against model uncertainties.

PID Identification
Model

Uncertainties
Affected

Φmin
[%]

ηmax

[%]
Φdown

[%]
Φup

[%]
ρ

[%]
µ

[%]

R

<raw>
MISO1 74.5 9 74.48 75 2.81 89.47
MISO2 70.5 15.5 70 70.49 5.84 96.98

MISO1 and MISO2 70 2.25 69.76 70 1.06 45.97

<spline>
MISO1 60 2.5 58.11 60 0.7 42.03
MISO2 65.5 1 64.74 65.52 0.45 14.68

MISO1 and MISO2 60 1 57.54 60.22 0.17 6.49

N

<raw>
MISO1 74.5 8 74.04 74.51 2.54 87.21
MISO2 70.5 9 70.43 70.65 4.51 93.5

MISO1 and MISO2 68 3.5 67.71 68.47 1.3 62.65

<spline>
MISO1 60 1 59.85 60.7 1.08 31
MISO2 66 1 65.64 66.26 0.12 4.22

MISO1 and MISO2 65 1 64.54 65.21 0.16 5.69

4. Concluding Remarks and Future Developments

The main goal of this article was to perform an extensive analysis of metaheuristic PID
control applied to a nonlinear installation such as ASTANK2, after identification with linear
multi-MISO models. Two PID configurations were investigated, PID-R and PID-N, for each
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identification model type, <raw> and <spline>. Two metaheuristics were employed in the
design of four optimal controllers: AHCA to extensively explore the search space, and IFA
to intensively exploit a restricted zone around some promising optimal point found by
climbers. Four improvements of classical FA were introduced in order to fasten the search
and increase the final results accuracy. Defining a fair cost function (referred to as fitness in
the article) is not an easy task. Many other authors coped with the same difficult problem,
as reported in their publications. Unfortunately, to the best of our knowledge, no general
cost function can be defined to be employed in any automatic control optimization problem.
Therefore, adapting the cost function to the installation characteristics (and limitations)
seemingly is a wise way to proceed.

The simulation results revealed the performance as well as the limitations of designed
controllers. Overall, one can say that any of the four PID controllers can be employed in a
closed loop with an ASTANK2 installation, as they exhibit almost the same performance.
Basically, PID-R controllers are recommended to reject model uncertainties, whilst PID-N
controllers are better in tracking staircase type references.

Various future research directions can be approached. A multivariable (non-decentralized)
PID control structure likely yields superior performance. Another development is possible
in the direction of metaheuristic multivariable RST control. Of course, the metaheuristic
control based on state space representation of ASTANK2 installation is another interesting
direction to investigate.
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Abbreviations

A–R Akaike–Rissanen (criterion)
AHCA Advanced Hill Climbing Algorithm
BJ Box-Jenkins (model)
FA Firefly Algorithm
I/O input/output (signals, behavior etc.)
IFA Improved Fireflies Algorithm
MIMO Multi-Input–Multi-Output (model)
MISO Multi-Input–Single-Output (model)
PID Proportional–Integral–Derivative
PID-N non-standard PID
PID-R regular PID
RMSE root mean square error
SISO Single-Input–Single-Output (model)
SNR Signal-to-Noise Ratio
e-v electro-valve(s)
idmo identification model(s)
std standard deviation

Appendix A. Identification of Second Order Step Response from Noisy Signals

Consider the usual transfer function of a second order system (in continuous time):

H(s) =
ω2e−sτ

s2 + 2 ζω s +ω2 , (A1)
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whereω > 0 is the natural pulsation ([rad/s]), ζ ≥ 0 is the (relative) damping factor and
τ ≥ 0 is the intrinsic delay. When stimulating the system with a unit step, four types of
responses are possible, depending on the dumping factor:

1. Harmonic oscillation, when ζ = 0

y(t) = 1− cos[ω(t− τ)], ∀ t ≥ τ. (A2)

2. Under damped signal (with overshoot), when ζ ∈ (0, 1):

y(t) = 1− e−ζω (t−τ)√
1− ζ2

[√
1− ζ2 cos[ωd(t− τ)] + ζ sin[ωd(t− τ)]

]
, ∀ t ≥ τ, (A3)

whereωd = ω
√

1− ζ2 is the damped pulsation of system.
3. Critically damped signal, when ζ = 1:

y(t) = 1− [1 +ω(t− τ)]e−ω (t−τ), ∀ t ≥ τ. (A4)

4. Over damped signal (without overshoot), when ζ > 1:

y(t) = 1− 1

2
√
ζ2 − 1

[
e−ζ

+ω (t−τ)

ζ+
− e−ζ

−ω (t−τ)

ζ−

]
, ∀ t ≥ τ, (A5)

where ζ± = ζ±
√
ζ2 − 1.

During the delay, the response is set to null (although, by using the equations above
in a mathematical sense, the response is non null).

