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Abstract: Vehicle Re-identification (Re-ID) has become a research hotspot along with the rapid
development of video surveillance. Attention mechanisms are utilized in vehicle Re-ID networks
but often miss the attention alignment across views. In this paper, we propose a novel Attentive
Part-based Alignment Network (APANet) to learn robust, diverse, and discriminative features for
vehicle Re-ID. To be specific, in order to enhance the discrimination of part features, two part-level
alignment mechanisms are proposed in APANet, consisting of Part-level Orthogonality Loss (POL)
and Part-level Attention Alignment Loss (PAAL). Furthermore, POL aims to maximize the diversity
of part features via an orthogonal penalty among parts whilst PAAL learns view-invariant features
by means of realizing attention alignment in a part-level fashion. Moreover, we propose a Multi-
receptive-field Attention (MA) module to adopt an efficient and cost-effective pyramid structure.
The pyramid structure is capable of employing more fine-grained and heterogeneous-scale spatial
attention information through multi-receptive-field streams. In addition, the improved TriHard loss
and Inter-group Feature Centroid Loss (IFCL) function are utilized to optimize both the inter-group
and intra-group distance. Extensive experiments demonstrate the superiority of our model over
multiple existing state-of-the-art approaches on two popular vehicle Re-ID benchmarks.

Keywords: Vehicle Re-identification; attention mechanism; part orthogonality; pyramid attention;
feature extraction; video surveillance

1. Introduction

Vehicle Re-identification (Re-ID), a challenging task in computer vision, aims at iden-
tifying a vehicle of query by matching vehicle pictures captured from non-overlapping
surveillance cameras. Indeed, it plays a crucial role in a broad range of surveillance ap-
plications, including the analysis of vehicle trajectory [1], handling traffic jams [2], and
multi-camera tracking [3].

Currently, Re-ID is becoming increasingly attractive to researchers, enterprises, and
the government, but it still remains unsolved due to two main reasons. First, diversified
and complicated circumstances pose challenges, and illuminations and resolutions can
vary widely in disjoint cameras. Second, vehicles of the same type and color also cause
considerable difficulties in identifying the target vehicle. In consequence, the distinctions
among vehicles are subtle, thus increasing the difficulty of distinguishing identities.

To capture the discriminative cues in feature learning, many part-based methods are
proposed to aggregate part features and then formulate a combined representation for each
vehicle image. Among them, Parsing-guided Cross-part Reasoning Network (PCRNet) [4],
a strong part feature learning baseline, adopts a partition strategy to acquire the semantic
segmentation-divided part features. Despite some remarkable achievements, these methods
tend to treat all parts equally in the final representation and place too little emphasis on the
salient part. Furthermore, they are ignorant of the importance of cross-camera consistency,
thus being vulnerable to occlusions and background clutter.
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Notably, considerable efforts [5–13] have been devoted to investigating attention mech-
anisms in Re-ID, which can effectively focus on vehicle-related features and meanwhile
reduce background clutter. The most popular solution is to adopt a parallel arrangement
for spatial and channel attention modules, taking advantage of exploiting two kinds of
attention information. However, existing soft attention modules tend to extract different
kinds of attention information independently, neglecting their crucial complementary ef-
fects. In addition, the authors of [7] exploit simple and homogeneous-scale spatial attention,
thus only employing coarse-grained attention information. To sum up, there is still much
room for improvement in the existing attention Re-ID models.

To fill the research gap, in this paper, we propose a novel Attentive Part-based Align-
ment Network (APANet) to tackle the above problems concurrently. It seamlessly integrates
part-based alignment mechanisms and attention modules throughout the entire network.
The features extracted from APANet are more robust, diverse, and discriminative, which
is of great significance for correct matching. In addition, in APANet, the intra-class and
inter-class distances are optimized simultaneously for better classification. In brief, APANet
gains a benefit toward higher accuracy.

Our contributions can be mainly summarized as follows:
(1) With the purpose of enhancing the discrimination capacity of part feature rep-

resentations, we adopt two part-level alignment mechanisms encompassing Part-level
Orthogonality Loss (POL) and Part-level Attention Alignment Loss (PAAL). To begin with,
a novel POL is formulated to learn diverse part-uncorrelated features via an orthogonal
regulation among parts. We argue that the diversity of part features can fully realize the
potential of final feature representations, thereby bringing a considerable performance
boost. Furthermore, an effective PAAL is designed to perform attention alignment in a
part-level manner, which facilitates modeling while exploiting camera-invariant features.

(2) In order to learn more discriminative features, a new Multi-receptive-field Attention
(MA) module is proposed to exploit heterogeneous-scale pyramid attention information
with multi-receptive-field streams. Notably, we intend to reduce the size of the module
parameter as well as computational cost by adopting an efficient pyramid structure, there-
fore making up for the deficiency of multi-receptive-field streams. Additionally, the MA
module cascades channel and spatial attention parts in series, bringing the complementary
benefits of two kinds of attention information. In addition, the MA module adopts a unique
embedded structure which places attention modules and residual blocks in parallel.

(3) To optimize the extracted features during the training stage, an improved Tri-
Hard loss and a Inter-group Feature Centroid Loss (IFCL) function are formulated to
simultaneously optimize the intra-group and inter-group distances, respectively. For the
former, an extra loss item is added to place more constraints on intra-class distances.
As to the latter, inter-group distances among groups are calculated and optimized in a
centroid-based fashion.

(4) To confirm the effectiveness of APANet, we conduct extensive experiments on two
large vehicle Re-ID datasets. One is a large-scale benchmark dataset for vehicle Re-ID in
the real-world urban surveillance scenario, named VeRi-776 [3,14,15] which is shown in
Figure 1. Another dataset is called VERI-Wild [16] which is to promote the research of
vehicle Re-ID in the wild. According to the experiment results, APANet achieves rank-
1 accuracy of 96.4% on VeRi-776 and 89.2% on VERI-Wild (Small), surpassing multiple
existing state-of-the-art Re-ID models.

The rest of this paper is organized as follows. Section 2 introduces related work with
respect to vehicle Re-ID. Section 3 describes the details of our proposed approach. Section 4
presents the experiments and addresses some qualitative analysis. Section 5 offers the
concluding remarks.
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Figure 1. A large-scale benchmark dataset for vehicle Re-ID in the real-world urban surveillance
scenario, named VeRi-776 [3] dataset. The three vehicle images in the first row are from the same
vehicle, but captured under different surveillance cameras with various viewpoints, the second and
third rows illustrate different vehicles but have the same type and color in similar viewpoints.

