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Abstract: COVID-19 has been spreading rapidly, affecting billions of people globally, with significant
public health impacts. Biomedical imaging, such as computed tomography (CT), has significant
potential as a possible substitute for the screening process. Because of this, automatic segmentation
of images is highly desirable as clinical decision support for an extensive evaluation of disease
control and monitoring. It is a dynamic tool and performs a central role in precise or accurate
segmentation of infected areas or regions in CT scans, thus helping in screening, diagnosing, and
disease monitoring. For this purpose, we introduced a deep learning framework for automated
segmentation of COVID-19 infected lesions/regions in lung CT scan images. Specifically, we adopted
a segmentation model, i.e., U-Net, and utilized an attention mechanism to enhance the framework’s
ability for the segmentation of virus-infected regions. Since all of the features extracted or obtained
from the encoders are not valuable for segmentation; thus, we applied the U-Net architecture
with a mechanism of attention for a better representation of the features. Moreover, we applied a
boundary loss function to deal with small and unbalanced lesion segmentation’s. Using different
public CT scan image data sets, we validated the framework’s effectiveness in contrast with other
segmentation techniques. The experimental outcomes showed the improved performance of the
presented framework for the automated segmentation of lungs and infected areas in CT scan
images. We also considered both boundary loss and weighted binary cross-entropy dice loss function.
The overall dice accuracies of the framework are 0.93 and 0.76 for lungs and COVID-19 infected
areas/regions.

Keywords: sustainability; artificial intelligence; biomedical images; deep learning; COVID-19

1. Introduction

The coronavirus epidemic was reported in late December 2019 in Wuhan city; after
its emergence, it spread rapidly worldwide [1]. It is a deadly viral infection/illness
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It retains
several properties that make it highly contagious; therefore, enforcing people to adopt
government safety and prevention measures such as social distancing [2,3] and increasing
the necessity for rapid and reliable diagnosis of the infection are necessary. Based on
the reports and statistics of the World Health Organization shown in Figure 1 (https:
/ /worldhealthorg.shinyapps.io/covid/, accessed on 2 July 2022), over 545,226,550 people
around the world have been affected by COVID-19 infections and 6,334,728 have lost their
lives. Thus, reliable and timely testing is essential to controlling the transmission and
spread of this deadly virus.
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Figure 1. Recent number of confirmed cases in different regions around the world, from the date of
report until 2 July 2022.

Biomedical image technology has been developing over the past few years as a promis-
ing tool for automatically quantifying and diagnosing different diseases. Medical imaging
data are obtained via magnetic resonance imaging, CT, X-ray, microscopy, and pathology,
which are used to perform particularly diagnosis-oriented investigations, analyzing im-
portant diseases such as human brain disorders and different kinds of cancer. Lung and
chest CT imaging is also strongly suggested as a regular/conventional diagnostic tool for
pneumonia and is now also recommended for identifying COVID-19 infection as an early
assessment and for follow-up cases. These are very helpful in identifying common radio-
graphic characteristics of COVID-19 infections [4]. Furthermore, a systematic study [5]
revealed that using CT images of the chest to monitor COVID-19 even before clinical signs
and symptoms are recognized should be treated with caution. More particularly, CT scan
images of patients show ground-glass opacity or bilateral patchy shadows on the infected
region [6], which are usually not visible in standard X-ray images [7]. Medical specialists
usually need to examine several CT scans, which is a time-consuming and error-prone
method. For this purpose, automated deep learning techniques are introduced in order to
segment regions of interest (ROIs) of various sizes and shapes, for example, the lungs, buds,
and lesions, in high-resolution CT scan images. These techniques may help medical spe-
cialists in the diagnostic process. In the literature, researchers presented various methods
based on image processing, machine learning, and deep learning for the automatic seg-
mentation of CT scans [8,9]. However, deep learning models/techniques have surpassed
feature-based methods, which have been widely and successfully used/implemented to
automatically segment ROIs in CT scan images: particularly, applications of deep learning
models/techniques [10,11], biomedical imaging mainly targeting lungs [12], lung infec-
tions [13], pathological lungs [14], lungs and COVID-19 lesions [15]. Deep learning-based
techniques are mostly derived from a fully convolutional network (FCN) architecture
in which the fully connected layers are used instead of the convolutional layers [16].
The widely used U-Net model is a variant of FCN that has been developed as the de
facto model for tasks such as object segmentation in images because of its learnable up-
convolution layers and multi-scale skip connections [17]. Some researchers have used it for
automatic COVID-19 lesion segmentation in CT scans.

