
Citation: Rawi, A.A.; Elbashir, M.K.;

Ahmed, A.M. ECG Heartbeat

Classification Using CONVXGB

Model. Electronics 2022, 11, 2280.

https://doi.org/10.3390/

electronics11152280

Academic Editor: Ngai-Man

(Man) Cheung

Received: 14 May 2022

Accepted: 23 June 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ECG Heartbeat Classification Using CONVXGB Model
Atiaf A. Rawi 1,*, Murtada K. Elbashir 2 and Awadallah M. Ahmed 1

1 Department of Computer Sciences, Faculty of Mathematical and Computer Sciences, Gezira University,
P.O. Box 20, Wad Madani 21111, Sudan; awadallah@uofg.edu.sd

2 Department of Information Systems, College of Computer and Information Sciences, Jouf University,
Sakaka 72388, Saudi Arabia; mkelfaki@ju.edu.sa

* Correspondence: atiaf.ayal88@gmail.com

Abstract: ELECTROCARDIOGRAM (ECG) signals are reliable in identifying and monitoring pa-
tients with various cardiac diseases and severe cardiovascular syndromes, including arrhythmia
and myocardial infarction (MI). Thus, cardiologists use ECG signals in diagnosing cardiac diseases.
Machine learning (ML) has also proven its usefulness in the medical field and in signal classification.
However, current ML approaches rely on hand-crafted feature extraction methods or very compli-
cated deep learning networks. This paper presents a novel method for feature extraction from ECG
signals and ECG classification using a convolutional neural network (CNN) with eXtreme Gradient
Boosting (XBoost), ConvXGB. This model was established by stacking two convolutional layers for
automatic feature extraction from ECG signals, followed by XGBoost as the last layer, which is used
for classification. This technique simplified ECG classification in comparison to other methods by
minimizing the number of required parameters and eliminating the need for weight readjustment
throughout the backpropagation phase. Furthermore, experiments on two famous ECG datasets–the
Massachusetts Institute of Technology–Beth Israel Hospital (MIT-BIH) and Physikalisch-Technische
Bundesanstalt (PTB) datasets–demonstrated that this technique handled the ECG signal classification
issue better than either CNN or XGBoost alone. In addition, a comparison showed that this model
outperformed state-of-the-art models, with scores of 0.9938, 0.9839, 0.9836, 0.9837, and 0.9911 for
accuracy, precision, recall, F1-score, and specificity, respectively.

Keywords: ECG; CNN; XGBoost; ConvXGB; myocardial infarction (MI); arrhythmia; deep learning

1. Introduction

Every year, more than 17 million people die from cardiac diseases, which collectively
remain the leading cause of mortality worldwide. According to the World Heart Federation,
approximately 75% of all cardiovascular disease (CVD) patients reside in low-income
communities [1]. Electrocardiography (ECG) is the most accurate and trustworthy tool
available for diagnosing cardiac disease since it is non-invasive and accurately represents
the electrical rhythm of depolarization and repolarization of the cardiovascular system.
ECG captures the electrical activity created by depolarizing the heart muscle, propagating
pulsing electrical waves towards the skin. Even though the energy level involved is low,
it may be successfully detected using sensors connected to the chest [2]. The earlier an
irregular cardiac rhythm is identified, the less severe the consequences are, and the faster
the patient recovers from the condition [3]. However, ECG signals have complicated and
highly chaotic properties, making their interpretation time-consuming and laborious, even
for experienced professionals [4]. As a result, computer-assisted approaches are necessary
to ease human workloads and eliminate misinterpretations caused by fatigue, differences
between operators, and operator-specific mistakes, among other factors.

Machine learning (ML) is an essential tool for predicting and diagnosing deadly
illnesses [5,6]. As a sub-branch of ML, deep learning (DL) has yielded outstanding re-
sults in the medical field, sometimes even outperforming physicians [7], because its hi-
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erarchical structure allows substantial and high-level feature extractions that improve
classification accuracy.