2. Related Work
2.1. Part-Based Re-ID Models

It is universally acknowledged that most state-of-the-art Re-ID methods adopt deep
learning techniques to acquire discriminative feature representations. Here, our discussion
will emphasize part-based Re-ID models which have gained progressive achievements to
date. These approaches can be mainly categorized into two groups based on the strategy of
generating vehicle part features.

The first group heavily relies on extra vehicle parsing techniques which provide seman-
tically meaningful parts. By virtue of more accurate vehicle part segmentation, well-aligned
part features are learned and greatly improve the model performance. In general, these
part features are combined with holistic features to provide discriminative representations.
Specifically, part-level similarity combination [17], multi-stage feature fusion [18], and
multi-channel aggregation [19,20] methods are proposed to jointly learn both local and
global features. In addition, some other methods aim to strengthen the robustness of the
model and reduce the adverse impact of background clutter, by proposing a part-guided
attention module [10], adopting orientation-driven matching [12], and achieving semantic
part alignment [21]. However, the inadequacies of these methods should also be recognized.
For one thing, an extra parsing model or part segmentation is demanded for aligning part
features. For another, these methods are prone to noisy parsing and part detections. To sum
up, their remarkable performances are subject to the accuracy of the additional pre-trained
parsing models.

The second group tends to obtain the part feature by pixel-level segmentation. Meng et al.
propose an effective Parsing-based View-aware Embedding Network (PVEN) [22] which
is based on a parsing network to parse a vehicle into four different views. Furthermore,
Deng et al. [23] aim to find the shortest path between two sets of parts with an efficient
dynamic programming, eventually achieving feature alignment. Although these rough-
divided methods are more flexible, they are not robust, being more sensitive to occlusions
and background clutter. Additionally, part features are weighted equally in final repre-
sentations, which is imprecise and requires refinement. Consequently, part-level feature
representations still need to be discussed in theory and improved in practice.
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2.2. Attention Mechanism

An attention mechanism is utilized to learn more expressive feature representations.
It is widely applied in computer vision tasks and not limited to vehicle Re-ID. For example,
Zhou et al. [24] proposed a Motion-attentive Transition (MATNet) attention framework
motivated by human visual attention behavior for semantic segmentation tasks. To solve
the problem of insufficient ground-truth datasets, a novel group-wise learning framework
for weakly supervised semantic segmentation was proposed [25]. The attention mechanism
can also address the task of detecting and recognizing Human–Object Interactions (HOIs)
in images [26]. For the vehicle Re-ID field on the whole, it mainly falls into two types:
spatial attention [6,7,11–13] and channel attention [5,10]. To be specific, spatial attention
is commonly utilized to recognize the most important areas and then enlarge the weight
of these salient regions whilst channel attention considers intrinsic interaction among
different channels.

To exploit the complementary effect of these two kinds of attention, Teng et al. [27]
construct the soft attention modules, further improving model performance. Zheng et al. [9]
propose a jointly learning framework of employing multiple attention information, signifi-
cantly enhancing the compatibility between the attention mechanism and feature represen-
tation. Moreover, Huang et al. [28] exploit channel and spatial information simultaneously
by extracting a three-dimensional attention map and also construct a special transmissible
structure for attention modules. To capture high-order statistics of attention information,
Li et al. [8] came up with a interpretable attention module which exploits the richness of
attention information. Others [6] utilize a self-attention mechanism to compute correlations
across multiple scales from a multi-scale feature pyramid. They correspondingly construct
a pyramid attention module for image restoration, which is capable of capturing long-range
feature correspondences. More specifically, pixel–region correspondences are captured
over an entire feature pyramid.

However, we emphasize that existing attention models are still insufficiently rich
to capture subtle differences among vehicles or address the problem of highly similar
backgrounds. In our proposed MA module, a multi-receptive-field spatial attention mecha-
nism is proposed in a pyramid structure to exploit more comprehensive spatial attention
information efficiently. Additionally, the MA module cascades channel and spatial parts in
series, and adopts a unique attention concatenation arrangement. In addition, the necessary
attention alignment among various images of same identity, often forgotten in the design
of attention modules, is also taken into account by means of PAAL.

3. Proposed Approach

Attention mechanisms are widely utilized in vehicle Re-ID networks but often miss the
attention alignment across views. Our work is meticulously proposed to learn part features
that are robust, diverse, and discriminative. It can not only adopt part-level alignment
mechanisms which allocate more attention towards the most discriminative part and realize
cross-view attention consistency, but also learn discriminative features by exploiting multi-
receptive-field attention information in an efficient pyramid structure. In addition, the MA
module concatenates channel and spatial parts in series, thereby exploiting complementary
benefits of two kinds of attention information. In this section, we firstly give a brief
introduction to Attentive Part-based Alignment (APANet) in Section 3.1. The formulations
of Part-level Orthogonality Loss (POL) and Part-level Attention Alignment Loss (PAAL) are
elaborated in Sections 3.2 and 3.3, respectively. The construction of the Multi-receptive-field
Attention (MA) module and its attention mechanism are presented in Section 3.4. Finally,
the classification module with multiple loss functions is introduced in Section 3.5.

3.1. Attentive Part-Based Alignment (APANet) and Network Structure

We firstly describe the backbone network of APANet, which is clearly illustrated in
Figure 2. ResNet-50 is a 50-layer deep residual neural network proposed by He et al. [29].
Without loss of generality, all convolutional layers in ResNet-50 [29] are utilized as the
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backbone network. For a clearer illustration, we divide these convolutional layers into
five parts, which are Conv.1 (i.e., the 1st layer), Conv.B1, Conv.B2, Conv.B3, and Conv.B4.
In detail, there are 3, 4, 6, 3 residual blocks in the last four parts, respectively, and three
convolutional layers are stacked for feature extraction in each residual block.

Conv.B2Conv.B1Conv.1

Conv.B3 Conv.B4  Softmax Loss

Improved TriHard Loss

Part-level Orthogonality Loss  

Attention Alignment Loss 

Feature Split OperationClassification Module

Inter-group

Feature Centroid Loss

MA ModuleResidual Block

ResNet-50

Figure 2. The overview model architecture of APANet. Based on the backbone network
(i.e., ResNet-50), APANet firstly leverages MA modules to extract discriminative features. After-
wards, the informative features are further split into N_p parts for more fine-grained part-level
representations with the help of POL and PAAL loss functions.

In the following, we intend to elaborate the design idea of the APANet framework.
As aforementioned, APANet aims to obtain discriminative and robust presentations and
enhance the discrimination of part features. Consequently, three requirements need to be
satisfied in the network design.