Motivated by the excellent results of deep learning architectures, we introduced an
automated framework using deep learning to classify and segment deadly COVID-19 viral
infection in CT scan images. We adopted a U-Net segmentation paradigm to detect and
segment infected areas (regions/lesions) in CT scans. Since all of the features obtained
from the encoders are not valuable, we applied the U-Net architecture with an attention
mechanism for better feature representation. In this way;, it allows highlighting salient ROI
features and control activations of features by irrelevant regions. However, the architecture
faces difficulty during balancing recall and precision due to the small ROI located in CT
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scan images. Thus, addressing the issues of small and unbalanced data and training
performance, we combined attention U-Net with the boundary loss function, which is quite
fitted for small lesion segmentation. The principal contributions of the presented work are
given as follows:

e To introduce a framework for automated segmentation of infected regions of the
COVID-19 virus in lung /chest CT scans using a deep learning architecture;

e To utilize the soft attention mechanism in order to enhance the framework’s capability,
to extract more silent features, and to identify and segment virus-infected regions in
CT scans;

e To address the issues of unbalanced data, attention U-Net architecture is combined
with boundary loss function for small regions/lesion segmentation;

¢ To validate the effectiveness of the framework with other segmentation techniques in
terms of segmentation accuracy.

The work presented in this paper is arranged as follows: an overview of different
methods suggested for the segmentation of infection in CT scans is presented in Section 2.
Section 3 discusses the details of the developed framework utilized for the segmentation
of infected regions/lesions in CT scans images, including the U-Net architecture with the
attention mechanism and the boundary loss function. The data set used to evaluate the
framework is presented in Section 4. Furthermore, the experimental results along with the
evaluation parameters are also addressed in Section 4. Lastly, this work is concluded with
some future guidelines and summarized in Section 5.

2. Related Work

In efforts to study COVID-19, researchers have paid serious attention to introducing
efficient and effective deep learning-based techniques, for example, [18-26]. These tech-
niques are widely adopted for the classification, detection, and segmentation of COVID-19
images and infection and [20,27,28] used biomedical image data, mostly chest/lung CT
scans and X-rays, in their work.

Hemdan et al. [29] applied and compared various neural network models for the
classification of COVID-19 X-ray images. Ref. [30] introduced a CNN-based system for ana-
lyzing and classifying three categories of X-ray images, including pneumonia, COVID-19,
and regular images. Pathak et al. [31] suggested a deep learning process along with transfer
learning to classify infected cases using a CT scan data set. The authors in [32] studied a
residual neural network model for analyzing X-rays of normal, viral, and infected pneu-
monia. Ref. [33] introduced convolutional neural networks based on a multi-objective
differential evolving model to distinguish the coronavirus patients utilizing CT scan data
of the chest. Hossain et al. [34] proposed a healthcare system using artificial intelligence to
detect the virus using chest CT scans and radiology images.

