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Abstract: From the perspective of energy management, the demand power of a hybrid electric vehicle
driving under random conditions can be considered as a random process, and the Markov chain can
be used for modeling. In this article, an energy management strategy based on reinforcement learning
with real-time updates is proposed to reasonably allocate the energy flow of the hybrid power system
under unknown working conditions. The hybrid system is powered by a supercapacitor and a
lithium battery, which uses the characteristics of each component to reduce the energy loss of the
system, reduce the rate of change of the lithium battery current, and prolong the service life of
the components. The strategy takes the change of the transition probability matrix under real-time
working conditions as the basis. The system judges whether it is necessary to use the new transition
probability to calculate and update the energy management strategy of the system by calculating the
Pearson similarity between the transition probability matrix at the current time and previous time.
The simulation results validate the proposed method.

Keywords: hybrid electric system; energy management; reinforcement learning; Q-learning

1. Introduction

As an energy storage device, the battery converts chemical energy into electrical en-
ergy through an electrochemical reaction. In essence, it can be divided into a dry battery,
lead-acid battery, lithium battery and fuel cell [1]. In traditional pure electric vehicles, the
electric energy required for motor operation is provided by a single chemical battery, but
there are also disadvantages such as a long charging time, high current discharge which
will damage the internal structure, and a short service life. However, there are obvious
differences between supercapacitors and lithium batteries in energy storage. Supercapaci-
tors do not generate electrical energy themselves, but have the charging and discharging
mechanism of a capacitor, which is highly efficient and can charge and discharge rapidly for
many times [2]. However, supercapacitors cannot carry out long-term continuous output.
Affected by their own state of charge, the low state of charge will even affect their output
efficiency. Therefore, energy management is needed for the output of supercapacitors
under long-time working conditions.

Among the key technologies of the hybrid power system, the energy management
strategy is the most important [3]. The energy of the vehicle hybrid system described
in this article is provided by both lithium batteries and supercapacitors. Combining the
respective output characteristics of lithium batteries and supercapacitors, lithium batteries
are used as the main source of energy for the hybrid system output during hybrid operation,
while supercapacitors are used as the auxiliary energy source to assist lithium batteries,
providing auxiliary electrical energy during the peak and fluctuating power range of the
hybrid operation.

Compared with traditional fuel vehicles, hybrid electric vehicles can improve energy
utilization by adjusting the energy distribution between the driving sources and recovering
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the electrical energy returned during vehicle breaking [4]. The energy management strategy
can be divided into a rule-based energy management strategy and an optimization-based
energy management strategy [5]. The core of the rule-based energy management strategy
is to control the power output of the hybrid power system. While ensuring the normal
operation of the motor of the electric vehicle, all components of the hybrid system work in
the high-efficiency area as much as possible. Energy management strategies that determine
rules, such as control strategies based on logic thresholds, control the system through rules
formulated by expert knowledge and engineering experience. They are simple and practical,
so they are widely used in engineering practice [6–8]. However, energy management
strategies based on determined rules have poor adaptability, and a set of determined static
control rules can only adapt to specific working conditions. Compared with the rule-based
energy management strategy, the optimization-based energy management strategy has a
stronger adaptability to working conditions and a relatively simple parameter adjustment,
which has gradually become a hot research direction [9–12].

In recent years, how to combine the use of a reinforcement learning algorithm with
an energy management strategy has become a hot research issue [13]. Reinforcement
learning, derived from machine learning, is a method used in many other areas of artificial
intelligence to optimize behavior [14,15]. It is suitable for solving sequential decision-
making problems. The purpose of reinforcement learning is to allow a reinforcement
learning agent to learn how to behave in an environment where the only feedback consists
of scalar learning signals, and the agent’s goal is to maximize the reward signal from the
environment in the long term [16,17]. Reinforcement learning algorithms capable of online
parameter updates, fast convergence of the learning process, and suitable for different
operating conditions have the potential to be applied to real-time energy management
strategies [18–20].

A hybrid electric vehicle is a complex nonlinear time-varying system, and it is difficult
to construct its accurate kinematic model. As a non-model-based intelligent optimization
algorithm, reinforcement learning is very suitable for the design of energy management
strategies and does not rely on expert experience, does not require complete driving
condition information, and can train an optimized model based on the current information
of the vehicle. In this article, on the basis of the dual-energy electric vehicle hybrid system
composed of lithium batteries and super capacitors, the reinforcement learning algorithm
is applied to calculate the optimal energy management control strategy according to the
actual working conditions, and the simulation verification is carried out.