In case of noisy signals looking like a step response of order II, the identification
problem can be formulated by means of a quadratic criterion. More specifically, if y is
such a signal (in discrete time) and y(ζ,ω,τ)

II is any of the step responses (A2)–(A5), then the
following quadratic cost function has to be minimized:
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It suffices to derive the expression of second order response. The responses (A2)–(A5) 
are processed next. Note that all gradients below are null for t < τ . Hence: 

1. Harmonic oscillation ( 0ζ= ): 

[ ] [ ](0, , )
II ( ) 0 ( )sin ( ) sin ( )

T
y t t t tω τ  ∇ = − τ ω − τ −ω ω − τ  , t∀ ≥τ. (A8)

(ζ,ω, τ) =
N−1

∑
n=0

[
y(nTs)− y(ζ,ω,τ)

II (nTs)
]2

, (A6)

where ζ ≥ 0 (the damping factor), ω > 0 (the natural pulsation) and τ ≥ 0 (the intrinsic
delay) completely determine the response y(ζ,ω,τ)

II . Additionally, N ∈ N∗ is the total
number of samples and Ts > 0 is the sampling period (in seconds).

As one can easily notice, the response y(ζ,ω,τ)
II is nonlinear with respect to the three

parameters. Consequently, solving the quadratic optimization problem is not an easy task.
Moreover, the criterion can exhibit large flat zones where the global minimum may lie. In
Figure A1, criterion surfaces were drawn for each output of ASTANK2 plant (y1—the left
side couple, y2—the right side couple).

The images 1 and 3 reveal how large the flat zone can be. The surface includes all
four types of second order responses. For output y1, the intrinsic delay is set to about 11 s,
whereas, for the output y2, τ = 0 s. A zoom on the plateau is displayed in images 2 and 4.
Despite what the images 1 and 3 suggest, the plateau is not so flat. It seems that the global
optimum lies somewhere in this apparently flat zone.
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It suffices to derive the expression of second order response. The responses (A2)–(A5) 
are processed next. Note that all gradients below are null for t < τ . Hence: 
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Figure A1. Quadratic criterion surfaces in identification of second order step response.

To solve the optimization problem, a numerical procedure is needed. Given the
optimization criterion expression, an appropriate numerical recipe can be selected from
the variable advancing step, gradient based class. The variable step allows fast jumps
towards the global optimum in the flat zone. The Newton–Raphson method [31] is a good
candidate. However, this method involves computing and inverting the Hessian matrix
of quadratic criterion, which is both difficult and time consuming. The Gauss–Newton
method is better, since the Hessian matrix is approximated by only using the gradient of
quadratic criterion (see the details of this method in [31]). To implement the Gauss–Newton
method, the gradient of quadratic criterion is needed. Fortunately, this gradient can be
evaluated in closed form, as shown next. The gradient expression of is

∇
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(ζ,ω, τ) =
[

∂
∂ζ

∂
∂ω

∂
∂τ

]T
V(ζ,ω, τ) = −2

N−1

∑
n=No

[
y(nTs)− y(ζ,ω,τ)

II (nTs)
]
∇y(ζ,ω,τ)

II (nTs). (A7)

It suffices to derive the expression of second order response. The responses (A2)–(A5)
are processed next. Note that all gradients below are null for t < τ. Hence:

1. Harmonic oscillation (ζ = 0):

∇y(0,ω,τ)
II (t) =

[
0 (t− τ) sin[ω(t− τ)] −ω sin[ω(t− τ)]

]T , ∀ t ≥ τ. (A8)

2. Under damped signal (ζ ∈ (0, 1)):


∂

∂ζ y(ζ,ω,τ)
II (t) = e−ζω (t−τ)

1−ζ2

[
ω (t− τ) cos[ωd(t− τ)]− 1√

1−ζ2
sin[ωd(t− τ)]

]
∂

∂ω y(ζ,ω,τ)
II (t) = e−ζω (t−τ)√

1−ζ2
sin[ωd(t− τ)]

∂
∂τ y(ζ,ω,τ)

II (t) = −ω e−ζω (t−τ)√
1−ζ2

sin[ωd(t− τ)] = −ω ∂
∂ω y(ζ,ω,τ)

II (t)

, ∀ t ≥ τ. (A9)

3. Critically damped signal, (ζ = 1):

∇y(1,ω,τ)
II (t) =

[
0 ω (t− τ)2e−ω (t−τ) −ω2(t− τ) e−ω (t−τ)

] T
, ∀ t ≥ τ. (A10)

4. Over damped signal (ζ > 1):



∂
∂ζ y(ζ,ω,τ)

II (t) = e−ζ
+ω (t−τ)−e−ζ

−ω (t−τ)

2
√
(ζ2−1)

3 +ω (t− τ) e−ζ
+ω (t−τ)+e−ζ

−ω (t−τ)

ζ2−1

∂
∂ω y(ζ,ω,τ)

II (t) = (t− τ) e−ζ
+ω (t−τ)−e−ζ

−ω (t−τ)

2
√
ζ2−1

∂
∂τ y(ζ,ω,τ)

II (t) = −ω e−ζ
+ω (t−τ)−e−ζ

−ω (t−τ)

2
√
ζ2−1

, ∀ t ≥ τ. (A11)