Muhammad et al. [35] presented a multi-layer fusion model for the classification
of COVID-19 utilizing ultrasound images of lungs. The researchers in [36] presented a
neural network model using contrastive loss to detect COVID-19 in radiology pictures.
Apostolopoulo et al. [37] introduced a detection system using neural networks and transfer
learning to analyze chest X-rays. Ref. [38] identified COVID-19 infections using their own
developed data set, containing a total of 1144 radiology images. Ref. [39] adopted a Faster-
RCNN, a detector model for monitoring the COVID-19 virus in X-ray images. The authors
in [40,41] trained a 2D CNN model on a data set collected from [42]. In [40], the authors
combined different pre-trained designs with regularization of the support vector machine.

In [41], the researchers introduced a network by leveraging the power of capsule
networks with different architectures to increase classification accuracies. Song et al. [43]
produced a deep learning diagnosis framework to assist medical experts in identifying
patients with symptoms of the COVID-19 virus and pneumonia in CT scan data. Ref. [44]
proposed a 3D deep network comprising a pre-trained U-Net and two 3D residual blocks.
Ref. [45] also used 3D deep networks for the segmentation of CT images. In [46], the authors
used GAN-incorporated data to enhance the learning of a discriminating paradigm for
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diseased lung segmentation. Jiang et al. [47] produced deep neural networks for tumor seg-
mentation in lung CT slices by combining various residual layers of modifying resolutions.
In another work [48], the researchers developed an explainable method for diagnosing viral
infection using a shared segmentation and classification approach. Ref. [49] aimed to offer
an automated system to segment viruses caused by COVID-19 and presented a quantitative
measure of infections to medical experts. The method involves the segmentation of lung
segmentation infection based on a U-Net architecture.

Yan et al. [13] recommended a deep neural network model called COVID-SegNet to
segment infections in CT scans. A small network for the effective segmentation of deadly
viral diseases in CT scans was presented by [50]. The authors in [51] presented a U-Net-
based computerized model for infection segmentation in lung CT scans. Shan et al. [15]
introduced a deep learning design defined as VB-Net for segmenting infection lesions
in the CT scan data set. Ref. [52] studied five convolutional neural network pre-trained
models for classifying and analyzing infected patients utilizing a chest X-ray data set.
A deep learning model for lung disease segmentation named Inf-Net was presented by [53].
The model automatically recognized infected regions in CT scan data. The authors used an
identical partial decoder to combine the distinctive characteristics and produced a global
map. To enhance the representations and the boundaries, the authors applied reverse
and specific edge-attention. Ahmed et al. [54] recently presented an Internet of Things
(IoT)-enabled deep learning model for screening of COVID-19 in X-ray images. The authors
in [55,56] presented an automated COVID-19 CT scan segmentation method that was based
on U-Net.

The researchers presented various techniques to classify, detect, and segment chest or
lung X-rays, CT scan images, and infected areas (regions and lesions) in patients infected
with COVID-19. Researchers mostly adopted state-of-the-art methods and approaches
to classify, analyze, and differentiate contagious diseases, but they used a limited data
set. This paper introduced a deep learning framework based on U-Net architecture for
the segmentation of COVID-19 infected lesions/regions in a chest/lung CT scan data set.
In addition to segmentation, the developed framework can also highlight the severity of
the disease in CT scans.

3. Methodology

This work introduces an automated framework using deep learning for the segmenta-
tion of infected regions/areas in the COVID-19 CT scan image data set. The framework
provides a classification of viral infections and assists medical experts in analyzing the
severity of infection. The overall technical flow of the designed framework is explained
in Figure 2. The method involves five steps: pre-processing, data augmentation, lung
segmentation, infection segmentation, and infection classification. The data sets used for
experimentation are collected from different available online resources.

A widely utilized deep learning model named U-Net was utilized to segment lungs
and infected areas. Data normalization was performed during the pre-processing step,
and the input image pixel values were converted in the range [0, 1], ensuring that all
input pixels have the same data distribution. This increases convergence while training
the network. Moreover, data augmentation was applied, e.g., random scaling, brightness,
rotation, crop, contrast, and flip. Data augmentation enables the deep learning network
to learn a wide variety of variations in the given data set and enhances the framework’s
performance. In order to learn target features of varying shapes and sizes, the U-Net
architecture was combined with an attention mechanism.