In tackling machine learning challenges, feature learning has emerged as a critical
success factor [8]. However, most ECG classification methods depend on hand-crafted tech-
niques for feature extraction using signal processing tools and methods such as filters [9],
Fourier transforms, and wavelet transformation [10,11]. ML classifiers such as support
vector machines (SVMs) have been utilized for classification [12]. The separation of these
methods’ feature extraction and pattern classification components is their main disadvan-
tage. Additionally, these methods require domain experience with the processed data, and
the attributes must be chosen. Furthermore, extracting features with the aid of experts
takes time, and features may not be resistant to noise, resizing, or transformation, which
means that they may not generalize well to new data [13]. As a result, we must recognize
the significance of effective models and the capacity to acquire new features automatically
in order to develop a comprehensive feature extraction and classification model. Most
shallow and classical DL models rely on a single model for their initial training. Many
researchers have recently shown an interest in the performance of deep neural networks in
interpreting ECG signals, particularly convolutional neural networks (CNNs) that use one-
dimensional (1D) and two-dimensional (2D) convolution to enhance their performance. DL
models may learn invariant and hierarchical features directly from data, with ECG signals
as input and class prediction as output. Recurrent neural networks (RNN), CNNs [14], and
autoencoders are utilized for 1D ECG categorization. The input ECG data are converted
into images or 2D representations for 2D ECG classification. Experiments have shown that
the accuracy of 2D ECG classification is better than that of 1D ECG classification [15]. This
paper presents a new method for classifying ECG signals, inspired by previous work [16],
that takes advantage of two types of models and avoids their disadvantages, resulting
in a better overall model. The proposed ConvXGB model is a new DL model for ECG
classification that combines the performance of a CNN with XGBoost. As the results of
this study demonstrate, ConvXGB performs better than either CNN or XGBoost alone and
performs better than state-of-the-art models. The reasons for choosing these two model
types were as follows:

1. XGBoost is a scalable ML approach for tree boosting designed to prevent the overfit-
ting of data. It performs well on its own and in a variety of ML contexts. However,
there is some uncertainty about the effectiveness of this method with respect to
feature learning.

2. The use of CNN, a DL class with multiple levels of hierarchical learning, improves
the clarity of the results.

This combination of methods has been tested on many datasets and has been shown
to solve classification problems more accurately than other methods [16]. To overcome
the shortcomings of existing methods for ECG signal classification, a new model, referred
to as ConvXGB, is proposed that handles the feature extraction perfectly and reduces the
number of parameters required to achieve the best performance results among the methods
compared with the lowest processing time and effort. The most significant contributions of
this paper can be summarized as follows:

1. We propose an end-to-end method for ECG signal classification (tested on two com-
monly used datasets) without the need for any complicated signal pre-processing.

2. The proposed method is suitable for deployment in low-computational-power devices
(such as mobile phones) because many hyperparameters are needed to reduce the
prediction time (0.6 ms).

3. We achieved better results with this hybrid method than the existing state-of-the-art
method in terms of accuracy, precision, recall, F1-score, and specificity, and the lowest
false-negative and false-positive rates.

4. To demonstrate the robustness and generalization ability of the proposed method, we
tested it on a dataset from a different source and achieved highly accurate results.
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The remainder of this paper is structured as follows: Section 2 provides a brief
overview of studies relevant to ECG categorization. The methods used in this research are
described in Section 3. Section 4 presents the experiment conducted. Section 5 discusses
the results obtained. Finally, we present conclusions drawn from the result in Section 6.

