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Abstract: At present, laparoscopic augmented reality (AR) navigation has been applied to minimally
invasive abdominal surgery, which can help doctors to see the location of blood vessels and tumors
in organs, so as to perform precise surgery operations. Image registration is the process of optimally
mapping one or more images to the target image, and it is also the core of laparoscopic AR navigation.
The key is how to shorten the registration time and optimize the registration accuracy. We have stud-
ied the three-dimensional (3D) image registration technology in laparoscopic liver surgery navigation
and proposed a new registration method combining rough registration and fine registration. First,
the adaptive fireworks algorithm (AFWA) is applied to rough registration, and then the optimized
iterative closest point (ICP) algorithm is applied to fine registration. We proposed a method that is
validated by the computed tomography (CT) dataset 3D-IRCADb-01. Experimental results show that
our method is superior to other registration methods based on stochastic optimization algorithms in
terms of registration time and accuracy.

Keywords: laparoscopic AR navigation; liver surgery; 3D image registration method; point
cloud registration

1. Introduction

During the operation, the information that doctors can obtain through laparoscopy
is very limited. They can only obtain the image information of a part of the surface area,
and cannot obtain the information inside the organs, which rely heavily on preoperative
imaging [1]. In this case, doctors can only rely on their own experience to judge the location
of the internal lesions, which has high requirements for doctors and may cause the wrong
location of the lesions [2,3]. In 1986, Roberts et al. [4] and Kelly et al. [5] performed AR-
assisted surgery in neurosurgery. Since then, with the development of AR applications in
auxiliary surgery, AR surgery navigation can accurately match the preoperative anatomical
structure information with the intraoperative information, and then present it to the doctor,
which has been applied in neurosurgery and orthopedic surgery [6]. The image guidance
function of laparoscopic AR navigation has also made much progress in hepatectomy
and nephrectomy [7–9]. The realization methods of laparoscopic AR navigation mainly
include medical image processing, graphic image rendering, image registration, and display
technology [10]. The main challenge is the speed and accuracy of 3D image registration [11].
Laparoscopic images and preoperative CT images were obtained from different imaging
devices. Due to the different imaging modes, they belong to multi-modal registration. In
laparoscopic AR navigation, the speed and accuracy of registration are critical to the impact
of surgery [12].

In this paper, the 3D image registration method of laparoscopic AR liver surgery navi-
gation is studied. The registration process involves preoperative point cloud reconstruction,
intraoperative point cloud reconstruction, and related registration methods. As the imaging
principles of preoperative images and intraoperative laparoscopic images are different, and
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there is no same standard to match it [13], after studying the multi-modal image registration
method, the 3D–3D point cloud registration method is selected. Here we only list the most
relevant work. A binocular vision camera can provide doctors with images similar to
laparoscopy, which can be used for surface reconstruction by matching features between
images [14–16]. In this study, we used a binocular vision camera to obtain intraoperative
information. The novelty of the 3D image registration method proposed in this paper
is that a combination of rough registration and fine registration is used for multi-modal
liver image registration. The rough registration uses the AFWA with adaptive amplitude,
which replaces the amplitude operator in the enhanced fireworks algorithm, and the fine
alignment uses the ICP algorithm improved by the k-dimensional tree (KD-tree). Our goal
is to achieve fast and more accurate 3D image registration for laparoscopic AR liver surgery
navigation. In particular, the main work of this study includes the following:

(1) A 3D reconstruction of the segmented preoperative CT images using the Marching
Cubes algorithm on the VTK platform, and the 3D point cloud was generated after
obtaining the 3D model of the liver;

(2) The laparoscopic (binocular vision camera) image was processed, and the 3D point
cloud of the intraoperative liver image was generated;

(3) A two-step combined registration method through rough registration and fine reg-
istration is introduced. First, AFWA is applied to rough registration, and then the
optimized ICP is applied to fine registration, which solves the problem that the ICP
algorithm will fall into local extreme values during the iterative process;

(4) The registration method we proposed and other registration methods based on
stochastic optimization algorithms are jointly tested in experiments. From the point
cloud registration results, our method is better in terms of computation time and
registration accuracy.

