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Abstract: Checking that requirements written in natural language hold for a formally implemented
system is a complex task. Test steps are commonly implemented manually from the requirements.
This process is inherently prone to mistakes, as test cases are complex and need to be analyzed
sequentially to check which input/output combinations are tested (although tools allow for explicit
tracing). Utilizing Karnaugh–Veitch maps as minimal formal contract between informal requirements
and implemented test steps improves this process. KV-maps provide the requirements in a computer-
editable way, as they correspond to Boolean formulas. KV-maps further allow to define which
test steps are relevant. With both requirements and relevance specification at hand, test steps are
automatically generated. The approach is applied on a real-world industrial use-case—a train control
management system. Although being generally amenable to permutation testing, the selected use-
case emphasizes the potential of the method. The method successfully demonstrates its benefits and
may help to disclose flaws in the current manually implemented tests.

Keywords: IBM doors; KV-maps; karnaugh; veitch; permutation testing; TCMS

1. Introduction

A classic software life-cycle commonly comprises four steps: (i) requirements analysis,
(ii) design, (iii) implementation, and (iv) test-case generation to check whether the final
product satisfies the initial requirements, and may be enriched by agile approaches, dedi-
cated deployment, or maintenance phases. Satisfying requirements is especially important
for safety-critical systems. A flawed test-procedure can fail to detect flaws in the imple-
mentation (false negatives) or label a product useless, although it satisfies its requirements
(false positives). While implementing test steps manually is inherently prone to mistakes,
their detection is difficult, as the test result does not state if the test itself is correct (i.e.,
as intended).

Even if not potentially endangering lives, testing is also important in terms of liability.
A defective product can ruin a company if it was not reasonably thoroughly tested. This
paper aims at improving the trade-off between the costs of testing and the potential risk of
having overlooked a potential safety hazard by showing how Karnaugh–Veitch-maps [1]
can be exploited in testing, highlighting advantages and challenges.

KV-maps can simplify working with Boolean expressions. They were introduced by
Veitch in 1952 [2] and refined by Karnaugh in 1953 [1] with an original focus on simplifying
circuitry. The results of a Boolean formula are written as a truth table. The results are
then transferred into a two dimensional grid such that each cell represents one input
combination and its content represents the output. Optimal groups of 0 s and 1 s can be
identified and the canonical form of the formula can be derived.

The research question is: How can the process of test step implementation be im-
proved? This question is motivated by the state-of-the-art (i) being prone to flaws and
(ii) being limited in the number of test steps in practice. One method to answer the question
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is KV-maps. These can serve as minimal formal contract to avoid mistakes in the imple-
mentation of test steps and help to automatize the test step generation. We present a real
industrial case study, a train control management system (TCMS), to demonstrate how
KV-maps can help to overcome the limitations of manual implementation, which for the
case study was still the state-of-the-art.

KV-maps offer a structural approach for linking test cases in their textual form to code
(and even generate the code based on them). Alternatives from model-based testing are
discussed in Section 2, yet no source could be found where KV-maps have been exploited
in a similar way. Hence, this work does not focus on benchmarking or outperforming
existing tools, but instead establishes a novel approach to overcome the limitations of the
state-of-the-art, exemplarily demonstrated on a real industrial use-case, the TCMS.

Whenever requirements specify which combinations of (Boolean) signals are to be
tested, a KV-map can be a handy tool to connect a requirement with its counterpart in
the implementation. Furthermore, just linking that requirement to the cell in the KV-map
allows for the code to be generated automatically, ensuring that all tests are conducted
as expected. Exploiting KV-maps—here for once not for optimizing circuitry, but for
permutation testing—hence has two benefits: Ensuring completeness and automatic test
generation. To the best of our knowledge, KV-maps have not been utilized in this way until
now and they have shown to be an invaluable asset for the presented use-case.

The TCMS, which serve as an example to demonstrate the method, is developed
by Alstom Transportation AB (Formerly Bombardier Transportation when this work was
conducted) in Västerås, Sweden. The company employs the tool IBM DOORS (Dynamic
Object Oriented Requirements System) [3] for managing the requirements analysis, from
which tests are manually implemented and executed on both a simulator and a physical
system. For instance, the phrase “the alarm-light shall flash within one second if the sensor
is activated” is implemented in C#, as shown in Listing 1.