2. Related Work

ML algorithms are used widely in ECG signal classification. ML classifiers such as
SVMs have been shown to perform better in ECG signal classification than other algorithms,
such as neural networks (NN), random forests (RF), and Bayesian algorithms [17,18]. In [19],
an SVM was merged with linear discriminant analysis to produce a classification method
for six arrhythmia types. Ref. [20] presented a multi-layer perceptron (MLP) model, which
exhibited good performance. Ref. [21] presented a 1D CNN technique for five types of
arrhythmia classification. A wavelet is first used for noise removal, and then a 1D CNN
model is used for feature extraction. A fully connected layer with a softmax activation
function is used for classification. The same 1D CNN method was used in [22] to classify
four ECG signal types with denoising pre-processing steps. Current methods perform
signal pre-processing, feature extraction, and prediction [23–27]. Various algorithms are
used to perform these actions [28–33]. Other studies have used a deep belief network for
ECG signal classification and thereby reduced false negatives effectively [34–37]. Stacked
autoencoders have been used in other studies [38,39]. In [40,41], CNN and long short-
term memory (LSTM) were used to build the encoding and decoding layers. Residual
neural networks (RNNs) have been used to classify ECG signals and handle time-series
data. RNN models have also been combined with other DL models, and LSTM has been
combined with CNN [42]. Additionally, bidirectional LSTM has proven to be successful
in classifying ECG signals because of its ability to process data in both the previous and
forward directions [43].

It can be observed that most of the earlier mentioned works are based on machine
learning methods after feature extraction steps that require domain knowledge and are
time-consuming, or based on deep learning methods, which require a large amount of
data and a long training time. Our suggested method uses both methods by using CNN
for feature extraction (without training) and XGBoost classifier for classification. This
technique reduced the training process time and achieved high results.

3. Materials and Methods

The overall classification process is illustrated in Figure 1, using the MIT-BIH dataset
(in the upper part of Figure 1 for classifying five ECG signal classes) and the PTB dataset
(in the lower part of Figure 1 for classifying two classes). For each dataset, the signals are
fed into the hybrid ConvXGB model for classification.
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Figure 1. Illustration of the proposed method. The ECG signals fed into the suggested model are to
be classified. The upper half of the figure shows the MIT-BIH dataset used for multiclass classification
into five classes, while the lower half shows the PTB dataset for binary classification.



Electronics 2022, 11, 2280 4 of 16

The proposed method has two main parts. The first part consists of three convolu-
tional layers and a max pool layer for feature extraction, and the second part uses the
XGBoost classifier for classification. Details of the architecture and model layers are shown
in Figure 2.
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3.1. CNN Model

As mentioned earlier, the convolutional neural network represents the first part of the
proposed method. For input data D in r rows and c columns, D ∈ RrXc can be defined as
shown in Equation (1):

D = {x(i, j)|1 ≤ i ≤ r, i ≤ c}, (1)

where x(i, j) is the data value at (i, j). When a kernel (or filter)
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For each convolutional layer 𝑙, a bias will be added and a convolution operation ap-
plied. For a feature map indexed by 𝑓 ∈ {1, … 𝑓(𝑙), the output, 𝕪௡௟ , of the lth layer for the 
nth feature map is obtained from the output of the previous layer, 𝕪௡௟ିଵ, as follows: 

𝕪௡௟ =  Θቌ𝐵௡௟  + ෍ 𝑘௡.௣௟௙(௟ି1)
௣ୀ1

× 𝕪௣௟ି1ቍ,   (3)

where Θ is the used activation function (Relu), 𝐵௡௟  is the bias matrix, and 𝑘௡.௣௟  is the fil-
ter of size 2𝑤௙ + 1 𝑋 2ℎ௙ + 1. The output of layer 𝑙 for the 𝑛 feature map, 𝕪௡௟ , at position (𝑖, 𝑗) is therefore as follows: 
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To avoid overfitting and downsampling the features extracted, a pooling layer is ap-
plied, which replaces the output with the average or maximum value of a sliding window. 
For example, by applying the pooling function 𝑃(. ), the output will be defined as shown 
below: 𝑃(𝕪௡௟ )௜,௝ = 𝑚𝑎𝑥(𝕪௡௟ )௜,௝,  (5)

The output is then classified using XGBoost in the next part of the method. 
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To avoid overfitting and downsampling the features extracted, a pooling layer is
applied, which replaces the output with the average or maximum value of a sliding
window. For example, by applying the pooling function P(.), the output will be defined as
shown below:
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The output is then classified using XGBoost in the next part of the method.
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3.2. XGBoost Model