2. Background

Surgery navigation is to accurately overlay the patient’s preoperative or intraoperative
images and the patient′s anatomical structure to assist the doctor in accurately locating
the lesion, thereby making the operation more precise and safer. Image registration in
surgery navigation is the process of optimally mapping one or more images to the target
image, and it is also the core of laparoscopic AR navigation. As shown in Figure 1, using
the surgery navigation system, doctors can see the AR overlay image in the virtual reality
glasses or display of laparoscopy, which seems to build a map for surgery, so that doctors
can accurately find the location of lesions.
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3. Related Work

Literature [17,18] reported the use of electromagnetic tracking to achieve the regis-
tration technology of preoperative CT and ultrasound imaging. Literature [19–22] has
reported different registration techniques for image guidance in liver surgery. Fusaglia
et al. [23] proposed a new registration method for liver surgery, which can register the
intraoperative real-time reconstruction image with the preoperative image. Tam et al. [24]
conducted a comprehensive investigation on rigid and non-rigid registration methods.
In the process of 3D image registration, the ICP algorithm provides high precision and
robustness and is widely used. Segal et al. [25] optimized the ICP algorithm and obtained
higher robustness. Bentley et al. [26] proposed a KD-tree data structure, which provides a
new space search idea. Liu et al. [27] used a KD-tree optimization algorithm to improve
the original ICP, and the test results showed that the stability and registration speed were
improved. It is worth noting that the application of ICP in 3D image registration also has
certain drawbacks, such as a certain probability of falling into a local optimum. Li et al. [28]
introduced an AFWA with high performance, and the experimental results proved that
AFWA has high performance and does not take much time. Shi et al. [29] proposed a 3D
point cloud registration method based on AFWA and ICP, which was verified by 3D point
cloud registration of the physical model of the statue. The experimental results show that
this method shows good calculation speed and accuracy, and can be applied in the field
of cultural relics restoration. Chen et al. [30] proposed a new medical image registration
method, which uses the fireworks algorithm to improve the coral reefs optimization algo-
rithm for medical image registration. Through experimental tests, the method has a fast
convergence speed and a significant improvement in computational performance. Zhang
et al. [31] evaluated the LARN system they developed for application in liver surgery
navigation. Through comparative analysis, the LARN system can help doctors to identify
important anatomical structures during liver surgery, thus reducing surgery injuries. Pela-
nis et al. [32] tested and evaluated a liver surgery navigation system that provides an AR
overlay on the laparoscopic camera view during laparoscopic liver surgery. The system
can help doctors solve the difficulties associated with liver surgery, and thus perform safer
liver surgery.

4. Materials and Methods
4.1. CT Data Preprocess

We used data from the publicly available 3D-IRCADb-01 dataset, which is provided by
https://www.ircad.fr/research/3d-ircadb-01 (accessed on 3 January 2022). The CT dataset
of three patients was selected, one of whom was a female patient, born in 1987, with a liver
tumor located in the fifth zone. The CT voxel size is 0.78 mm × 0.78 mm × 1.6 mm, the
pixels are 512 × 512 × 172, the average intensity of the liver in CT is 84, and the liver size
is 20.1 cm × 16.9 cm × 15.7 cm. We use 3D Slicer as a tool for image segmentation. We
import the patient′s CT data into the 3D Slicer, use the segmentation module to segment
the CT images, and extract the target area.

4.2. Preoperative Liver Point Cloud Generation

The 3D reconstruction of medical images has been extensively researched and is
becoming increasingly mature [33], and it has contributed to the diagnosis of the patient′s
condition and 3D model printing. We choose to use the Marching Cubes algorithm in
the VTK platform to perform a 3D reconstruction of the segmented CT images. The
reconstructed models of liver, gallbladder, hepatic vena cava and portal vein, and liver
tumor are shown in Figure 2a–d. After setting the transparency, these models are placed
according to the original 3D space position, as shown in Figure 2e. At the same time,
import the reconstructed model into the MeshLab software to generate a surface point
cloud, which is shown in Figure 2f. The point cloud includes 7760 points.

https://www.ircad.fr/research/3d-ircadb-01
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Figure 2. Three-dimensional reconstruction and surface point cloud generation, (a) liver model,
(b) gallbladder model, (c) hepatic vena cava and portal vein model, (d) liver tumor model, (e) liver
and internal tissue model, (f) preoperative liver point cloud.

4.3. Intraoperative Liver Point Cloud Generation
4.3.1. Calibration of Binocular Vision Camera

The MER-130-30UM binocular vision camera was used to simulate a stereo laparo-
scope. The installation and fixing of the binocular vision camera are shown in Figure 3a.
Both cameras of the binocular vision camera are placed horizontally and fixed on the same
reference plane, while the Y coordinates of the cameras must be horizontally aligned. The
chessboard on the cardboard is placed in different positions such as far and near, up and
down, left and right to take 20 pairs of images. We imported 20 pairs of chessboard images
into Matlab (R2019a, America), and used the stereo vision calibration toolbox to obtain
various parameters of the binocular vision camera through calculation. At the same time,
20 pairs of image feature points were matched, respectively, and the matching result of one
pair of images is shown in Figure 3b.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 3. The liver model was photographed by binocular vision camera, and the point cloud was 
generated after image processing, (a) the installation and fixing of the binocular vision camera, (b) 
the matching result of one pair of images, (c) the calibrated binocular vision camera is used to pho-
tograph the liver model, (d) the result of using the Laplacian to sharpen the image, (e) the disparity 
image obtained by using the disparitySGM function, (f) the final result of the point cloud. 