Listing 1. Code Example, one Test-Step in the TCMS.� �
1 RTSIM.SIG_A.Force(true);
2 WaitForCondition(RTSIM.OUT_A, Is.Equal, 1, 1000);� �

The original signal names are exchanged for security reasons and the original textual
requirements documents are closed source. The first line sets a sensor SIG_A to true and
the second checks if the desired post-condition RTSIM.OUT_A, Is.Equal, 1 holds within
1000 ms. Section 3 shows how manual implementation caused undetected mistakes in the
test routine, which motivated to reason how such mistakes can be avoided. The formal
approach in a nutshell is to

1. write down the input vectors to be tested formally into a KV-map from the textual
description, and

2. either compare if manually implemented tests can be linked to all entries, or
3. utilize that map for automatic implementation to guarantee full coverage.

Similarly, tools like IBM DOORS allow requirements to be linked to specific test steps.
The advantage of KV-maps is that the test engineer only has to concern with few Boolean
formulas and their relation to textual requirements instead of confusing test steps of a test
case and their relation. Beyond that, KV-maps can be exploited to provide the simplified
canonical form for automatic code generation. While KV-maps can serve as a graphical aid
to visually confirm all required test steps are included, they serve here only as minimal
formal contract and for test script generation. Being minimal here means that all possible
test steps are represented in a (Boolean) matrix and all required test steps are labeled 1,
while all others are labeled 0. The approach generally holds for non-Boolean domains
also, and also for higher dimensions (as discussed in Section 6.2, Step 2). However, for the
featured TCMS, this is not required. The contributions of this paper are:
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1. showing how KV-maps are established as a minimal formal contract between textual
requirements analysis and implementation,

2. introducing the TCMS and its test cases as an industrial case study, and,
3. with KV-maps allowing to define which test steps are relevant, showing how KV-

maps—specifying both requirements and relevance—can be further exploited for an
automatic (and provably correct) test step generation.

The state of the art is discussed in Section 2 in the light of selected relevant literature.
Section 3 methodologically differentiates the terms bug, mistake, and fault in the light of this
paper, before Section 4 introduces the TCMS as system under test (SuT), along with the
test suite and its corresponding KV-map in Section 5. Section 6 shows the custom-tailored
script for automatic test step generation based on KV maps. Section 7 concludes this paper.

2. Related Work and State of the Art

Exploiting KV-maps for a structured approach to mistake-free test generation benefits
from research from many domains. The goal of this section is not to provide a holistic
survey over all available literature (which would be worth an article on its own), but to
reflect the state-of-the-art in adjacent domains.

Why are the test cases implemented manually in the first place? What are the alterna-
tives? The motivation for the manual approach is that each functionality is simply tested as
a unit. An integration test covering cross-functionality is not demanded for the featured
case study, and as each unit is sufficiently small (with six or 13 steps to implement for the
three sensors featured here), more complex approaches are too expensive. This brings back
the question for the ideal trade-off between safety and amount of testing from Section 1.

Model-based approaches seem like a nice possibility to maximize the testing coverage
with automated test-step generation. For instance, Alrawashdeh (On the paper, the author’s
name seems to be misspelled as Alrawashed) et al. [4] provided an ATM system as SuT and
discussed model-based testing, improved with genetic algorithms. For systems that are too
large for being holistically tested, optimizing the test step selection is important. For the
TCMS, on the other hand, KV-maps allowed for achieving full integration test coverage.
The actual bottleneck in the script presented for the TCMS is rather the slow writing of the
test steps into a file on a hard disk, not its generation in the RAM. We did not discover the
limit of the test case generation with KV-maps. That (depending on the hardware provided)
is yet to be found with larger challenges. For such challenges, Tomita et al. [5] propose a
tool exploiting Monte Carlo test-case generation, implying the crucial question: Why write
a new tool?

KV-maps define a minimal formal contract hinging text to code. To the best of our
knowledge, they have not been established yet for challenges like the TCMS. Second, the
tools considered:

• Spec explorer (https://www.microsoft.com/en-us/research/project/model-based-
testing-with-specexplorer/, last visited 30 May 2022) focuses on design conformity,

• MaTeLo (https://matelo.all4tec.com/, last visited 30 May 2022) focuses test generation
via graphical design,

• Conformiq (https://www.conformiq.com/, last visited 30 May 2022) focuses on
improving testing with AI, and

• Smartesting (https://www.smartesting.com/?lang=en, last visited 30 May 2022) fo-
cuses on cognitive test automation,

tackle different challenges and do not exploit KV-maps. The initial motivation to utilize
KV-maps was to have a minimal formal contract that is as clear and as short as can be.
Instead of looking for a tool fitting the TCMS we looked for a method and then if there
is a tool featuring that method. With a lack of a proper tool, we implemented our own
tool which is tailored to the TCMS, whereas the method is generally applicable. Exploiting
formal methods for model-based test generation, for instance discussed by Kalaee and
Rafe [6], exemplarily shows how academic contributions are disseminated in industrial
contexts. Similarly, KV-maps can be exploited.