XGBoost is a machine learning method for classification and regression problems
developed by Chen and Guestrin [1]. It is a massively efficient approach for classification
and regression problems and uses a tree ensemble to improve performance. The ensemble
summation of all T and regression trees (CARTs), where each tree has Ti

E
∣∣ i ∈ 1 . . . T nodes,

is as follows:

yhati
= σ(xi) =

T

∑
t−1

ft(xi), ft ∈ F , (6)

where (xi) is the training set samples, ft is the tth tress’s leaf score, and F is all classification
tress T scores. The results are improved by applying regularization as follows:

R(σ) = ∑
i

l(yhati
, yi) + ∑

t
ε( ft), (7)

where l is the cost (loss) function used to calculate the difference between ground truth yi
class labels and the prediction label yhati

. ε is a function used for penalizing the model’s
complexity and avoiding overfitting and can be expressed as follows:

ε( f ) = ξK +
1
2

Y
K

∑
j=1

w2
j , (8)

where ξ and Y are constants for the degree of regularisation, K is the number of leaves on
each tree, and w is the leaf weight.

To simplify the objective at step (t), a second-order Taylor expansion is used, as
shown below:

T (t) '
n

∑
i=1

[vi fi(xi) +
1
2

pi f 2
i (xi)] + ε( f )

=
n

∑
i=1

[vi fi(xi) +
1
2

pi f 2
i (xi)] + ξK +

1
2

Y
K

∑
j=1

w2
j

=
K

∑
j=1

[(∑
i∈Ij

vi) wj +
1
2
(∑

i∈Ij

pi + Y)w2
j ] + ξK, (9)

since Ij = {i(q(xi = j} represents the leaf t instance set,

vi =
∂l
(

yhati
(t−1), yi

)
∂yhati

(t−1)
, and (10)

pi =
∂2l
(

yhati
(t−1), yi

)
∂yhati

(t−1)2 , (11)

the optimal weight wi of leaf j can be calculated for a fixed structure q(xi) as shown below:

wj = −
∑i∈Ij

vi

∑i∈Ij
pi + Y

, (12)

The corresponding optimal value can thus be calculated as follows:

T (t)(q) = −1
2

K

∑
j=1

(
∑i∈Ij

vi

)2

∑i∈Ij
pi + Y

+ ξK, (13)
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It is usually difficult to list all of the potential tree architectures q, so instead, a greedy
method is utilized, which starts with a single leaf and iteratively adds branches to the tree.
After the split, let us assume that IL and IR are the instance sets of left and right nodes.
Letting I = IL ∪ IR, the loss reduction after the split can be described as follows:

Tsplit =
1
2

[
(∑i∈IL vi)

2

∑i∈IL pi + Y
+

(∑i∈IR vi)
2

∑i∈IR pi + Y
+

(∑i∈I vi)
2

∑i∈I pi + Y

]
− ξ, (14)

The XGBoost model’s hyperparameters were configured as follows:
Subsample, colsample_bytree, colsam[le_by_level, lambda, and scale_pos_weight are

set to 1,
Gamma, and alpha are set to 0, n_estimators: 100, booster: gbtree, max_depth:6, and

learning_rate: 0.3.
Furthermore, we noticed that the learning rate increases the training time significantly

with little improvement in accuracy when it is less than 0.001. Additionally, the model will
be overfitted when increasing the n_estimators and max_depth.

3.3. ConvXGB Algorithm

Algorithm 1 describes the complete learning algorithm used in this study.

Algorithm 1: Training process of the ConvXGB model.