4.3.2. Image Acquisition and Image Processing 
We used the processed liver CT data to obtain a 3D printed model to simulate the 

real liver. The calibrated binocular vision camera was used to photograph the liver model 
as shown in Figure 3c. The obtained images were corrected to remove distortions using 
the rectifyStereoImages function in Matlab. Figure 3d shows the result of using the Lapla-
cian to sharpen the image. 

4.3.3. Point Cloud Generation 
The disparity image was generated using the SGM algorithm in Matlab, as shown in 

Figure 3e. The filtering operation is performed after reconstructing the liver model point 
cloud, and the final obtained point cloud is shown in Figure 3f. Since the computation 
time in the registration process is directly related to the number of points in the point 
cloud, it should be considered how to reasonably reduce the number of points in the point 
cloud. We select representative points in the point cloud through the filtering method to 
filter out unnecessary points and noise points [34]. The KD-tree algorithm is used to find 
the spatially neighboring point set of the point cloud, and to solve the average distance 
between the point cloud and the spatially neighboring point set, and the average and 
standard deviation of the global distance are calculated. After this, the points outside the 
range of the mean distance ± standard deviation are removed to obtain the filtered point 
cloud containing 1830 points. 

  

Figure 3. The liver model was photographed by binocular vision camera, and the point cloud was
generated after image processing, (a) the installation and fixing of the binocular vision camera, (b) the
matching result of one pair of images, (c) the calibrated binocular vision camera is used to photograph
the liver model, (d) the result of using the Laplacian to sharpen the image, (e) the disparity image
obtained by using the disparitySGM function, (f) the final result of the point cloud.
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4.3.2. Image Acquisition and Image Processing

We used the processed liver CT data to obtain a 3D printed model to simulate the real
liver. The calibrated binocular vision camera was used to photograph the liver model as
shown in Figure 3c. The obtained images were corrected to remove distortions using the
rectifyStereoImages function in Matlab. Figure 3d shows the result of using the Laplacian
to sharpen the image.

4.3.3. Point Cloud Generation

The disparity image was generated using the SGM algorithm in Matlab, as shown in
Figure 3e. The filtering operation is performed after reconstructing the liver model point
cloud, and the final obtained point cloud is shown in Figure 3f. Since the computation time
in the registration process is directly related to the number of points in the point cloud, it
should be considered how to reasonably reduce the number of points in the point cloud.
We select representative points in the point cloud through the filtering method to filter out
unnecessary points and noise points [34]. The KD-tree algorithm is used to find the spatially
neighboring point set of the point cloud, and to solve the average distance between the
point cloud and the spatially neighboring point set, and the average and standard deviation
of the global distance are calculated. After this, the points outside the range of the mean
distance ± standard deviation are removed to obtain the filtered point cloud containing
1830 points.

4.4. Two-Step Combined Registration Method through Rough Registration and Fine Registration

As both binocular vision imaging and CT images can be regarded as 3D data, the
3D–3D registration method is used here. The registration of the 3D point cloud is used as
the basis for the registration of CT images and binocular vision imaging, so as to register
the obtained preoperative point cloud and intraoperative point cloud.

4.4.1. Rough Registration Process Based on AFWA

Before performing AFWA, it is necessary to determine the dataset, establish the fitness
function, and determine the optimization goal. In the initial setting, the KD-tree can be used
cleverly to determine the closest point. The preoperative model point cloud is stored in a
KD-tree structure, and the K-nearest neighbor algorithm is used to search for the nearest
neighbors of all points in the intraoperative point cloud in the KD-tree, and establish
corresponding points. The point cloud generated from the intraoperative image was set as
the target and set as P, while the point cloud generated from the preoperative model was
set as the reference and set as Q. As the nearest neighbor point set of point cloud P, q can be
obtained by searching in point cloud Q. For the sake of unity and convenience, we use p
point set as a shorthand for point cloud P, and the fitness function is established

f (R, T) =
1
n

n

∑
i=1
‖qi − (R× pi + T)‖

2

= min (1)

Among them, R is the rotation variable and T is the translation variable, including
3 rotation variables and 3 translation variables. Where n represents the number of points in
the target p point set. After that, AWFA is used to realize rough registration. It is worth
noting that adaptive explosion radius is the core mechanism of AWFA. In addition, in the
AWFA, the fitness function is established to calculate the fitness value of each spark, so as
to produce different numbers of sparks at different explosion radii. Figure 4a shows the
rough registration process based on AFWA.