https://www.microsoft.com/en-us/research/project/model-based-testing-with-specexplorer/
https://www.microsoft.com/en-us/research/project/model-based-testing-with-specexplorer/
https://matelo.all4tec.com/
https://www.conformiq.com/
https://www.smartesting.com/?lang=en
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The closer a deadline for release gets, the less testers commonly have to do. Accord-
ing to Spadini et al., providing “high-quality test code is [. . .] considered of secondary
importance” [7]. They address this issue and provide a study containing interviews of
twelve developers, analyzing more than 300,000 code reviews on a meta-level. Our paper
addresses their third research question: “Which practices do reviewers follow for test files”?
Exploiting KV-maps as described here provides a structured method for generating test
files with a minimal formal contract as evidence.

A less formal notion for addressing the quality of testing are smells in software code.
For instance, Garousi and Küçük [8] provide a literature survey for that domain, including
a similar discussion about the differences of manual and automated testing. With KV-maps
at hand, smells become redundant. An earlier study provided by van Deursen et al. [9]
puts practical lessons learned to the smells of code and can be very helpful when KV-
maps cannot be employed. Kitamura et al. [10] provide graphical notations for modeling
tests in combinatorial testing tailored for tree-structured strategies. Although their scope
is different, their approach can be extended to discuss permutation testing based on
KV-maps in the future. Regarding combinatorial testing, Kuhn et al. [11] exemplarily
discuss how exhaustive testing can be avoided. This topic is addressed in Section 4.1 by
pointing out that classes of bisimilar test steps require only one representative step to be
tested. Further model-based testing methods, to which our approach can be applied to,
are discussed by Utting et al. [12]. The exploitation of a minimal formal contract between
textual requirements and actual test implementation (or their automatic generation based
on those contracts) is not part of this survey. Im et al. [13] show a tool-chain for a model-
driven creation of test cases, which are automatically extracted from use cases that are
specified in a domain-specific language (DSL, [14,15]).

Despite model-based testing, other areas are also important. Regarding high-level
system specification, Ferrarotti et al. [16] propose a method for transferring Java source code
into Gurevich’s Abstract State Machines to describe the behaviour of the system without
irrelevant details with the goal of improving current software engineering practices and
testing. With state-transitions being redundant to the TCMS, we can focus on a different
approach. Exemplary for correct-by-construction approaches, Benyagoub et al. [17] advo-
cate for verifying conversation protocols of distributed systems. Although communication
is vital for the TCMS, it is not its test subject. Zhuang [18] presents PuPPy as an extension
to Python for helping programmers in declaring fields (class attributes) as signals, similar
to the signals in the TCMS featured in this paper. Both explicit events and implicit signals
can be regarded as a mechanism to propagate value changes of variables. PuPPY provides
a lightweight push-pull model to use variables as signals in imperative programming
focusing on object-oriented design. Naumchev et al. [19] present a tool-supported method,
AutoReq, for programming with contracts. It produces verified requirements which are
demonstrated on the use-case of a landing gear system. The question for a minimal formal
contract is not discussed. Kos et al. [20] show that one can leverage on the domain-specific
modelling languages by implementing assertions to it to build a testing framework with
relatively little effort, similar to the utilization of KV-maps for generating test steps.

3. Mistake Propagation

A requirement analysis describes what has to be tested along with the expected
outcomes. For the case of the TCMS, it is manually transferred to executable code, setting
the signals and waiting for the expected outcome. This manual transfer is prone to mistakes,
caused by regular typos (e.g., setting the wrong signal or the wrong value). They can be
structural by misinterpreting the requirements and they can propagate. Since the setting
of signals follows a certain pattern, exploiting model-based testing for autonomous code
generation seems attractive.
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The

1. SuT,
2. the test case qualifying the system against desired properties, and
3. the environment in which all are executed

determine the actual execution of the testing sequence. A bug in the SuT (1.) might cause
undesired behavior, as well as the environment in which the system operates (3.) when it
is not within the limits for which the system is specified. The middle item (2.) addresses
undesired behavior when the specification of the behavior itself is flawed while both system
and environment are behaving as desired.