Input: PTB/MIT-BIH Dataset D = {L, y}
Output: The well-trained hybrid neural network Model

1: Train the model using training set DTr;
2: for start in range (0, length (DTr)) do
3: for beat sample Li ∈ DTr do
4: //Multi-lead Attention Module;
5: α1 = ReLU(W1Li + b1);
6: Xi = α1⊗Li;
7: //CONVXGB with Attention Mechanism;
8: C1 ← Conv1D(Xi, kernels); kernel size: (5, 5) has 16 kernels with one stride;
9: C1 ← activation (C1, ReLU);
10: C1 ← padding(same);
11: C2 ← Conv1D(C1, kernels); kernel size: (5, 5) has 32 kernels with one stride;
12: C2 ← activation (C2, ReLU);
13: C2 ← padding(same);
14: C3 ← Conv1D(C2, kernels); kernel size: (5, 5) has 64 kernels with one stride;
15: C3 ← activation (C3, ReLU);
16: C3 ← padding(same);
17: M←MaxPooling(C3, window); the size of window is (5, 5) with two strides;
18: XG←MaxPooling(M);
19: ypre ← XGB Classifier (XG);
20: end for
21: end for
22: return well-trained Model;

3.4. Performance Measurements

The suggested technique’s categorization task is ECG heartbeat categorization for
arrhythmia and MI detection. The performance measures used for categorization are
accuracy, precision, recall, F1-score, and specificity. These measures are calculated using
the following equations:

Accuracy =
truep + truen

truep + truen + f alsep + f alsen
, (15)
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Precision =
truep

truep + f alsep
, (16)

Recall =
truep

truep + f alsen
(17)

F1− score = 2× Precision× Recall
Precision + Recall

, and (18)

Speci f icity =
truen

truen + f alsep
, (19)

where truep is the number of instances correctly categorized as required, f alsep is the
number of cases incorrectly categorized as required, truen is the number of instances
correctly categorized as not required, and f alsen is the number of instances incorrectly
categorized as not required. Additionally, the AUC–ROC curve is a performance indicator
for situations involving categorization with variable threshold values. The AUC value
represents the degree or measure of separability, whereas the ROC value represents a
probability curve. The AUC–ROC curve represents the model’s ability to differentiate
across classes. For instance, the higher the AUC is, the more reliably the model predicts
zero classes as zero and one class as one. For the MIT-BIH, a multiclass dataset macro
averaging technique was used and a simple arithmetic means for all classes’ performance
metrics. The macro method considers an equal weight for each class.

For the confusion matrix, a cut-off with a threshold value of 50% is used to identify
the prediction class. Thus, when the class probability of the prediction is more than 50%,
the sample will be classified in that class.

4. Experiments
ECG Datasets

Tests were carried out using two datasets: the PhysioNet MIT-BIH Arrhythmia
dataset [44] and the PTB Diagnostic ECG dataset [45] for heartbeat classification and
myocardial infarction classification, respectively. In addition, ECG 2nd lead data resam-
pled at a sampling frequency of 125 Hz were used as an input source. Both datasets are
(publicly available) given in Kaggle (https://www.kaggle.com/shayanfazeli/heartbeat,
accessed on 16 June 2022), and were utilized in a standardized form and widely used in
ECG studies, making it easy to compare results with our proposed method. These datasets
have previously been denoised and split into training and testing portions. Furthermore,
five classes of arrhythmia and MI localization have already been presented. Figures 3 and 4
show a sample of each class for both datasets. The distribution of training and testing data
for each dataset is shown in Table 1.

Table 1. Number of training and testing samples in each dataset.

Dataset # Samples for Training # Samples for Testing

PhysioNet MIT-BIH
Arrhythmia dataset 87,554 21,892

PTB 11,641 2911

https://www.kaggle.com/shayanfazeli/heartbeat
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Figure 4. Sample plots of heartbeats of two classes for PTB dataset.

The MIT-BIH Arrhythmia dataset is imbalanced, as the distribution of classes shown
in Figure 5 illustrates. This affects the classification performance and causes bias towards
the class with the highest number of samples. Downsampling of the class with the high-
est number of samples is used along with upsampling to increase the number of other
class samples to avoid overfitting and bias. The class distributions before and after these
processes are shown in Table 2.