2. Overall Modeling of the Electric Power System

This section takes the dual-energy hybrid power system as an example, and selects
lithium batteries and super capacitors to provide electrical energy for the entire system to
solve the power requirements of electric vehicles under different working conditions. This
is followed by analyzing the structure of the hybrid power system and modeling its main
components: the lithium battery and supercapacitor.

2.1. Overall Structure of Electric Vehicle Power System

The vehicle hybrid system described in this article consists of a lithium battery and
a supercapacitor, and its structure is shown in the Figure 1. The lithium battery is directly
connected to the DC bus, so the voltage on the DC bus is consistent with the output voltage
of the lithium battery. The supercapacitor is connected to the DC bus through bidirectional
DC/DC, and the output power of the supercapacitor is controlled by the bidirectional DC/DC.
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Figure 1. Electric vehicle hybrid system.

2.2. Lithium Battery Equivalent Circuit and Model Building

Compared with lead–acid and nickel–chromium batteries, lithium batteries have a
better energy density and work efficiency, making them the most widely-used batteries in
electric vehicles or aircrafts.

In this article, the RC equivalent circuit is chosen to model the lithium battery and the
battery equivalent circuit is shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 11 
 

 

 

Figure 1. Electric vehicle hybrid system. 

2.2. Lithium Battery Equivalent Circuit and Model Building 

Compared with lead–acid and nickel–chromium batteries, lithium batteries have a 

better energy density and work efficiency, making them the most widely-used batteries 

in electric vehicles or aircrafts. 

In this article, the RC equivalent circuit is chosen to model the lithium battery and 

the battery equivalent circuit is shown in Figure 2. 

Uoc

+

-

Rb +

-

Ubat

Ib

 

Figure 2. Lithium battery RC equivalent circuit. 

Here, batU  is the open-circuit voltage of the lithium battery, ocU  is the ideal voltage 

source voltage, bR  is the internal resistance of the lithium battery, and bI  is the charge 

and discharge current of the lithium battery. According to Kirchhoff’s voltage law, the 

terminal voltage expression of the lithium battery can be obtained as: 

intbat oc bU U I R= −  (1) 

The calculation expression of the lithium battery power is: 

bat bP U I=  (2) 

Formula (1) and formula (2) can be combined to solve: 

2

int

int

4
=

2

oc oc

b

U U PR
I

R

− −
 (3) 

The increase in the charging and discharging current of the lithium battery will lead 

to a decrease in the terminal voltage of the lithium battery, and so the larger of the two 

solutions can be discarded. 

The lithium battery SOC (State of Charge) represents the remaining power of the 

lithium battery, and its value is related to the maximum discharge capacity maxbatQ  and 

the used power batusedQ  of the lithium battery, which determines the continuous charging 

and discharging capacity of the lithium battery. The expression of the charge state of the 

lithium battery batSOC  is: 

Figure 2. Lithium battery RC equivalent circuit.

Here, Ubat is the open-circuit voltage of the lithium battery, Uoc is the ideal voltage
source voltage, Rb is the internal resistance of the lithium battery, and Ib is the charge and
discharge current of the lithium battery. According to Kirchhoff’s voltage law, the terminal
voltage expression of the lithium battery can be obtained as:

Ubat = Uoc − IbRint (1)

The calculation expression of the lithium battery power is:

P = Ubat Ib (2)

Formula (1) and formula (2) can be combined to solve:

Ib =
Uoc −

√
U2

oc − 4PRint

2Rint
(3)

The increase in the charging and discharging current of the lithium battery will lead
to a decrease in the terminal voltage of the lithium battery, and so the larger of the two
solutions can be discarded.

The lithium battery SOC (State of Charge) represents the remaining power of the
lithium battery, and its value is related to the maximum discharge capacity Qbatmax and
the used power Qbatused of the lithium battery, which determines the continuous charging
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and discharging capacity of the lithium battery. The expression of the charge state of the
lithium battery SOCbat is:

SOCbat =
Qbatmax −Qbatused

Qmax
(4)

The calculation formula of the used power Qbatused of the lithium battery is:

Qbatused =
∫ t

0
ηibdt (5)

where η is the charging and discharging efficiency of the lithium battery and ib is the
instantaneous charging and discharging current of the lithium battery.