Undesired behavior can occur in each of these and the effects might spread through
the system or test-case. This section proposes the following terminology for distinguishing
between them shown in Table 1. Since the term bug is coined in software engineering
and fault in fault tolerance, we select the term mistake to distinguish undesired behavior
in testing.

Table 1. Terminology distinguishing Bugs, Mistakes, and Faults.

SuT Testing Environment

causation bug mistake fault

nature deterministic probabilistic

Mistake here means unintentional human-induced cause for unintended behavior
during testing. The term programming bug refers to bugs in the SuT, faults to sporadic
influence from the environment, and mistakes are bugs in testing.

The term propagation in that relation was first defined for fault propagation, referring
to the spreading of effects of faults through the components of a system (cf. [21]). The
term bug propagation, coined in software engineering [22,23], addresses unintended but
system-internal causes for deviation from the intended behavior spreading through the
system. Similarly, mistakes can spread through a sequence of test steps. Analogously,
mistake propagation addresses persistence, continuation, or consequences of mistakes in
testing sequences. Therefore, here,

• bugs are in software,
• mistakes in the testing procedure,
• and faults caused by the environment (potentially affecting either).

Their propagation accounts for spreading their effects within the system or testing
procedure.

Example 1. Consider three Boolean signals A, B, and C and the following test procedure in
Listing 2 in pseudo code.

This procedure tests all eight combinations, traversing the state space as shown in
Figure 1 with solid black arrows. Now consider a mistake typo in TestStep 2, line 4,
assigning B = 1; instead of A. The result is the trace shown by red dotted arrows. The trace
misses to test three states.
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Listing 2. Test Steps Exemplifying Mistake Propagation.� �
1 %TestStep1
2 A = 0; B = 0; C = 0; test();
3 %TestStep2
4 A = 1; test();
5 %TestStep3
6 B = 1; test();
7 %TestStep4
8 C = 1; test();
9 %TestStep5

10 A = 0; test();
11 %TestStep6
12 B = 0; test();
13 %TestStep7
14 A = 1; test();
15 %TestStep8
16 A = 0; B = 1; C = 0; test();� �

000

001

010

100

011

101

110

111

Figure 1. Teststepping through the State Space.

This example shows how a mistake can propagate through further test steps. Section 6.2
addresses this challenge in the light of the featured TCMS example.

4. The Train Control Management System and KV-Maps

The TCMS is a proprietary embedded system that is available as both a simulator (BT
SoftTCMSController software, Version 1.1.5.0) and a real physical system. The simulation
mimics the behavior of the original system, conservatively realistic wrt. timing properties.
The three featured test cases are

1. smoke/fire sensor,
2. battery chargers, and
3. derailment sensors.

A signal is either a sensor signal or a validity signal of a sensor signal. It is a Boolean
flag where true means the good thing [24], i.e., that no alarm shall be raised or that a signal
is valid. The false value means the bad thing, i.e., that an alarm is to be raised or a signal is
invalid. A set of sensors (e.g., two smoke/fire sensors) together with validity signals (one
per sensor) are the input for one test case. For instance, two smoke/fire sensors with two
validity signals make up the four inputs for the first test case smoke/fire detectors. The output
signals are to be computed as described in the textual requirements analysis. For instance,
consider that an alarm shall be raised if (i) at least one valid signal wants to raise the alarm,
or (ii) if there is no valid signal.

Utilizing KV-maps for each individual test case shows how the mapping from input
(i.e., position of the cell in the KV-map) to output (i.e., the value of the cell) is conducted and
how this is helpful when checking the implementation. Once the KV-map is established,
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we show how it can be further exploited for generating the test steps automatically. Beyond
that, we discuss how combinatorial testing, i.e., here combining different test cases to
common outputs, can be achieved, while still keeping the test case specific KV-maps
separated. Section 4.1 shows, in general, how to derive a KV-map on the example.

4.1. From Textual Requirements to KV-Maps

Formalizing the smoke/fire sensors in this example requires four variables:

• SIG_A as signal from the first sensor with
• SIG_AV being its validity signal, and
• SIG_B as signal from the second sensor with
• SIG_BV being its validity signal.

The textual requirements state that an alarm shall fire if one valid alarm fires and
there is at least one valid signal. This also means, in turn, that no alarm is sounded if only
an invalid signal fires an alarm, and that an alarm is fired if both signals are valid but
contradict each other. The formula

s |= P :¬((¬SIG_A∧ SIG_AV)
∨ (¬SIG_B∧ SIG_BV))∧
(SIG_AV∨ SIG_BV)

(1)

reads: The system state s satisfies (safety) predicate P if neither sensor raises a valid alarm, and
there is at least one valid signal. This formula can be written as Truth Table 2.