To begin with, our proposed network should adopt a part-level alignment mechanism
which is capable of enhancing the discrimination of part features and realizing attention
alignment. The part features are generated through feature split operation. The number of
part features Np is determined by the experiment detailed in Section 4.6.2. Correspondingly,
we propose two effective loss functions, namely, Part-level Orthogonality Loss (POL) and
Part-level Attention Alignment Loss (PAAL), to enhance the representations of part features.
The former aims to enforce diversity among parts via orthogonality regulations whilst the
latter focuses on achieving the cross-view consistency of part-level attention. Secondly,
APANet is expected to adopt powerful attention modules which are crucial components in
extracting part-based discriminative features. Finally, both the intra-class and inter-class
distance of part features are expected to be meticulously optimized. In particular, we
firstly add an extra constraint on intra-distance to improve triplet loss. Then, we propose a
Inter-group Feature Centroid Loss (IFCL) to reduce inter-group distance. More details are
elaborated in the following subsections.

3.2. Part-Level Orthogonality Loss (POL)

In particular, we propose a novel Part-level Orthogonality Loss (POL) to promote
discrimination of part features. Sun et al. [30] drew the conclusion that correlations among
feature embeddings would significantly degrade the final matching performance. Intu-
itively, the attention mechanism tends to learn discriminative features in a more compact
subspace, therefore bringing higher feature correlations. To this end, POL maximizes
part-level diversity via an orthogonality regulation loss item, advocating lower correlations
among part features. Specifically, we intend to regard cosine similarity as an orthogonality
metric so as to reduce feature correlations, which is beneficial to correct matching. Given
two arbitrary vectors V1, V2, we give the definition of cosine similarity as:

S(V1, V2) =
V T

1 V2

||V1|| · ||V2||
(1)

where || · || is L2-norm and S stands for cosine similarity.
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When it comes to the implementation details of cosine similarity, a simple yet effective
linear function is meticulously introduced to provide a non-negative similarity value. Then,
for each targeted image j with Np part features, it can be obtained that

POL =
1
N

N

∑
j=1

Np

∑
a=1

Np

∑
b=a+1

S(F(j,a), F(j,b)) + 1

2
(2)

where N denotes the number of images in a training batch and F(j,a) stands for the a-th
part feature for the targeted vehicle image j and S stands for cosine similarity.

3.3. Part-Level Attention Alignment Loss (PAAL)

As aforementioned, the MA module is responsible for eliminating background clusters
by employing comprehensive attention information. However, we argue that attention
alignment, often neglected in designing attention modules, is significant for learning
view-invariant and robust features.

Motivated by this idea, Part-level Attention Alignment Loss (PAAL) is meticulously
proposed to reduce the adverse impact of cross-view variations and realize cross-camera
consistency. Our intuition is that the shared regions of same-vehicle images across various
cameras are crucial for correct matching and should be supervised during end-to-end
training. Here, cosine distance Dc is utilized to express the vector dissimilarity between
two non-zero vectors, and is considered as the metric of attention consistency.

Dc(V1, V2) = 1− S(V1, V2). (3)

We obtained a part-attention feature M ∈ RCout×Np×1, where Cout denotes the output
channel of features. Thereafter, the cross-channel global average pooling is introduced and
defined as:

M =
1

Cout

Cout

∑
c=1

Mc,1:Np ,1:1 (4)

where M ∈ RNp×1 represents the flattened part-level attention map. This specific cross-
channel pooling is reasonable since all channels share the identical part-level spatial atten-
tion map.

To cope with the potential misalignment issue among vehicles, we further improve
PAA by introducing a soft threshold parameter T (experimentally set to be 0.2 in our
implementation) to eliminate the background clutter. A part-level spatial attention map can
be more precisely cropped so as to select salient foreground parts and reduce background
clutter. Afterwards, all attention vectors are resized to have the same dimensions via
interpolation operations.

Furthermore, based on cosine distance, PAAL is designed to supervise attention
consistency in a part-level fashion. Formally, for every targeted vehicle i (i = 1, 2, . . . , P)
and its randomly sampled K images, PAAL can be written as:

PAAL =
1

(K
2)

P

∑
i=1

K

∑
a=1

K

∑
b=a+1

Dc(Mi
a, Mi

b) (5)

where (K
2) denotes the number of combinations of K images taking 2 images at a time. P is

the number of vehicle identities in a batch, and each vehicle has K images.
By virtue of PAAL, the part-level attention maps can be vertically aligned among

various images of the same targeted vehicle i, which facilitates APANet to learn more
view-invariant features.
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3.4. Multi-Receptive-Field Attention (MA)

There have been numerous tentative efforts [31–34] in exploiting this spatial attention
map by virtue of convolution. However, most of them employ homogeneous-scale spatial
attention, and therefore are confined to mining coarse and simple spatial information.

With the purpose of improving the attention mechanism, we propose a Multi-receptive-
field Attention (MA) module which manages to extract pyramid attention maps with
multi-receptive-field streams, thereby enhancing the feature representation. Compared
with existing attention modules, the main advantage of the MA module is employing
more comprehensive attention information in an efficient pyramid structure which only
involves relatively small parameters and requires a low extra computational cost. To the
best of our knowledge, current existing methods mainly adopt a multi-scale mechanism in
learning features and it is unusual in Re-ID to apply a multi-scale mechanism in designing
attention modules.

3.4.1. Embedded Structure

To begin with, we propose a unique embedded structure in pursuit of the best attention
effect. Inspired by the two-stream hypothesis theory of the human visual system [35], we
aim to construct a “what” visual stream (i.e., residual module) and a “where” visual stream
(i.e., attention module) in two independent branches. Specifically, as presented in Figure 3,
MA modules are in a parallel concatenation with residual blocks, whilst conventional Re-ID
attention networks place them in series.

Figure 3. Overview of the embedded structure of Multi-receptive-field Attention (MA) module. As is
illustrated, MA module is placed in parallel with a residual block in ResNet-50.

Formally, we define the input to an MA module as a three-dimension tensor
Fin ∈ RCin×H×W where Cin, H, and W stand for the number of input channels, height,
and width. The corresponding output feature strengthened by the MA module can be
written as:

Fout = f (Fin, {W})⊗ A (6)

where Fout ∈ RCout×H×W is the output feature map, the final omnibearing attention map ob-
tained from the MA module is denoted by A∈RCout×H×W , ⊗ denotes the Hadamard prod-
uct, and the function f (Fin, {W}) represents the specific parallel residual block in ResNet-50.