2.3. Supercapacitor Equivalent Circuit and Model Building

The classic RC model of the supercapacitor can reflect the characteristics of the super-
capacitor, and it can also be expressed more intuitively and accurately with mathematical
formulas. The circuit diagram is shown in the Figure 3.
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Here, Csc is the ideal capacitor, Usc is the terminal voltage of the supercapacitor, Res is
the equivalent internal resistance of the supercapacitor, Isc is the charging and discharging
current of the supercapacitor, and U is the external load voltage. According to Kirchhoff’s
voltage law, the external load voltage U of the supercapacitor can be expressed as:

U = −Res Isc + Usc (6)

The supercapacitor power expression is:

P = UIsc (7)

The supercapacitor charge and discharge current can be solved as (discarding the
larger of the two solutions.):

Isc =
Usc −

√
U2

sc − 4RscP
2Rsc

(8)

The state of charge of the supercapacitor is estimated and calculated by the maximum
discharge capacity and the used power of the supercapacitor, and the method is the same
as the calculation method for the state of charge of the lithium battery.

The formula for calculating the power used by the supercapacitor is:

Qscued =
∫ t

0
iscdt (9)

where isc is the instantaneous charge and discharge current of the lithium battery.
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3. Optimization Objective Function Design

The power equation of the electric vehicle described in this article is:

Pdrive(t) = v(t)(mv
d
dt

v(t) + Faero(t) + Froll(t) + Fgra(t)) (10)

where Pdrive(t) is the power of the electric vehicle, v(t) is the real-time speed of the electric
vehicle, mv is the mass of the vehicle, Faero(t), Froll(t), and Fgra(t) are the air resistance,
rolling friction, and gravitational component of the ramp rack driving, respectively.

Due to the energy loss, the motor demand power Pm provided by the dual-energy
hybrid system can be expressed as:{

Pm(t) =
Pdrive(t)

ηdrive
ηdrive = ηtra · ηDC/AC · ηmotor

(11)

where ηdrive is the power train efficiency, ηtra is the mechanical drive train efficiency, ηDC/AC
is the inverter efficiency, and ηmotor is the motor efficiency.

The required power of the dual-energy hybrid system is provided by the lithium
battery and the supercapacitor. The energy distribution of the lithium battery and the
supercapacitor can be expressed as:

Pm(t) = Pbat(t) + Psc(t) · ηDC/DC (12)

where Pbat(t) is the output power of the lithium battery, Psc(t) is the output efficiency of
the super capacitor, ηDC/DC is the efficiency of bidirectional DC/DC converter.

The purpose of the energy management strategy is to improve the energy utilization
efficiency of the dual-energy hybrid power system and the adaptability to the working
conditions, and to prevent the lithium battery from being overcharged and over discharged
to improve the battery life. The optimization objective function is shown in the following
formula (13):

J =
∫ t

t0

−α(ib(t)
2Rb + isc(t)

2Rsc)− β
∣∣∣∆ib(t)

∣∣∣dt (13)

where ib(t) is the output current of the lithium battery, ∆ib(t) is the change in the lithium
battery current, isc(t) is the output current of the supercapacitor, Rb and Rsc are the internal
resistances of the lithium battery and the supercapacitor, respectively. The optimization
objective function consists of the total loss of the system and the rate of change of the output
current of the lithium battery. α and β weight factors are used to balance the weight of the
two optimization indicators.

4. Energy Management Strategy Based on Reinforcement Learning Algorithm

This section studies an energy management strategy based on Q-learning. This in-
cludes modeling the demand power transfer probability matrix of the hybrid power system,
using the Q-learning algorithm to optimize the energy management strategy, and calcu-
lating the Pearson correlation coefficient of the demand power transfer matrix for mixed
conditions to determine the updated time node of the policy.

4.1. Transition Probability Matrix

The reinforcement learning Q-learning algorithm uses the grid matrix as a carrier of
the action value function. Therefore, a fundamental step in employing this algorithm is to
model the demand power. In a working condition, the variation in demand power can be
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considered as a smooth Markov process, and the demand power state transition probability
matrix (TPM) can be calculated by maximum likelihood estimation using the formula:

Pm =
{

Pi
m
∣∣i = 1, . . . , n

}
ϕij = ϕ(Pm(t + 1) = Pj

∣∣Pm(t) = Pi) = Nij/Ni

Ni =
n
∑

i=1
Nij

(14)

where Pm is the set of demand power levels and the demand power under the working
condition is divided into n power levels according to a certain standard. Nij is the number
of times that the demand power is transferred from Pi to Pj under the working condition,
and Ni is the total number of times that the demand power is transferred from Pi under the
working condition.