In addition, a boundary loss function and integral interface between ROIs were applied
to decrease the complexity of unbalanced areas. After segmentation, different metrics were
estimated to quantify the infected areas, such as the volumes of an infected region or regions
within the lungs. Additionally, to estimate the severity of diseases and the spread of viral
infection in the lungs, the percentage of infection in the lungs was determined. For that
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reason, we used the Hounsfield unit, a histogram of the infected area to envision the ground
glass opacification/opacity (GGO) and consolidation segments inside the infected region.
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Figure 2. General flowchart of the framework developed for biomedical image examination of
COVID-19 infection found in CT scans of chest/lungs. The workflow starts with the collection of the
data set, the pre-processing step, data augmentation, and train/test splitting. In addition, the U-Net
model is utilized for lung segmentation and infection in CT images. Finally, the detected infection
mask is classified into three stages, i.e., early, progressive, and severe. The flowchart concludes with
the estimated results of the assessment for a five-fold cross-validation.

3.1. Pre-Processing and Data Augmentation

As the data set collected from different resources was limited, data augmentation was
performed. Its purpose was to generate large data on acceptable modifications of the needed
configuration and to artificially increase the amount of training images. We conducted
extensive data augmentation and increased the amount of data by utilizing the batch
generators interface inside MIScnn (https://github.com/MIC-DKFZ/batchgenerators,
accessed on 1 June 2022). We executed three kinds of augmentations: first was the spatial
augmentation, which involves rotations, mirroring, scaling, and elastic deformations; color
augmentation (contrast, brightness, and gamma adjustments); and noise augmentations.
After performing pre-processing and data augmentation, the data set images were randomly
split into training and testing samples.

3.2. Lungs and Infection Segmentation Using U-Net with Attention Mechanism

For segmentation of lungs and infected areas in CT scan images, we applied the U-Net
model. The authors of [17] introduced this model, which was practically developed using
end-to-end fully convolutional networks rather than dense layers. The general design of
the model is presented in Figure 3 (adopted from [17]); it can be seen that the model can
handle arbitrary/variable size images. The overall model is basically divided into two parts,
namely encoder and decoder. The first part is used to obtain the context of the image, which
is named an encoder. This part is mainly based on a traditional pile of convolutional layers
followed by max-pooling layers. In contrast, the other part is the symmetric/balanced
expanding path named decoder, used to provide accurate localization using transposed
or reversed convolutions. The first part is also named the downsampling path, which
implements various classification models as the backbone. All steps generally use two
convolution layers (3 x 3) with batch normalization followed by a max-pooling layer (2 x 2),
as illustrated in Figure 3. The parallel bottleneck contains two convolution layers and up
convolution layers of size (3 x 3) and (2 x 2), respectively. The upsampling path has four
phases: the decoder with two convolutional layers, followed by an upsampling layer of
sizes 3 X 3 and 2 x 2. The feature maps become half after each step.
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Figure 3. U-Net architecture with attention mechanism utilized for segmentation of lungs and
COVID-19 infected virus.

From Figure 3, it can be observed that, to produce global and local information
throughout upsampling, the architecture skips connections within the downsampling and
upsampling paths. The pre-processed input images with three channels are provided to the
architecture for segmentation. Finally, the segmented map is given, using a convolutional
layer of 1 x 1 at the output. The extracted feature maps are of identical sizes to the desired
output segments. Thus, a function is defined over the absolute feature map with pixel-wise
soft-max and cross-entropy loss as [17]. It is described as follows:

L enlm)
PC) = T8 exp(al () @

In Equation (1), ReLu is an activation function (Rectified Linear Unit) used for feature
maps, and it is defined as a;. The number of classes are represented with K, and the ap-
proximation for maximum value is represented as pi(x). For maximum a(x), its value is
approximately equal 1 and considered as py(x) = 0 for other values. The function defined
in Equation (1) is penalized and given as [17]:

E= ) log(piy(x)) @)

w(x)eQ

In Equation (2), the true label or ground truth of all pixels is described as [ : (3 —
1,2,...,K. The weight map that is used throughout training for additional attention to
pixels is provided as w : ) — R [17]. For various frequency pixels, the true segmentation
is pre-calculated. Applying morphological operations for different classes in the training
data set, the weight map value is estimated as follows:

—(d1(x) +d2(x)2))
207

®)

w(x) = we(x) + wo.exp(

Therefore, the weight map used for balancing the frequencies of different classes is
represented as w, : (3 — IR. The distance value between the initial edge and second nearby
edge is denoted as d; and dp. The value of w, is set to 10 and ¢ ~ 5. (Readers are referred
to the actual work [17] for more details).

During upsampling, the recreated spatial information in the expanding path lacks
accuracy. To counter this issue, the U-Net applies to skip connections that integrate spatial
information from the downsampling path to the upsampling path. However, this causes
several unnecessary extractions of low-level features, as feature description is not good
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in the primary layers. Thus, the attention mechanism is implemented or applied at the
skip connections, vigorously overcoming activations in inappropriate areas or regions and
decreasing redundant features.

The attention gates introduced by [57] use additive soft attention, as shown in Figure 4.
These gates take two input vectors that are represented as x and g. The vector, g, is obtained
from the following lowest/deepest layer of the network. It has improved feature description
and small dimensions. In Figure 4, vector x has 64 x 64 x 64 (height x width x filters) and
vector ¢ has 32 x 32 x 32 dimensions. The x and g pass through a strided convolution and
1 x 1 convolution layers, respectively, such that their dimensions become 64 x 32 x 32. The
two vectors are added element-wise, resulting in aligned weights being more extensive
while unaligned weights become comparatively smaller.

d c

(e Pplix1x1pp__/ Pix1x1py] / 2xUp

Figure 4. Schematic design of additive attention gate used in attention mechanism. Input features

x are estimated with coefficients o to develop important features for the output of the £ (decoding
layer). The spatial gating g signal gives contextual knowledge, while spatial fields from the x input
are location information. Bilinear interpolation is used for feature map re-sampling.

The resultant output vector is passed through a activation layer ReLU, and a convo-
lution layer of 1 x 1 that drops the dimensions to 1 x 32 x 32. Moreover, it passes within
a sigmoid layer, which computes the vector in the range of [0, 1], providing the weights
(attention coefficients), where coefficients closer to 1 exhibit more important characteristics.
These coefficients are also upsampled to the real dimensions 64 x 64 of the x utilizing the
trilinear interpolation. Next, element-wise multiplication of the attention coefficients is
performed to the real x, scaling the vector according to their significance and crossing along
in the skip connection as usual.

In this work, we used a boundary loss function that applies a distance metric on the
shapes or contours instead of considering whole areas or regions [58]. The boundary loss is
highly used for unbalanced segmentation tasks. In this way, it tackles the difficulties posed
by local losses for highly unbalanced segmentation tasks. The boundary loss function is
defined as follows:

Dist(aG,5) = [ Ilyac(p) — plPdp @

In the above equation, pe(), where () is a limit on boundary at a specific region dG
and 5 (p) shows the corresponding boundary point 0S and the normal direction to dS, as
shown in Figure 4. y55(p) represents the intersection of dS, and the line normal to 9dS at
p. || represents the L2 norm. (For more information about the boundary loss function, we
refer reader to [58].)