Remarks. Our proposed MA module is conceptually similar to the Convolutional
Block Attention Module (CBAM) [32] since both of them employ the spatial and channel
attention information. However, there are significant distinctions between them which can
summarized as: (1) Concatenation arrangement. MA modules are placed in parallel with
residual blocks retrieved from ResNet-50. On the contrary, the CBAM tends to concatenate
them in series. Motivated by the two-stream hypothesis theory of the vehicle visual system,
our intuition is to transmit the attention information continuously. Otherwise, the trans-
mission channel of attention flow tends to be blocked by residual block. (2) Improvement
of attention mechanism. We further improve the attention mechanism in an efficient and
cost-effective pyramid structure. With exploiting heterogeneous-scale spatial attention, the
MA module can explicitly guide the model to learn more discriminative features.
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Once the embedded structure is proposed, we then elaborate the detailed scheme of our
proposed MA module. As shown in Figure 4, the MA module cascades channel and spatial
attention in series. The serial concatenation employs the benefits of channel and spatial
attention information, and more importantly, provides a crucial complementary effect, since
spatial pyramid attention maps are extracted from the previous channel-weighted feature.

Figure 4. Illustration of Multi-receptive-field Attention (MA) module. Here, RF is the abbreviation
for receptive field.

3.4.2. Channel Attention

Inspired by Squeeze and Excitation networks (SE block) [36], we firstly apply channel
attention to exploit intrinsic interaction among channels, laying a solid foundation for
later pyramid spatial attention. The channel-weighted feature, Fc, strengthened by channel
attention can be written as:

Fc = σ{ReLU[W2 × ReLU(W1 × GAP(Fin))]} ⊗ Fin (7)

where Fin is the input feature. W1 ∈ R
Cin

r ×Cin ( C2
in
r parameters) and W2 ∈ RCin×

Cin
r ( C2

in
r

parameters) represent the parameter matrix of 1× 1 convolutional layers in sequence. Here,
r (experimentally set to be 8 in our implementation) denotes the channel reduction rate.
σ is the sigmoid function which normalizes the channel attention map within [0, 1].

3.4.3. Spatial Attention

As for the spatial attention part, multi-receptive-field streams are proposed to mine
multi-scale spatial attention information. More specifically, there are four branches with
receptive fields of 1× 1, 3× 3, 5× 5, and 7× 7 in the spatial attention part. Following
the successful practices of Simonyan et al. [37], who argue that the stack of two 3× 3
convolution layers has an equivalent receptive field of a 5× 5 convolution layer, we employ
this strategy in our pyramid spatial attention to reduce computation overheads as well as
parameter size, e.g., a 7× 7 convolution filter is replaced by a stack of three convolution
layers in series. In this way, the MA module is efficient and cost-effective with the pyramid
structure introduced.

To provide a more intuitive insight into its advantage of light weight, we intend to
compare the pyramid structure with a parallel structure. Assume that there are also four
multi-receptive-field branches in a parallel structure. The space complexity (number of
parameters) of the parallel structure is calculated as follows:

(12 + 32 + 52 + 72) · Cin/r = 84 · Cin/r. (8)

The Cin denotes the input channel number and r is the channel reduction rate which
has an impact on model inference time. The space complexity of the pyramid structure is
calculated as follows:

(12 · Cin/r) + 32 · (Cin/r + Cin/2r + Cin/3r) = 17.5 · Cin/r. (9)
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Compared with the parallel structure, the pyramid structure obtains a noticeable
reduction in parameters of 17.5·Cin/r

84·Cin/r = 20.8%. Obviously, the MA module applied with the
pyramid structure has lower complexity, being computationally lightweight.

In the following, the scheme of the MA module is illustrated in more detail. Firstly, in
the branch of 1× 1 receptive field size, the channel-weighted feature map of H ×W × Cin
is convoluted by a 1× 1 convolutional layer which reduces the number of channels from
Cin to Cin

r (the value of r is experimentally assigned as 8 for optimal results). Note that
the channel number, height, and width of the input channel-weighted feature are denoted
by Cin, H, and W, respectively. In terms of the other three streams, three convolutional
layers with kernel size of 3× 3 are utilized to construct the streams of the 3× 3, 5× 5, 7× 7
receptive fields. More specifically, the detailed parameters of three convolutional layers can
be denoted as {Cin

r , 3× 3, 1, 1}, {Cin
2r , 3× 3, 1, 1}, and {Cin

3r , 3× 3, 1, 1}. Note that the four
items in the brackets are filter number, filter size, stride, and padding, respectively.

Afterward, in every stream, a convolutional layer of {Cout, 1× 1, 1, 0} is introduced
for the expansion in channel dimension. In this way, the channel size of the attention map
can be matched with that of the output feature from the specific parallel residual block.
Moreover, four multi-receptive-field streams are incorporated to retain more attention
information. Furthermore, another 1× 1 convolutional layer of {Cout, 1× 1, 1, 0} is adopted
in the main stream so as to achieve a better integration among attention information of
different spatial scales. At the end, the extracted attention map is normalized in the range
of [0, 1] with a sigmoid function.

Remark 1. Res2Net is a new multi-scale backbone architecture proposed by Gao et al. [38] There are
significant distinctions between the spatial part and Res2Net [38] module which can be summarized
as the following three aspects: (1) Design purpose: the MA module is aims to exploit multi-scale
attention information whereas the Res2Net module utilizes the strategy of multi-scale to learn
omni-scale features. More generally, the former is equivalent to the extraction of a comprehensive
spatial attention map with multi-receptive-field streams whilst the latter can be interpreted as fine-
grained feature extraction or learning multi-scale representations. (2) Concatenation arrangement:
MA modules are placed in parallel with residual blocks retrieved from ResNet-50. In contrast, the
Res2Net module is an alternative architecture for residual blocks with learning of stronger multi-
scale features. In each revised residual block, the original 3× 3 convolution layer is replaced with
smaller groups of convolutional filters. (3) Specific design: The MA module exploits heterogeneous-
scale spatial attention in an efficient and cost-effective pyramid structure. The Res2Net module
intends to split the feature maps into several feature map subsets which are further processed in
a multi-scale fashion with four branches. Additionally, in the MA module, channel reduction is
introduced in every receptive field branch to reduce module parameters and computational overheads.

3.5. Classification Module

In every mini-batch of the training stage, P classes (vehicle identities) and K images of
each identity are randomly sampled. Given a set of images

{
Ij
}N

j=1 =
{

I1, I2, . . . , Ij, . . . , IN
}

encompassing N = P× K images in a training batch, we obtain Np part feature maps for
each image Ij. As shown in Figure 5, each part feature map will be further fed into a
classifier which is implemented with a Fully Connected (FC) layer and a sequential softmax
layer. Each identity classifier predicts the identity of the input image and is supervised by
softmax loss:

LSoftmax = − 1
N

 Np

∑
z=1

N

∑
j=1

log
ey(z)j

∑Nl
l=1 ey(z)l

 (10)

where Nl denotes the number of vehicle labels in each training batch, z is the index of
extracted features in Np part-based branches, and y(z)j represents the prediction result of
the j-th input image Ij in the z-th part branch.
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Figure 5. Structure of classification module. Here, we take the example of Np = 4 for demonstration.
The left parts clearly illustrate feature dimension change in the feature split operation module.