Table 2. Class distributions of MIT-BIH dataset before and after resampling.

Class Name # Samples Before # Samples After

N 72,471 20,000
AP 2223 20,000
PVC 5788 20,000
FVN 641 20,000
FPN 6431 20,000
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The description of each class used in MIT-BIH is shown in Table 3.

Table 3. Class descriptions for MIT-BIH dataset.

FPN FVN PVC AP N

Normal Atrial premature
Premature
ventricular
contraction

Fusion of
ventricular
and normal

Paced

Left bundle
branch block

Aberrant atrial
premature

Ventricular
escape

Fusion of paced
and normal

Right bundle
branch block

Nodal (junctional)
premature Unclassifiable

Atrial escape Supra-ventricular
premature

Nodal
(junctional)
escape

The experiments were conducted with an Intel Core i5 processor clocked at 1.7 GHz,
8 GB of RAM, 64-bit Windows 10 Pro, and an NVIDIA GeForce GT 2-GB display card, using
Python as the programming language and the TensorFlow library to build the CNN model.

5. Results and Discussion

Table 4 summarizes the results of the application of the ConvXGB method to MIT-BIH
and PTB datasets in terms of the performance measures previously mentioned.

Table 4. Overall performance measurements of ConvXGB.

Dataset Accuracy Precision Recall F1-Score Specificity Training Time s

MIT-BIH 0.9836 0.9839 0.9836 0.9837 0.9911 13.8
PTB 0.9938 0.9938 0.9928 0.9920 0.9948 1.23

Figure 6 shows the confusion matrices of the proposed model for both datasets. The
diagonal entries reflect the percentages of successfully categorized classes, while entries off
the diagonal reflect improper categorization. The x-axis and y-axis represent the predicted
labels and actual labels, respectively.
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Figure 7 shows the values obtained for AUC, another performance measure used to
evaluate the results. Higher values of AUC indicate a better performance at distinguishing
between the positive and negative classes. Figure 7 shows that the AUC for the PTB dataset
was 100%. The confusion matrix of the model predictions for the PTB dataset shows the
low rates of false negatives and false positives (approaching zero), while the result for the
MIT dataset indicates some misclassified samples for the AP and FVN classes.

The prediction time for one sample in each dataset was measured and was close for the
two datasets (approximately 0.6 ms). This low prediction time indicates that the proposed
method is suitable for implementing low-computational-power devices to be developed
and applied in the medical field or used as screening tools.
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5.1. Ablation Study

An ablation study was conducted to demonstrate the effectiveness of combining a
CNN (for feature extraction) with XGBoost (for classification of the extracted features). We
built CNN and XGBoost models separately, with the same architecture as in the ConvXGB
model, and the same performance metrics were used. The results are shown in Table 5.

Table 5. Performance results for CNN and XGBoost models.

Dataset Method Accuracy Precision Recall F1-Score Specificity Training Time s

MIT-BIH
CNN 0.9791 0.9809 0.9791 0.9798 0.9908 490.43

XGB 0.9566 0.9564 0.9567 0.9527 0.9540 131.87

PTB
CNN 0.9948 0.9948 0.9948 0.9948 0.9960 70.24

XGB 0.8980 0.9048 0.8980 0.90 0.8906 4.03

Table 5 shows that the CNN model outperformed the XGBoost model with respect to
all performance metrics by at least 2% for the MIT dataset and by approximately 10% for
the PTB dataset. The XGBoost model, however, had by far the lowest training time.

On the other hand, the combination of both CNN and XGBoost (our proposed method)
produced a better performance than the best performance achieved by the CNN model
alone (approximately 1–2% better, as shown in Table 4) and a significantly lower training
time than the XGBoost model. These results demonstrate that the proposed ConvXGB
method combines the best of both methods and achieves the best performance with the
lowest training time.
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5.2. ConvXGB Comparison with Literature

Table 6 presents the performance results obtained with the most recent state-of-the-art
models and the ConvXGB model. The results show that the method proposed in this
paper has the highest accuracy, precision, and recall for both datasets used. Some studies
have only used accuracy to evaluate model performance, whereas, in this work, several
performance measures were used to evaluate the different methods more comprehensively.