According to the above formula, to solve the Markov model, taking the UDDS (Urban
Dynamometer Driving Schedule), NYCC (New York City Cycle), and NEDC (New Euro-
pean Driving Cycle) working conditions as an example, the power transition probability
matrix can be obtained, as shown in the Figure 4. It can be seen that the transition probabil-
ities are mostly distributed on the diagonal line, which is due to the fact that the demand
power rarely changes abruptly during the driving process, which is in line with the actual
driving situation.
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4.2. Q-Learning-Based EMS

The algorithm logic of the energy management strategy based on the reinforcement
learning Q-learning algorithm is shown in Figure 5.
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When using the reinforcement learning method to solve the above optimization prob-
lems, the key is to set the input and output and the related parameters of the reinforcement
learning algorithm. In the optimization learning of the energy management strategy of the
electric vehicle hybrid power system, the required power Pm of the hybrid power system
and the charge state SOCbat of the lithium battery are used as the input state quantities of
the reinforcement learning problem, and the output power Psc of the supercapacitor is used
as the action output of the reinforcement learning problem. The agent of reinforcement
learning chooses the amount of output action based on the value of the reward return. In
this optimization problem, the state s, the action a, and the reward r are set as:

s ∈ S = {v(t), Pm(t), SOCsc}
a ∈ A = {Psc(t)}
r ∈ R =

{
−α(ib(t)

2Rb + is(t)
2Rsc)− β

∣∣∣∆ib(t)
∣∣∣} (15)

where s represents the state of the electric vehicle at a time when driving, including the
required power of the hybrid system Pm(t), the real-time speed of the electric vehicle v(t),
and the current charge state of the supercapacitor SOCsc(t). a represents the next action of
the hybrid system when the electric vehicle is in state s, that is, controlling the bidirectional
DC/DC converter to adjust the energy distribution between the lithium battery and the
supercapacitor, and set the output power Psc(t) of the super capacitor as the action amount
of the system. r represents the reward and return obtained by the system after the electric
vehicle performs action a, when it is in state s, which is related to the loss of the lithium
battery and super capacitor and the change of the lithium battery current; α is the penalty
weight factor (α > 0) for the loss of the lithium batteries and supercapacitors, and β is
the penalty weight factor for the change of the lithium battery current (β > 0); r is a
non-positive number. The larger the reward value, the better the energy distribution of the
hybrid system. By adjusting the values of parameters α and β, the energy management
strategy can balance the power output of the lithium batteries and supercapacitors.

During the training process of the agent, the following constraints were also observed:
Ibmin < ib(t) < Ibmax
SOCbmin < SOCb(t) < SOCbmax
SOCscmin < SOCsc(t) < SOCscmax

, (16)

These are to ensure that the charge and discharge current of the lithium battery is
maintained within the appropriate charge and discharge current range, and the lithium
battery and supercapacitor should be careful not to overcharge or over-discharge during
system operation.

The energy management strategy based on a reinforcement learning algorithm is
a mapping function from state quantities to action quantities π : S→ A . This means
that in a given state st, according to the energy management strategy, the next action
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can be determined as at = π(st). For each state st, the value function is defined as the
mathematical expectation of the cumulative reward:

Vπ(s) = E{
∞

∑
k=0

γkr(t + k)}, (17)

where γ is the discount factor and γ ∈ (0, 1) is to ensure the convergence of the algorithm.
E is the cumulative expected value of the feedback quantity of the reward function and the
value function Vπ(s) satisfies the Bellman equation.

Vπ(s) = r(s) + γ ∑
s′∈S

ϕsa(s′)Vπ(s′) (18)

where r(s) represents the immediate reward in the current state s. s′ represents the next
state the system may be in after the agent is in state s and performs action a. ϕsa(s′)
represents the probability that the system will be in state s′ after the agent is in state s and
performs action a.

In order to solve the optimal value function for Vπ(s), that is, to solve the optimal
control strategy π(s) in the current state s:

V∗(s) = r(s) + max
a∈A

γ ∑
s′∈S

ϕsa(s′)V∗(s′) (19)

The above optimal solution can be transformed into a Q function.:

V∗(s) = max
π

Q(s, a) (20)

Q(s, a) = r(s, a) + γ ∑
s′∈S

ϕsa(s′)Q(s′, a′) (21)

where Q(s, a) represents the cumulative discount return obtained after performing action a
in the current state s.