3.3. Classification of Infection Severity

After segmentation of the lungs and infection area (regions/lesions) in the CT scan data
set, the severity of the viral infection needs to be analyzed. The infected areas are described
as air space consolidation and ground glass opacity, or complete opacity. Their level of
concentration is observed in lung and infected regions/lesions assists in determining the
different stages of the severity of infection. In the initial stage, the appearance of ground
glass opacity is usually found in one or different shapes, such as in the form of a fine mesh or
shadow /cloud of light. Infrequently, the concentration is found near the bunches of blood
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vessels (bronchial) or under the pleura. In the progressive stage, the GGO/shadows increase
or the infected region expands, starting to absorb, therefore resulting in consolidation at
a large scale. Finally, in the critical or severe stage, the consolidation of the bilateral or
unilateral lungs diffuses, identified by GGO and symptoms of the bronchial disease.

In the diffusion or absorption step, the primary regions/lesions are entirely absorbed
and grown. Therefore, to control the severity of the viral infection in the lungs (the
proportion between the size of the infected area and lungs), it is essential to estimate
the degree of concentration/consolidation of the infected regions. Therefore, sub-areas
of these segmented lesions are categorized as consolidated in case the voxel intensity is
more prominent than 0 Hounsfield units (HU); otherwise, it is categorized as GGO [7,59].
Therefore, it is reasonable to estimate the variation in the concentration of the lesions caused
by a viral infection, e.g., COVID-19. Figure 2 presents an illustration of the classification of
infected regions into three different stages of severity. In addition, the results of infection
severity classified in lung CT scans are shown in Section 4.

4. Experimental Results

Experimentation of the above-discussed model is presented in this section. First,
we discuss the training and testing observations. Second, we discuss the output results
of the segmentation model employed for monitoring and screening of viral COVID-19
infection in CT scan images. Finally, the model evaluation results are discussed, showing
the model’s performance. The introduced framework has been implemented using a
python programming language (Keras library) with OpenCV 3.6.

4.1. COVID-19 CT Scan Data Set

The data sets utilized in the experiments were collected from different online reposito-
ries e.g.,, COVID-19 CT scans from Italian Society of Medical and Interventional Radiology
(https:/ /sirm.org/category/senza-categoria/covid-19/, accessed on 1 June 2022; https://
radiopaedia.org/playlists /25887, accessed on 1 June 2022; and http:/ /medicalsegmentation.
com/covid19/, accessed on 1 June 2022). More than 800 CT scans of patients suffering from
COVID-19 were obtained from these sources. The data set included CT scans of patients
diagnosed with viral infection, and lung segmentation and infections analyzed by experts.
The size of images is 512 x 512 pixels. The images were resized, grey-scaled, and compiled
into a separate NIFTI file. The images were segmented by radiologists utilizing three labels:
consolidation, ground glass, and pleura effusion. The total number of training and testing
CT scan slices used for experimentation after data augmentation and pre-possessing is
provided in Table 1.

Table 1. Description of data set used for experimentation.

S.No Images COVID-19 Non-COVID-19 Total
1 Training Slices 800 1000 1800
2 Testing Slices 200 1200 1400
3 Total 1000 2200 3200

4.2. Training and Validation

These observations, including training and validation loss, and accuracy curves of the
above discussed segmentation architecture with attention mechanism, are illustrated in
Figure 5. Training of the model was performed for 100 epochs. It has been observed that,
after the 10th epoch, the loss values declined for training and validation. Both values are
contrasted in Figure 5. During training, when validation was performed, no over-fitting
was noted, showing no notable difference between them, while the validation performance
settled down during fitting, at a loss value of around 0.3 and a training performance of 0.2.
Due to the robust training method, externally, without any implications of over-fitting, we
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determined that adapting randomly generated patches using increased data and arbitrary
cropping from varying data sets is very effective for limited image data. As a result,
the overall loss values after the 10th epoch improved to 0.89. In Figure 5, we show the
training and validation accuracy of the model during training, which is 0.99 at the end of
the 20th epoch.