Electronics 2022, 11, 1670 6 of 11

Electronics 2022, 11, x FOR PEER REVIEW 6 of 11 
 

 

4.4. Two-Step Combined Registration Method through Rough Registration and Fine Registration 
As both binocular vision imaging and CT images can be regarded as 3D data, the 3D–

3D registration method is used here. The registration of the 3D point cloud is used as the 
basis for the registration of CT images and binocular vision imaging, so as to register the 
obtained preoperative point cloud and intraoperative point cloud. 

4.4.1. Rough Registration Process Based on AFWA 
Before performing AFWA, it is necessary to determine the dataset, establish the fit-

ness function, and determine the optimization goal. In the initial setting, the KD-tree can 
be used cleverly to determine the closest point. The preoperative model point cloud is 
stored in a KD-tree structure, and the K-nearest neighbor algorithm is used to search for 
the nearest neighbors of all points in the intraoperative point cloud in the KD-tree, and 
establish corresponding points. The point cloud generated from the intraoperative image 
was set as the target and set as P, while the point cloud generated from the preoperative 
model was set as the reference and set as Q. As the nearest neighbor point set of point 
cloud P, q  can be obtained by searching in point cloud Q. For the sake of unity and con-
venience, we use p point set as a shorthand for point cloud P, and the fitness function is 
established 

( ) minpq1),(
2

1
=+×−= 

=

n

i
ii TR

n
TRf  (1) 

Among them, R is the rotation variable and T is the translation variable, including 3 
rotation variables and 3 translation variables. Where n  represents the number of points 
in the target p point set. After that, AWFA is used to realize rough registration. It is worth 
noting that adaptive explosion radius is the core mechanism of AWFA. In addition, in the 
AWFA, the fitness function is established to calculate the fitness value of each spark, so as 
to produce different numbers of sparks at different explosion radii. Figure 4a shows the 
rough registration process based on AFWA. 

 
Figure 4. The registration method we designed, (a) applies AFWA for the rough registration process, 
(b) a two-step combined registration process of rough registration and fine registration. 

  

Figure 4. The registration method we designed, (a) applies AFWA for the rough registration process,
(b) a two-step combined registration process of rough registration and fine registration.

4.4.2. Fine Registration Process

The main purpose of fine registration is to correct the previously obtained registration
results and obtain more accurate registration results. Therefore, after the rough registration,
we use the ICP based on KD-tree optimization to correct the result obtained by the rough
registration. At the same time, the rotation variable R and translation variable T obtained
in the rough registration process are extracted as the optimization parameters of the
transformation operation, so that the p point set is transformed as follows

p′ = p× R + T (2)

where p′ is the new target point set after the transformation calculation. The fine registration
steps for the proposed design using optimized ICP are:

(1) Input the calculated target point set p′ and the original point set Q together. At this
time, the KD-tree structure is used to store the point set Q. Then the focus is to search
the closest neighbor point set q′ of p′, which is implemented by the nearest neighbor
algorithm, and then set the iteration number k (the initial value is k = 1).

(2) Calculate the rotation variable Rk and translation variable Tk from p′ to q′. Here,
the quaternion calculation method is used and the value of Equation (3) should
be minimized.

n

∑
i=1
‖qi −

(
Rk × p′i + Tk

)
‖

2

(3)

Use the solved Rk and Tk to transform the p′ to obtain a new target point set p′′ , which
is calculated as follows:

p′′ = Rk × p′ + Tk. (4)

(3) Calculate the average distance dk+1 between point set p′′ and point set q′

dk+1 =
1
n

n

∑
i=1
‖q′i −

(
Rk × p′′i + Tk

)
‖

2

. (5)
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Determine whether the convergence condition ‖dk+1 − dk‖ < ε is satisfied, where ε is
the minimum iteration accuracy, and dk is the average distance of the previous generation.
If it is not satisfied, the point set p′′ is used as the new initial target point set p′, and let
k = k + 1, repeat steps 1–3 until the iteration condition is satisfied.

(4) According to the obtained rotation variable Rk and translation variable Tk, the p point
set is transformed, and finally, the final registration result is obtained together with
the reference point cloud Q.

Figure 4b shows the process of the two-step combined registration method based on
rough registration and fine registration.