By optimizing the iterative Q function to maximize the cumulative discounted return,
the update rule for Q-learning reinforcement learning can be expressed as:

Q(s, a)← Q(s, a) + η(r + γmax
a′

Q(s′, a′)−Q(s, a)) (22)

where η ∈ [0, 1] is the learning rate and its value is positively related to the convergence
rate of reinforcement learning.

4.3. Online Update of the Demand Power State Transition Probability Matrix

The comparison of the probability transition probability matrices under different
working conditions requires a criterion to measure the difference between two probability
transition probability matrices. This article introduces the Pearson similarity coefficient ρ
as a reference.

ρ =
cov({ϕ} · {ϕ′})√
D({ϕ})

√
D({ϕ′})

=
∑ ϕij · ϕ′ij −

∑ ϕij ·∑ ϕ′ij
N√

(∑ ϕ2
ij −

(∑ ϕij)
2

N )(∑ ϕ′ij
2 −

(∑ ϕ′ij)
2

N )

(23)

where P is the demand power probability transition matrix calculated according to the
previous working conditions, and P* is the demand power transition probability matrix
calculated based on the new working conditions.

By calculating the Pearson similarity coefficient between the two probability transition
probability matrices, the difference between the two working conditions represented by
them is judged as follows: Set a suitable reference threshold λ ∈ (0, 1) and compare the
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absolute value of ρ with λ. If |ρ| > λ, take the new probability transition probability matrix
as the state, relearn and optimize a better energy management strategy, and apply it to the
actual operation of the vehicle. If |ρ| ≤ λ, it means that the original energy management
strategy is still applicable to the new working conditions and the vehicle continues to
operate with this energy management strategy.

5. Simulation and Analysis of Results

Table 1 shows the system parameter values of the main components of the hybrid
power system.

Table 1. System parameter values of the main components.

Component Parameter Value

Lithium battery
Rated Capacity/Ah 40

Rated voltage/V 48
Internal resistance/mΩ 12

Supercapacitor
Rated Capacity/F 165
Rated voltage/V 48.6

Internal resistance/mΩ 6

Figure 6 shows the simulation results of the hybrid power system using the energy
management strategy based on Q-learning under UDDS conditions. The output current of
the lithium battery under the Q-learning energy management strategy is compared with
the output current of the lithium battery controlled by the rule based on Q-learning, as
shown in Figure 7. When the energy management strategy based on Q-learning is used for
operating conditions, the state of charge of the lithium battery of the dual-energy hybrid
power system decreases slowly and fluctuates less.
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After running a UDDS case, the lithium battery loss was 0.460 W/h under the energy
management strategy based on the logic threshold. The lithium battery current conversion
rate Σ|∆ib|2 was 1.6755 × 104. The lithium battery loss under the energy management
strategy based on Q-learning was 0.458 W/h and the lithium battery current conversion
rate was 1.0862 × 104. They were reduced by 0.43% and 35.17%, respectively. It shows that
under the energy management strategy based on Q-learning, the hybrid mode can reduce
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the loss of the lithium battery and effectively reduce the change of lithium battery current,
reducing the life loss caused by the change of the lithium battery current.

The change of driving conditions was identified by calculating the Pearson correlation
coefficient between the TPMs. The Pearson correlation coefficient of the transition proba-
bility matrix of the hybrid system operating under the combined conditions of the UDDS,
NYCC, and NEDC is shown in Figure 8. Comparing the change value of the absolute value
of the Pearson correlation coefficient with the reference threshold value, we can intuitively
see the degree of change of the working condition, and obtain the updated point through
the appropriate reference threshold value. It can be seen from the figure that the working
condition update nodes are 1346 s and 2569 s, and the working condition update points
obtained from the Pearson correlation coefficient are 1377 s and 2540 s; these calculated
update points are very close to the working condition change points.
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6. Conclusions

In this article, an energy management strategy based on Q-learning is designed for a
dual-energy electric vehicle hybrid system. Compared with the rule-based energy man-
agement strategy in UDDS, this strategy reduces the loss and the current conversion rate
of a lithium battery by 0.43% and 35.17%, respectively. The effectiveness of the energy
management strategy based on Q-learning is shown, and the determination of the updated
point of the energy management control quantity was realized through the change of the
transition probability matrix under the mixed working conditions. The next work includes
studying the real-time control of the reinforcement learning strategies on HEV, and using
deep reinforcement learning to realize the energy management strategies of electric vehicle
hybrid systems in a continuous state space and action space.
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