Moreover, we utilize the improved Triplet Loss with Hard Mining (TriHard) which
places extra constraints on intra-class distance. In particular, an extra constraint is designed
to further improve the effect of TriHard loss. Formally, for a specific feature anchor Fi

a
belonging to vehicle i, the positive point Fi

p is expected to be pulled closer compared with

the arbitrary negative point F j
p of the j identity. In particular, in every training batch, the

hardest positive and negative samples will be selected for supervision. The improved
TriHard loss can be defined as:

LTriHard =
1

PK

P

∑
i=1

K

∑
a=1

max
p=1···K

De

(
Fi

a, Fi
p

)
+
[
m +max

p=1···K
De

(
Fi

a, Fi
p

)
−min

j=1···P
n=1···K

j 6=i

De

(
Fi

a, F j
n

)]
+

(11)

where m is margin (experimentally set to be 0.3 in our implementation),
P
∑

i=1

K
∑

a=1
stand for all

the anchor images of batch. [ f ]+ represents the function of max( f , 0) and De(·) denotes
the Euclidean distance.

Furthermore, we propose a straightforward Inter-group Feature Centroid Loss (IFCL)
function to further maximize the inter-group distance in a centroid-based fashion. We
firstly calculate the centroid of the output feature maps, Ci, within group i as:

Ci =
1
K

K

∑
i=1

Fi
t , (12)

where K means the total number of images in group i, and Fi
t denotes the feature map of

the t-th image in group i,
Then, for P groups in a training batch, the IFCL function can be written as:

LIFC =
1

(K
2)

P

∑
i=1

P

∑
j=i+1

S(Ci, Cj) + 1
2

. (13)

With the combination of the aforementioned supervised losses, the final objective
function in APANet can be given as:

L = LSoftmax + λ1 · POL + λ2 · PAAL + λ3 · LTriHard + λ4 · LIFC (14)
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where λi(i = 1, 2, 3, 4) are hyper-parameters for different loss items. When hyper-parameters
are all set to the optimal value, the final objective function is capable of learning discrimina-
tive and robust features.

Altogether, these five loss items are mutually integrated with one another. Softmax
loss concentrates on the classification of vehicles and POL aims to learn diverse part-level
representations by virtue of orthogonal regulations. Moreover, the PAAL loss item is
beneficial to perform attention consistency in a part-level fashion. When it comes to the
optimization of embedding space, the improved TriHard loss and the proposed IFCL
complement each other. More specifically, the former concentrates on minimizing intra-
group distance whilst the latter intends to maximize inter-group distance based on centroid
features of different identities in a batch.

4. Experiments
4.1. Datasets and Settings

With the purpose of justifying the superiority of APANet, we conduct extensive
experiments on two popular vehicle Re-ID datasets. One is a large-scale benchmark dataset
for vehicle Re-ID in the real-world urban surveillance scenario, named VeRi-776 [3,14,15].
Another dataset is called VERI-Wild [16] which is to promote the research of vehicle Re-ID
in the wild. Table 1 presents a comprehensive introduction to them. The vehicle pictures are
taken by non-overlapping surveillance cameras and each picture is denoted by a specific
vehicle label. In the following experiment results, the rank-1 accuracy and mean average
precision (mAP) will be reported.

Table 1. Detailed introduction to two mainstream vehicle Re-ID datasets.

Datasets

Training Testing

IDs Images
Query Gallery

IDs Images IDs Images

VeRi-776 [3] 576 37,778 200 1678 200 11,579
VERI-Wild [16] (Small) 30,671 277,797 3000 3000 3000 38,861

VERI-Wild [16] (Medium) 30,671 277,797 5000 5000 5000 64,389
VERI-Wild [16] (Large) 30,671 277,797 10,000 10,000 10,000 128,517

4.2. Implementation Details
4.2.1. Baseline Network

For a fair comparison, the same backbone network (i.e., ResNet-50) is adopted in a
Baseline (BL) model. Different from APANet, in the BL model, there are also six branches
each independently supervised by a softmax loss. In addition, MA modules are removed,
and POL, PAAL, IFCL, and the improved TriHard losses are no longer utilized as the
supervised loss function in the BL model.

4.2.2. Training Settings

APANet is a convolutional neural network implemented by the Pytorch Deep learning
framework. Specific software versions include Torch 1.3.0, CUDNN 7.6.1, and CUDA 10.2.
The original input pictures are all resized to 384× 384. The data augmentation strategies
of random erasing [39] and horizontal flipping are utilized to avoid overfitting. The
batch size in the training stage is 30 where P = 10 and K = 3. In the improved TriHard
loss, we assign the value of margin m = 0.3. Considering the results from extensive
experiments in parameter analysis, the hyper-parameters in the final objective function are
set to λ1 = 0.2 and λ2 = λ3 = λ4 = 1, accordingly. More parameter analyses are given
in Section 4.6. The optimizer of Stochastic Gradient Descent (SGD) with momentum is
utilized for model optimization. The total training epochs are 120, 150 for VeRi-776 [3],
VERI-Wild [16], respectively.
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4.2.3. Testing Settings

As aforementioned, there are Np part features, which indicate that 2048× Np dimen-
sional combined features are utilized for the classification in APANet. The similarity score
between two arbitrary pictures is calculated by the cosine distance. The testing batch size is
set to 60 and the re-ranking strategy is not utilized in the testing process. Here, we only
report the experiment results under the single-shot and single-query mode.

4.3. Ablation Study

To reveal the impact of each component on the final performance, the comparative
experiments are meticulously conducted, as summarized in Table 2.

Table 2. Quantitative ablation study of APANet on the final performance. BL: Baseline model;
MA: Multi-receptive-field Attention; POL: Part-level Orthogonality Loss; PAAL: Part-level Attention
Alignment Loss; IFCL: Inter-group Feature Centroid Loss; ITriHard: Improved Triplet Loss with
Hard Mining.

No. BL ITriHard IFCL MA POL PAAL
VeRi-776

Rank-1 mAP

1 X 89.1 63.1
2 X X 90.2 65.5
3 X X 89.6 64.0
4 X X 93.3 73.5
5 X X 91.0 67.5
6 X X 91.5 66.0

7 X X X 90.5 76.4
8 X X X X 94.3 75.4
9 X X X X 91.4 68.7

10 X X X X X 95.7 78.0

11 X X X X X X 96.4 79.8

According to the results in the first six rows in Table 2 on VeRi-776 [3], one can clearly
observe that every component brings a improvement in performance alone. Obviously,
the MA module is undoubtedly the biggest contributor to the performance gains of 4.2%
and 10.4% for rank-1 accuracy and mAP, which convincingly verifies its effectiveness. The
second biggest contributor is POL which brings a noticeable improvement in performance
of 1.9% and 2.9% for rank-1 accuracy and mAP, respectively.