5. Experiments and Validation

The comparative experiment we designed was implemented with Matlab. All the
four experiments were completed on an Intel Core i5-4210m 2.6 GHz/8 GB and NVIDIA
geforce GTX 850 computer. At present, in the research of 3D image registration methods,
rough registration based on stochastic optimization algorithms is a popular method, and
the genetic algorithm (GA) and particle swarm optimization (PSO) algorithms are mainly
used [35]. We designed four experiments to verify the performance of our registration
method, mainly from the aspects of registration accuracy and speed for comparison and
verification. The first experiment is to use the registration method we introduced for
registration. In the other two experiments, we used GA or PSO to replace the AFWA
in the rough registration. The fine registration process remains unchanged, and the fine
registration step based on optimized ICP is still used. In the last experiment, rough
registration with AFWA and fine registration with ICP. In these four experiments, the
input data are all the same. Figure 5 shows the point cloud registration results of the
four experiments.
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In the experiment, the four registration methods were tested. Table 1 shows the overall
computation time and accuracy comparison of the four methods.

Table 1. In the experiment, the overall computation time and accuracy of the four registration
methods are compared.

GA + Improved ICP PSO + Improved ICP AFWA + ICP Ours

Dataset 1
Registration time (s) 0.709 0.814 16.186 0.606

Accuracy (mm) 0.0208 0.0019 0.0018 0.0018

Dataset 2
Registration time (s) 0.768 0.861 17.548 0.657

Accuracy (mm) 0.0346 0.0027 0.0022 0.0022

Dataset 3
Registration time (s) 0.849 0.953 18.658 0.726

Accuracy (mm) 0.0253 0.0023 0.0019 0.0019

6. Conclusions and Discussion

This study analyzes the 3D image registration technology in laparoscopic liver surgery
navigation. The most important thing is to introduce a two-step combined registration
method of rough registration and fine registration, which can quickly and accurately
superimpose the preoperative liver model on the laparoscopic image. We segmented
and reconstructed the preoperative CT images to obtain the 3D model and point cloud
of the liver. During the surgery, we built the intraoperative 3D surface model point
cloud, which was then registration. Using SLAM to track the camera motion can finally
realize AR visualization. These works are applicable to laparoscopic liver tumor resection,
while for open surgeries, there are easier and more accurate ways to reconstruct the 3D
model of the liver, such as using an Intel RealSense RGB-D camera. Comparing our
registration method with other registration methods based on a stochastic optimization
algorithm, from the analysis in Figure 6, our method converges very fast and can converge
in about 12 generations, which is obviously better than the other two registration methods
based on the stochastic optimization algorithm. The registration accuracy of our proposed
registration method in three tests was 0.0018 mm, 0.0022 mm, and 0.0019 mm, respectively,
which also demonstrates the good robustness of the method. As can be seen from Table 1,
our proposed registration method is clearly better than other registration methods in terms
of computation time and registration accuracy. It is worth noting that our registration
method has better performance for searching corresponding points, reduces a lot of iterative
calculations in fine registration, and can also overcome the defect that ICP has the possibility
of falling into a local optimum when it is applied. During laparoscopic liver tumor resection,
the liver will be deformed to some extent due to the patient′s breathing or the collision of
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the surgical instruments with the liver. If this deformation is to be compensated, one can
consider building a deformable biomechanical model of the liver, deformation guidance of
the model by the surface motion of the liver, and a non-uniform deformation field. However,
our proposed registration method compensates for liver deformation by taking into account
improved calculation time and registration accuracy for initial registration and multiple
intraoperative updates of the registration. This approach relies on a hybrid operating
room with a real-time instrument to provide real-time images intraoperatively. During
the surgery, the first registration is performed first, followed by multiple intraoperative
registration updates. The CT image provided intraoperatively is used as the reference
image and the image provided by the laparoscopic camera is used as the target image, thus
performing multiple registration updates. After the first registration, the liver is deformed
to varying degrees compared to its initial state due to a number of effects. Intraoperative
registration updates can compensate for this deformation, and it still works even if the liver
has undergone a large deformation.

Our proposed 3D image registration method will have a beneficial effect on surgery
navigation systems, especially it will improve the registration accuracy and speed of surgery
navigation systems. It is predictable that the improved surgery navigation system will help
doctors quickly locate the lesion while bringing a good user experience to the doctor, so
as to perform more accurate and safer surgery. Before our proposed method is applied in
a real surgery setting, consideration should also be given to how to eliminate the effects
caused by electrocautery during the procedure, such as smoke and liver bleeding. In future
research, the better real-time registration of 3D images should be achieved through the
improvement of computer hardware technology and the search for higher performance
and faster 3D image registration methods, so as to provide a strong technical foundation
for precision medicine and clinical application.
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