Loss vs Epochs

—— Train

08 — Val

06
"
8
-

04 \

|
02
N
0 2 s 60 80 100
Epochs
(a)
Accuracy vs Epochs

09950 _

09925 -

09900
Z 09875 1
5
5 09850

09825 1

09800 1

— Train
09775 —— Val
0 P © 60 8 100
Epochs
(b)

Figure 5. (a) Loss curve during the validation and training process. (b) Accuracy curve during the
validation and training process for training. The lines (validation (orange) and training (blue)) were
estimated using binary cross-entropy dice loss and represent the weight loss across all folds.

4.3. Visualization Results of Infected Region Segmentation

The segmentation and classification results of the segmentation framework are illus-
trated in Figure 6. We can see that the segmentation model effectively segmented the
infection regions in CT scans. It can also be observed that the boundary loss function
improves the segmentation results of unbalance regions or data. In Figure 6a,b, we demon-
strate the example results of infection segmentation at an early stage of diagnosis. It can be
seen that the segmented regions are so small and cannot be easily analyzed in the original
CT scans, while all small spots of segmented infection using the above model might help
medical experts effectively analyze and diagnoses the virus at its earlier stages.

Similarly, in Figure 7a,b, we show the output results for progressive stages; it can
be seen from the images that the virus is growing at different places irregularly and at
different locations in lungs. Such output results also help to analyze the progressive rate of
the viruses. Moreover, along with the large regions, a small art is detected.
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Figure 6. Infection segmentation results of CT scans: the sample images (a,b) show the early stage
of viral infection. Columns 1-3 show an original CT scan image, an original infection mask, and
a predicted infection mask, respectively.
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Figure 7. Infection segmentation results of CT scans: the sample images (a,b) show the progressive
stage of viral infection. It can be seen that both lungs are affected from the virus and that infection is
growing at different locations of lungs. Columns 1-3 show an original CT scan image, an original

infection mask, and a predicted infection mask, respectively.
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Figure 8a,b show the output results for the severe stage of the infected virus. As can
be seen in the example images, the virus affected the lungs of the patients badly. In both
sample figures, it can be observed that the growth of infections was severe in both lungs
and spread badly in the lungs of the patients. The results of the segmentation models
can be really useful for medical specialists in order to analyze the effect of the virus on
patients” lungs.

onginal infection mask predicted infechon mask

original €T image

predicted infection mask

original CT image

100

120

(b)

Figure 8. Infection segmentation results of CT scans: sample images (a,b) show the severe stage
of viral infection. It can be seen that both lungs are affected by the COVID-19 infection badly.
Columns 1-3 show an original CT scan image, an original infection mask, and a predicted infection

mask, respectively.

4.4. Evaluation and Comparison Results

After training and validation, we used three commonly adopted evaluation parameters
for biomedical image investigations. First, to perform performance analysis to determine
the overlap of segmentation between prediction and true labels/ground truth, we used
the Dice similarity coefficient, described in Equation (5). It is the most widely applied
parameter in segmentation applications. In addition, Specificity and Sensitivity discussed
in Equations (6) and (7) were also applied in the most popular pharmaceutical fields. All
parameters were calculated using the confusion matrix, including true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).

2x TP

Dl = TP 1 FP 1 EN ©)
e TN

Specificity = TN+ EDP 6)
TP

P 7

Sensitivity TP+ EN (7)

We determined the evaluation parameters in the cross-validation for each fold and,
therefore, for all CT images in the collected data set. Overall, the cross-validation of the
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segmentation model obtained a Dice similarity coefficient of around 0.93 for lungs and 0.76
for infected regions segmentation, as depicted as box plots in Figure 9.

09 I

0.3
0.7
0.6
0.5
0.4
0.2

Dice sirmilarity coaffickent

0.2

0.1

M Lungs 1 COVID-19 Infection

Figure 9. The result distribution of the five-fold cross-validation is presented using box plots for lung
and infected region segmentation.