Furthermore, we compare these two contributors in the next four rows. As the results
in 10th row indicate, MA+POL gives a further performance boost of 5.2% and 1.6% for rank-
1 accuracy and mAP. Based on the discriminative features exploited by the MA module,
POL is capable of facilitating the model to learn diverse part-level representations via an
orthogonal penalty. Additionally, the comparisons among the 1st, 2nd, 3rd, and 7th row
demonstrate the complementary effect between the improved TriHard loss function and
IFCL, and the combination of them gives the performance gains of 13.3% and 1.4% for mAP
and rank-1 accuracy. in addition, as shown in the 6th and 11th row, PAAL has also proven
to be beneficial to model performance.

Clearly, there is a progressive improvement in recognition performance from BL to
APANet. Taking the above results and analysis into consideration, we can safely draw
the conclusion that our proposed modules are all effective and using all components (i.e.,
APANet) gains the best performance.

4.4. Qualitative Analysis

We further carry out more detailed comparative experiments for qualitative evaluation.
For fair comparisons, in all comparative experiments, when we observe the effect of a spe-
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cific component, other components in APANet are all fixed, with the same implementation
setting for training/testing.

4.4.1. Configuration Analysis of MA Modules

To determine the optimal placement of MA modules, exhaustive comparative ex-
periments of variant placements are conducted. Specifically, MA modules are placed in
different positions in the backbone network but with the same embedded structure. From
Table 3, one can obviously observe that it brings little improvement over the baseline setting
when the MA module is placed in parallel with Conv.B2, and the performance even became
worse if the MA module is in Conv.B1. On the contrary, a noticeable performance boost
is shown when MA modules are placed in parallel with Conv.B3 and Conv.B4. As the
results indicate, MA modules are more suitable for placing with Conv.B3 and Conv.B4.
Moreover, to find the optimal number of MA modules, we further conduct the quantitative
experiments of MA modules, which are given in Section 4.6.

Table 3. Qualitative analysis of MA modules on VeRi-776 [3] in terms of model size, computation
complexity, and performance. PN: Parameter Number. FLOPs: Floating-point Operations.

Method Number of MAs PN (M) FLOPs (G) Rank-1 mAP

Baseline (without
MA modules) 0 30.0 9.2 89.1 63.1

MA–Conv.B1 3 30.2 10.3 89.0 62.7
MA–Conv.B2 4 31.7 11.4 89.7 64.1
MA–Conv.B3 6 40.9 12.4 92.2 69.5
MA–Conv.B4 3 48.7 13.9 92.6 70.6

MA–Conv.B3, 4 6 54.8 15.4 93.3 73.5

4.4.2. Effectiveness of the Improved Triplet Loss and IFCL

To clearly demonstrate the efficacy of IFCL and the improved triplet loss, in particular,
we randomly choose 24 samples from the test set of VeRi-776 [3] and utilize them to
visualize the feature distribution with t-SNE. As presented in Figure 6a, there is large
overlap between the intra- and inter-class distance distributions. By comparing Figure 6a,b,
we can clearly learn that the improved TriHard loss can minimize the intra-group distance
and maximize inter-group distance effectively. Moreover, as presented in Figure 6b,c, IFCL
manages to pull closer the images of same identity in feature representations. Obviously, the
visualization results justify the effectiveness of both the improved TriHard loss and IFCL.

Figure 6. The t-distributed Stochastic Neighbor Embedding (t-SNE) visualization results of feature
distributions on the VeRi-776 [3] test set. (a) APANet without LTriHard and LIFC; (b) APANet without
LIFC; (c) APANet.

In addition, we also conduct a comparative experiment between the original TriHard
loss and the improved TriHard loss. Experimental results are shown in Table 4 from
which we obviously learn that the improved Trihard loss is superior to the original one. In
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conclusion, the improved Trihard loss function places extra constraints on the intra-class
distance and gains better experiment results.

Table 4. Comparison of rank and mAP for original TriHard loss and improved TriHard loss on
VeRi-776 [3], where other model’s components and experiment settings remain unchanged.

Method Rank-1 Rank-5 mAP

Original TriHard 95.9 98.4 79.2
Improved TriHard 96.4 98.7 79.8

4.5. Visualization Results of Attention Mechanism

As shown in Figure 7, by virtue of the proposed MA module, APANet learns more
discriminative and robust attention maps which focus more on salient vehicle-related
regions and suppress the background interferences. That further confirms that the learned
features in APANet show high robustness to background clusters.

Large Value

Small Value
(a) (b)       (c)(a) (b)       (c)

Figure 7. Comparisons of visualization results between baseline model and APANet. (a) Original
images; (b) baseline; (c) APANet.

In order to capture more comprehensive and diverse visual cues for Re-ID, we expect
that different parts obtained from APANet can activate different discriminative image
regions. As aforementioned in Section 3.5, there are Np local feature maps utilized for
classification. Correspondingly, as clearly shown in Figure 8, we further visualize all
attention maps obtained from Np part feature maps. Based on the results, we observe that
different local features are able to place unequal emphasis on different vehicle part regions.
Additionally, these features are robust to the background clutter. To sum up, POL has been
proven to be effective in learning diverse and part-orthogonal representations.

4.6. Parameter Analysis

To reveal the specific impact of different parameters, we carry out extensive compara-
tive experiments of APANet on the VeRi-776 [3] dataset as quantitative analysis.

4.6.1. Effect of the Number of MA Modules

According to the results in Section 4.4.1, we further carry out quantitative experiments
of the number of MA modules. As shown in Table 5, with the increase in the number of
MA modules, the performance of the model gradually improves at first and reaches the
peak when six MA modules are embedded in APANet. The results are quite reasonable
and understandable. If too few MA modules are embedded in APANet, the learned feature
representations tend to remain coarse-grained, since the discrimination of features is still not
fully enhanced. On the contrary, when excessive MA modules are adopted in APANet, the
performance is also degraded with a noticeable drop, and it also involves an unnecessary
cost of computing and extra parameters. Indeed, the manipulation of the number of MA
modules ought to balance the trade-off between the efficacy and computational overheads.
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From Table 5, it can be easily learned that the configuration of six MA modules is most
recommended and cost-effective. Hence, there are six MA modules embedded in our
proposed APANet.

(1)                      (2)                      (3) (4)

Figure 8. Visualization of results in our proposed APANet. The original vehicle images and their
attention maps of Np = 4 local features.

Table 5. The impact of the number of MA modules on VeRi-776 [3] dataset.