Appendix B. Performance Parameters of Second Order Step Response

The quality of a step response provided by the order II system (A1) is analyzed
according to following parameters, also indicated in Figure A2:
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a. Time constant of second order system:

T =
1
ζω

[s]. (A12)

b. Relative overshoot (only in under damped case, ζ ∈ (0, 1)):

RO = 100 exp

(
− ζπ√

1− ζ2

)
[%]. (A13)

It shows how far from step reference the maximum of system response can rise.
Therefore, RO is computed relatively to the reference height.

c. Peak time (only in under damped case, ζ ∈ (0, 1)):

τp =
π

ω
√

1− ζ2
+ τ [s]. (A14)

It points to the time instant of when the response reaches its maximum. Note that the
time delay τ adds to the maximum point value.

d. Delay time, τd. It stands for the necessary duration of response to rise from 0% to 50%
of reference signal. In case of under damped response (ζ ∈ (0, 1)), τd is:

τd =
1 + 0.7 ζ
ω

+ τ [s]. (A15)

For the critically damped or over damped responses (ζ ≥ 1), closed form expressions
are impossible to derive. Therefore, in such cases, the equation that gives τd can be
solved by numerical algorithms. An easy way to approximate τd is as follows: express
the condition y(t) = 0.5; expand the exponentials in Taylor series up to the 7-th term (as
it is well known that the exponential is accurately approximated by such an expansion);
compute the coefficients of polynomial that results and derive its roots; among them, there
is a unique, real valued, positive root, which stands for τd.

e. Rise time, τr.This is the necessary duration of response to rise from a lower bound to
a higher bound expressed as percentages from the reference. In case of under damped
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response (ζ ∈ (0, 1)), the bounds are 0% and 100%, which leads to the following
closed form expression:

τr =

π − arctan
(√

1−ζ2

ζ

)
ω
√

1− ζ2
+ τ [s]. (A16)

For the critically damped response (ζ = 1), the bounds are 5% and 95%, respectively.
For over damped responses (ζ > 1), the bounds are 10% and 90%, respectively. Like in case
of rise time, it is not possible to derive closed form expressions of τr. Nevertheless, numeri-
cal procedures are available. The 7-th term expansion approach, previously described, can
be considered as well.

f. Settling time, τs. This parameter is equal to the duration of transient zone, also known
as transient time. Normally, the steady-state zone is supposed to begin when the
response enters and remains within a tolerance tube around the reference. Usual
tubes are form ±2% to ±10%; in case of 10% tube width (i.e., by taking a ±5%
tolerance tube), τs can be computed differently, depending on damping factor. If the
response is under damped (ζ ∈ (0, 1)),then:

τs = τ−
log
(

0.5
√

1− ζ2
)

ζω
= τ− T log

(
0.5
√

1− ζ2
)
[s]. (A17)

Otherwise, an empirical expression is currently employed (for ±5% tolerance tube):

τs = 3T + τ [s]. (A18)

Appendix C. Computing Fitness for Staircase References

The computing procedure of fitness is easier to understand following the example of
Figure A3. Unlike for the outputs, for the inputs, the references need to consider the couple
of output references at each time instant. Therefore, as the figure displays, seven zones
have to be considered to extract input references from the static table. Each change of an
output reference creates a delimiter for a new zone. In the example of Figure A3, each new
zone preserves one output reference and changes the other one.

However, both output references can change at the same time as well, without affecting
the input references extraction procedure. The main zones 1, 3, 5 and 7 have longer
durations than the secondary zones 2, 4 and 5.

Like in the case of single step references, there are three fitness components to compute
two for the outputs (φy

1, φy
2) and one for both inputs φu

12.
For each output, the fitness is computed by processing all the steps of corresponding

staircase. Let Ns
j be the number of steps exhibited by the staircase of channel j ∈ {1, 2}

(e.g., Ns
1 = Ns

2 = 4, as in Figure A3). Then:

φ
y
j ≡

1
N

N s
j

∑
i=1

niφ
y
j,i, (A19)

where ni ∈ N∗ is the duration of current step i ∈ 1, Ns
j . Obviously,

Ns
j

∑
i=1

ni = N (the duration

of all signals). In the weighted average of (A19), the fitness of current step, φy
j,i, is computed

like in case of single step output reference (see Equation (17)). For the two input signals,
the fitness is a weighted average as well

φu
12 ≡

1
N

Nz
12

∑
i=1

niφ
u
12,i, (A20)
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where Nz
12 is the number of zones to extract the input references for (e.g., 7 in the previous

figure); ni ∈ N∗ is the duration of current zone i ∈ 1, Nz
12 (with

Nz
12

∑
i=1

ni = N); φu
12,i is the

fitness of current zone i ∈ 1, Nz
12, computed like in case of step output references (see

Equation (A20)).
Overall, the fitness is computed by considering that the controllers are optimal. There-

fore, in the refined definition of step references fitness (22), only the third case is employed

Φ ≡ α
(
φ

y
1 +φ

y
2

)
+ βφu

12. (A21)
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