The average performance values of the above-discussed segmentation model are
shown in Figure 10. The segmentation model delivers average rates of 0.932, 0.936, and 0.946
for the Dice similarity coefficient, sensitivity, and specificity for lung segmentation, respec-
tively, while for COVID-19 infected region segmentation, the Dice similarity coefficient,
sensitivity, and specificity are 0.764, 0.736, and 0.888, respectively.

0.9

0.3

0.

0.

0.

0.

0.

0.

0.1
0

Sensitivity Specificity Dice Sensitivity Specificity

oo BN

Lungs COVID-19 Infection
Figure 10. Average values of the Dice similarity coefficient, sensitivity and specificity.

The inference performance details for each fold during cross validation are listed in
Table 2. From a medical perspective, the segmentation of infected regions is a difficult
task and one reason for the lower value of segmentation accuracy. The reason for this
may be the difference between pulmonary consolidation and GGO morphology. However,
our deep learning-based segmentation model obtained considerably good results and
segmented COVID-19 infected regions with state-of-the-art efficiency comparable with
other segmentation techniques.

Table 3 presents a comparative analysis of different methods used to segment COVID-
19 infection in lung CT scan images. The U-Net [17] model achieves an average accuracy
of 0.966, while the attention U-Net [60] obtained an average accuracy of 0.978. The other
two segmentation models also achieve good accuracy results, with the U-Net++ [61]
and SD-UNet [62] accuracies being 0.971 and 0.981, respectively. Our proposed model
shows excellent results as we apply the boundary loss function. As discussed earlier,
highly unbalanced segmentations, such as regional summations where values are different
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in magnitude across types, affect training stability and performance. Thus, we applied
a boundary loss, which uses the distance metric on the area of contours, not regions.
Furthermore, it might mitigate the highly unbalanced problems by utilizing integrals
instead of unbalanced integrals over the interface between regions. We can see from Table 3,
that the Dice similarity of our proposed model is 0.763, which is higher than that for
other methods.

Table 2. Results obtained for each cross-validation fold.

Lungs COVID-19 Infection
Fold Dice Similarity = Sensitivity Specificity Dice Sensitivity Specificity

1 0.89 0.9 0.95 0.6 0.57 0.92

2 0.9 0.96 0.96 0.8 0.87 0.93

3 0.96 0.94 0.95 0.81 0.89 0.89

4 0.95 0.95 0.95 0.75 0.55 0.8

5 0.96 0.93 0.92 0.86 0.8 0.9
Average 0.932 0.936 0.946 0.764 0.736 0.888

Table 3. Comparison analysis of different segmentation methods.

S.No Methodology Average Dice Similarity = Average Accuracy
1 U-Net [17] 0.563 0.966
2 Attention U-Net [60] 0.507 0.978
3 U-Net++ [61] 0.586 0.971
4 SD-UNet [62] 0.593 0.981

Ours Attention U-Net

with boundary loss function 0.763 0.982

5. Conclusions and Future Directions

This work introduced an automated framework using deep learning for the segmen-
tation of infected regions/lesions/areas of the COVID-19 virus in the CT scan data set.
We adopted a U-Net model for segmenting lungs and infected regions of the virus and
employed the soft attention mechanism to increase the framework’s ability. Moreover, we
performed pre-processing and extensive data augmentation to improve the segmentation
model’s accuracy. Furthermore, a boundary loss function was used to deal with small and
unbalanced lesions, or regions segmentations. We validated the framework’s effectiveness
in contrast with other segmentation techniques with publicly available CT image data
sets. The experimental outcomes show the excellent performance of our framework for
the automated segmentation of lungs and infected in chest/lung CT scan images. We
also considered both boundary loss and weighted binary cross-entropy dice loss functions.
The overall accuracies of the framework were 0.93 and 0.76 for lung segmentation and
infected region segmentation, respectively. In the future, this work might be extended to
the analysis and segmentation of other viral infections; we might use other segmentation
techniques based on deep learning applications to analyze, detect, and classify different
viral diseases.
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