Number of MA Modules Rank-1 mAP

1 88.4 62.1
2 88.8 62.3
3 89.0 62.7
4 89.7 64.1
5 90.9 68.2
6 93.3 73.5
7 92.6 72.2
8 92.2 70.9
9 91.5 70.2

10 91.3 69.6

4.6.2. Effect of the Number of Part Features

As presented in Table 6, we vary Np as: 1, 2 (Horizontal, Vertical), 4, 9. Intuitively, Np
determines the granularity of the part features. When Np = 1 , the learned feature reduces
to the global descriptor. As Np increases, accuracy does not always increase with Np.
Obviously, when Np = 9, performance drops dramatically. This can be mainly attributed to
the fact that some of the refined parts are very similar to others and some may even collapse
to an empty part. In fact, the number of discriminative visual cues of vehicle image is finite.
Hence, a very large Np tends to compromise the discriminative ability of the part features.
According to Table 6, the APANet achieves the best mAP and rank-1 performance when
Np reaches 4 on VeRi-776 [3]. Consequently, we use Np = 4 parts in our implementation.
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Table 6. The impact of the number of part features Np on VeRi-776 [3] dataset.

Number of MA Modules Rank-1 mAP

1 94.8 75.6
2 (Horizontal) 95.9 78.8

2 (Vertical) 95.8 78.8
4 96.4 79.8
9 93.6 74.1

4.6.3. Effect of Hyper-Parameters in Loss Function

Here, we conduct comparative experiments to evaluate the impact of the
λi(i = 1, 2, 3, 4) parameters that control the balance between the five loss items in Equation (14).
By default, when we evaluate the effect of one selected parameter, the values of other pa-
rameters are fixed. The quantitative results are reported in Figure 9 where we only report
rank-1 accuracy for simplicity.

Figure 9. Parameter analysis on VeRi-776 [3]. Sensitivity to the λi(i = 1, 2, 3, 4) parameters in the
final objective function.

In the first place, for λ1 which represents the weight of POL loss item, we observe that
a low value tends to degrade part diversity learning with a slight performance drop whilst
a large value (i.e., λ1 > 1) seems to have a profoundly negative impact on performance.
Indeed, the softmax loss function plays a crucial role in multi-class classification which will
be severely affected if the value of λ1 is too large. Likewise, the high value of λi(i = 2, 3, 4)
also induces a dramatic drop in performance. Moreover, it is clearly shown that, on
the whole, λi(i = 2, 3, 4) are not very sensitive to the choice of parameters in the range
[0.001, 1.0]. It can be easily learned from the trend of the change in Figure 9 that the
performance reaches the peak when λi(i = 2, 3, 4) = 1.0. Consequently, from Figure 9,
we observe that when λ1 = 0.2 and λ2 = λ3 = λ4 = 1.0, APANet reaches the peak
performance. With an optimal value of λi(i = 1, 2, 3, 4), the final objective function manages
to completely realize the potential of all five loss items, with learning more discriminative,
diverse, and robust representations.

4.7. Comparison with State-of-the-Art Methods

This section presents the comparison results between the proposed APANet and
state-of-the-art methods on two mainstream vehicle Re-ID datasets. The comparison meth-
ods are divided into three categories: global feature-based methods, part feature-based
methods, and attention mechanism-based methods, which are abbreviated as GF-based, PF-
based, and AM-based methods, respectively. The GF-based methods contain a Hierarchical



Electronics 2022, 11, 1617 17 of 22

Spatial Structural Graph Convolutional Network (HSS-GCN [40]), Dual Domain Multi-
task (DDM [41]), Embedding Adversarial Learning Network (EALN [42]), Multi-label-
based Similarity Learning (MLSL [43]), Group–Group Loss-based Global–Regional Feature
Learning (GGL [44]), Support Neighbor (SN [45]) network, Uncertainty-aware Multi-shot
Teacher–Student (UMTS [46]), Context-aware Graph Convolution Network (CAGCN [47]),
Viewpoint-aware Re-ID (VARID [48]), and Vehicle–Orientation–Camera (VOC-ReID [49]).
The PF-based methods contain Part-regularized Near-duplicate (PRN [17]), Parsing-guided
Cross-part Reasoning Network (PCRNet [4]), Distance-based Global and Partial Multi-
regional Feature Learning (DGPM [50]), Parsing-based View-aware Embedding Network
(PVEN [22]), and Three-branch Embedding Network (TBE-Net [51]). The AM-based
methods include: Viewpoint-aware Attentive Multi-view Inference (VAMI [52]), Struc-
tured Graph Attention (SGAT [5]) network, Semantics-guided Part Attention Network
(SPAN [12]), Multi-view Attention Network (MVAN [7]), Part-guided Attention Network
(PGAN [10]), and Self-supervised Attention for Vehicle Re-identification (SAVER [6]).

4.7.1. Evaluations on Veri-776 Dataset

We compare our proposed APANet with current existing methods in Section 4.2.3
and settings in Table 7. Experimental results show that APANet outperforms all of those
compared methods with the 96.4% and 79.8% accuracy in rank-1 and mAP on the VeRi-
776 [3] dataset. We observe that the results of APANet are better than the second best model
by a margin of 0.1% in mAP on VeRi-776 [3]. When compared with PF-based approaches,
the APANet surpasses all other models with a noticeable lead of 0.2% and 0.3% in rank-1
and mAP. The performance results convincingly validate the efficacy of our approach and
further indicate that MA modules are capable of exploiting heterogeneous-scale pyramid
attention information, therefore learning discriminative features.

Table 7. Comparison results with state-of-the-art methods on VeRi-776 [3] in terms of rank and mAP.
‘-’ indicates the result is not reported. Note that the best performance is marked in bold and the
second best accuracy is underscored.

Method
VeRi-776

Rank-1 Rank-5 mAP

G
F-

ba
se

d

HSS-GCN (2021) [40] 64.4 86.1 44.8
DDM (2020) [41] 72.8 86.4 53.6
EALN (2019) [42] 84.4 94.1 57.4
MLSL (2019) [43] 90.0 96.0 61.1
GGL (2020) [44] 89.4 95.0 61.7
SN (2022) [45] 95.1 98.1 75.7

UMTS (2020) [46] 95.8 - 75.9
CAGCN (2021) [47] 95.2 - 79.2
VARID (2022) [48] 96.0 99.2 79.3

VOC-ReID (2020) [49] 96.3 - 79.7

PF
-b

as
ed

PRN (2019) [17] 94.3 98.7 74.3
PCRNet (2020) [4] 95.4 98.4 78.6
DGPM (2021) [50] 96.2 98.1 79.4
PVEN (2020) [22] 95.6 98.4 79.5