Table 6. Comparison of the performance of the proposed model with the performance of state-of-the-
art models.

Dataset Reference Year Accuracy Precision Recall

MIT-BIH

[46] 2019 95.5 96.5 87.8
[47] 2019 99.5 97.3 98.1
[48] 2019 95.3 - -
[49] 2020 96 - -
[50] 2021 98.3 - -
CNN in this study 2021 0.9791 0.9809 0.9791
XGBoostin this study 2021 0.9566 0.9564 0.9567
Proposed ConvXGB 2021 0.9836 0.9839 0.9836

PTB

[51] 2019 83.9 82.0 95.0
[51] 2018 96.2 97.32 93.7
[52] 2020 96.7 - -
[53] 2020 97.7 - -
CNN in this studied 2021 0.9948 0.9948 0.9948
XGBoostin this study 2021 0.8980 0.9048 0.8980
Proposed ConvXGB 2021 0.9938 0.9938 0.9928

It is worth mentioning that for most of the methods compared, high computational
power was required, while the proposed method does not require much computational
power, and its running time is extremely low. The lower values of recall and precision for
most of the state-of-the-art methods indicate higher false-positive and false-negative rates
than those of the method proposed in this paper.

The main limitation of the method proposed in this paper is that it is based only
on datasets of one-lead ECG signals. We plan to test this method on datasets based on
multi-lead ECG signals in the future to overcome this limitation.

5.3. Testing of the Method on Another Dataset

To demonstrate the generalizability and robustness of the proposed method, we
tested it using another publicly available ECG dataset from the Kaggle website (https:
//www.kaggle.com/devavratatripathy/ecg-dataset, accessed on 16 June 2022). The dataset
contains 2919 normal samples and 2079 MI samples. Each sample represents a complete
ECG of a patient with 140 single-lead readings. The results obtained were even better than
the results of our experiment, as shown in Table 7.

Table 7. The performance measurements of ConvXGB on another dataset.

Accuracy Precision Recall F1-Score Specificity

0.994 0.9935 0.9937 0.9936 0.9933

The confusion matrix in Figure 8 shows the low rates of false positives and false
negatives (approaching zero), and Figure 9 shows the ROC curve, with the area under the
curve (AUC) approaching 100%.

https://www.kaggle.com/devavratatripathy/ecg-dataset
https://www.kaggle.com/devavratatripathy/ecg-dataset
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6. Conclusions

The accurate classification of ECG waves is exceptionally beneficial in preventing and
detecting cardiovascular diseases. By integrating medical and contemporary machine learn-
ing technologies, deep CNNs have proven to be highly effective in improving the accuracy
of cardiovascular disease diagnosis through ECG signal feature extraction. Similarly, the
XGBoost algorithm has demonstrated its exceptional ability in classification. We propose a
new model, ConvXGB, that achieves both high computational efficiency and high accuracy
by combining the CNN and XGBoost methods. The results of experiments conducted
using PhysioNet’s MIT-BIH dataset for five distinct arrhythmias and the PTB diagnostics
dataset for MI classification show that the proposed hybrid model is superior to both of
its component models. The proposed model also outperforms existing state-of-the-art
classification methods in terms of accuracy, precision, and recall. The most notable finding
of the study is that using ConvXGB improves machine learning task performance compared
to either approach used separately. Our proposed method correctly classified arrhythmias
99.38% of the time. This result demonstrates that the proposed ConvXGB approach is
highly successful in classifying arrhythmia. As a limitation, we recommend re-training the
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model when using real-world data since the experiments conducted in the ideal datasets
are not comparable to data from the real world.

In future research, this method should be fine-tuned and modified for use in real-time
systems to classify heartbeat signals to advise medical experts. In addition, it would be
more efficient to use multi-channel signals rather than depending on just one lead’s signal.
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