TBE-Net (2021) [51] 96.0 98.5 79.5

A
M

-b
as

ed

VAMI (2018) [52] 77.0 90.8 50.1
SGAT (2020) [5] 89.7 - 65.7

SPAN (2020) [12] 94.0 97.6 68.9
MVAN (2021) [7] 92.6 97.9 72.5
PGAN (2020) [10] 96.5 98.3 79.3
SAVER (2020) [6] 96.4 98.6 79.6

APANet 96.4 98.7 79.8
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4.7.2. Evaluations on VERI-Wild Dataset

We further evaluate APANet on VERI-Wild [16] which is a large and popular Re-ID
dataset. The compared methods contain Group-sensitive Triplet Embedding (GSTE [53]),
Feature Distance Adversarial Network (FDA-Net [16]), MLSL [43], Adaptive Attention
Model for Vehicle Re-identification (AAVER [13]), Triplet Embedding [54], UMTS [46],
and VARID [48]. Clearly, from Table 8, it can be easily learned that APANet achieves
quite competitive performance on VERI-Wild [16], advancing beyond most state-of-the-art
methods with a lead by a margin of 3.2% and 4.1% in terms of rank-1 and mAP. The
results on this more challenging and complex dataset further justify the effectiveness of our
proposed APANet.

Table 8. Comparison results with state-of-the-art methods on VERI-Wild [16] in terms of rank and
mAP. ‘-’ indicates the result is not reported. Note that the best performance is marked in bold and the
second best accuracy is underscored.

Method
VERI-Wild (Small)

Rank-1 Rank-5 mAP

GSTE (2018) [53] 60.5 - 31.4
FDA-Net (2019) [16] 64.0 - 35.1

MLSL (2019) [43] 86.0 93.5 46.3
AAVER (2019) [13] 75.8 - 62.2

Triplet Embedding (2019) [54] 84.2 - 70.5
UMTS (2020) [46] 84.5 - 72.7
VARID (2022) [48] 75.3 95.2 75.4

APANet 89.2 94.7 79.5

4.7.3. Discussion

In the following, APANet will be compared with AM-based, PF-based, and GF-based
methods, so as to to verify its superiority.

In the first place, we compare APANet with the other existing models on two vehicle
Re-ID datasets. According to the results in Table 7, we observe that the worst results
are obtained by the Hierarchical Spatial Structural Graph Convolutional Network (HSS-
GCN [40]), and for the mAP the best performances are achieved by our proposed APANet.
APANet outperforms all other GF-based methods. For example, on the VeRi-776 [3] dataset,
APANet beat Vehicle Orientation Camera Network (VOC-ReID [49]), the second best, by
0.1% in terms of rank-1 accuracy and 0.1% in terms of mAP. The fact that APANet obtains
such results can be mainly summarized as these two aspects: (1) With the help of the
complementary effect between channel attention and pyramid spatial attention, the MA
module succeeds in helping the model with learning more discriminative representations.
(2) Most of these GF-based modules neither solve the problem of cross-view inconsistency
nor allocate appropriate attention towards part features. Instead, we propose a part-level
attention loss to allocate more attention towards the most discriminative part. In addition,
PAAL is further utilized to perform attention alignment in a part-level manner with view-
invariant features. As for the VARID [48], it can achieve the best performance on rank-5
accuracy, because VARID utilizes the unsupervised clustering view labels. The view labels
incorporate view information into deep metric learning to tackle the viewpoint variation
problem, but the online unsupervised clustering requires extra calculation during the
training process. However the proposed APANet still exceeds this method in rank-1 and
mAP results.

Moreover, when compared with AM-based methods, APANet still achieves leading
performance on the VeRi-776 [3] dataset. We also notice that some AM-based methods
achieve competitive performance by integrating vehicle semantic parsing information,
which is generated by SPAN [12]. However, an extra vehicle semantic parsing model not
only increases the computation overheads and model parameter size but also needs to
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be pre-trained with other annotations. In addition, the underlying gap between vehicle
parsing/pose estimation and Re-ID datasets remains a problem when directly adopting
these parsing/pose methods in an off-the-shelf manner. In fact, their performances are
considerably vulnerable to the accuracy of the extra pre-trained model. Notably, Khor-
ramshahi et al. [6] utilized a self-supervised cascaded clustering method to generate the
pseudo-labels of vehicle parts and achieve the parsing alignment. Additionally, PGAN [10]
considers the relations between different parts and outperforms our method on VeRi-776 [3]
by 0.1% in terms of rank-1. Different from them, APANet aims to improve part feature rep-
resentation from a new perspective. In APANet, POL is meticulously proposed to pursue
more comprehensive and diverse part-level features by means of decreasing correlations
among parts.

In addition, we notice that APANet significantly outperforms most PF-based methods,
encompassing the methods exploiting semantically aligned features [22], building a part-
neighboring graph [4], proposing an end-to-end three-branch network [51], calculating
part-regularized local constraints [17], and other methods [50]. These comparative results
demonstrate the fact that APANet is entirely effective and superior, advancing the existing
PF-based methods.

Our future work will focus on applying our method to other scenarios and different
kinds of Re-ID tasks, including: (1) Validating the proposed APAnet based on the ResNet-50
backbone implementation on Unmanned Aerial Vehicle (UAV) Re-ID datasets [55] and
tunnel scene vehicle Re-ID [56] tasks. (2) Improving the proposed attention mechanism in
order to avoid the effects of occlusion situations on cross-view Re-ID tasks, e.g., geographic
target localization and building Re-ID [57].

5. Conclusions

In this paper, we propose a novel Attentive Part-based Alignment Network (APANet)
which fulfills our purpose of obtaining discriminative, diverse, and robust part features.
We firstly improve the part-level feature representations by a Part-level Orthogonality Loss
(POL) which aims to learn diverse part-uncorrelated features via an orthogonal penalty.
Moreover, in order to handle the problem of significant view variations, we propose a
Part-level Attention Alignment Loss (PAAL) to achieve attention alignment in a part-level
manner. Afterwards, we propose a powerful Multi-receptive-field Attention (MA) module
to exploit comprehensive attention information to reduce the background clutter and ob-
tain discriminative features. Furthermore, we improve the triplet loss by adding a special
constraint for intra-group distance and propose a novel Inter-group Feature Centroid Loss
(IFCL) to reduce inter-group distance, improving feature representation from the perspec-
tive of optimizing distance. The detailed ablation analysis and exhaustive comparative
experiments convincingly validate the effectiveness of APANet and its components. Al-
though the APANet can achieve competitive performance, there are still some limitations.
To be specific, the pyramid structure of APANet reduces 79.2% of the parameters compared
to the common parallel structure, but the proposed APANet increases the model parameters
compared with baseline. In addition, in order to obtain fine-gained part features, the time
and computation complexity should be increased during the model inference phase.
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