Table 2. Fire Sensor Truth Table.

SIG_A SIG_A ¬SIG_A ¬SIG_A
SIG_AV ¬SIG_AV SIG_A ¬SIG_AV

SIG_B SIG_BV 1 1 0 1
SIG_B ¬SIG_BV 1 0 0 0
¬SIG_B SIG_BV 0 0 0 0
¬SIG_B ¬SIG_BV 1 0 0 0

That thruth-table used as KV-map ( The online calculator https://www.mathematik.
uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/, last visited 30 May 2022,
generated all KV-maps in this paper) shown in Figure 2 derives the disjunctive normal
form (DNF) shown in Equation (2):

s |= P :( SIG_A ∧ SIG_AV∧ ¬SIG_BV)∨
(¬SIG_AV∧ SIG_B ∧ SIG_BV)∨
( SIG_A ∧ SIG_AV∧ SIG_B )

(2)

Notably, the graphical tool shown in Figure 2 is here only applied for a visual repre-
sentation. For the formal approach, a coded representation suffices. One might think that
adding KV-maps would add another source for mistakes. Such loose ends (unconnected
values in the KV-map), which are either a textual requirement that is not connected or a
missing implemented test step, are yet alerts, which is the reason to have this minimal
formal contract in the first place. KV-maps here serve as a perfect detector verifying that all
required test steps are included. Hence, adding a KV-map does not open a new vector for
mistakes, but rather an additional check to avoid them.

https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/
https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/
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Figure 2. Fire Sensor KV-Maps.

A complete test would set the system to every single possible combination (there
are 16) and check if the output is as expected (i.e., 1 when s |= P and 0 otherwise). For
certifying the system, it is only required, that one representative combination for each
requirement is tested. For instance, when one sensor is valid and true while the other is
invalid, the test step in which the other sensor is valid and true with the first being invalid
has not to be tested anymore. Both test steps are bisimilar (wrt. P), and they belong to
the same equilvalence class. How sets of steps qualify for lumping [25] is specified in the
textual requirements analysis. The distinction between test cases (e.g., derailment sensors
or smoke sensors) and test steps (i.e., a specific allocation of signals within a test case, or
system state) is important. A test case (e.g., smoke/fire sensors) comprises several test steps
(e.g., an allocation of values for the relevant signals). All test steps must succeed for a test
case to pass. In case the alarm is activated when not intended to, the corresponding test
step is labeled false positive, or false negative (i.e., an undetected fault) otherwise.

5. Testing

A common test step in the TCMS example has the form shown in Listing 3 in C#. The
input signals are set (i.e., forced to either true or false) and the expected output condition
has to hold within one second (here as 1000 ms).

Listing 3. An Exemplary Step.� �
1 RTSIM.SIG_A.Force(true);
2 RTSIM.SIG_AV.Force(true);
3 RTSIM.SIG_B.Force(true);
4 RTSIM.SIG_BV.Force(true);
5 WaitForCondition(RTSIM.OUT_A, Is.Equal, 1, 1000);
6 WaitForCondition(RTSIM.OUT_B, Is.Equal, 1, 1000);
7 WaitForCondition(RTSIM.OUT_C, Is.Equal, 1, 1000);� �

Notably, the requirements analysis states that all three outputs are expected to comply
within the same one second. However, the script permits each signal in sequence up to
one additional second. This mistake is ignored here, as technically all outputs are set
simultaneously and cannot take advantage of the additional time to comply.

The following three sections explain the three test cases in detail. The TCMS example
is well suited to show

1. why manual test case implementation is still the state of the art,
2. how mistakes are possible and not unlikely in such cases,
3. the shortcomings of direct implementation from requirements,
4. how KV-maps for automatic test step generation are not only an improvement over

manually implemented test cases, but also unlock the potential to tackle larger test
campaigns that either include more test cases or demand full integration testing,

thus improving the state of the art. Featuring three test cases, we introduce input variables
with a leading
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• SIG1_ for test case 1, smoke/fire sensor,
• SIG2_ for test case 2, battery chargers, and
• SIG3_ for test case 3, derailment sensors.

The first signal of a test case is labelled SIG*_A and its validity signal (In the TCMS,
every signal has a validity signal) SIG*_AV, the second SIG*_B and SIG*_BV, and so on. Each
test case has one individual output labelled OUT*. All test cases also share three outputs per
design specification labelled OUTSHARE1, OUTSHARE2, and OUTSHARE3. Paragraph Step 4 in
Section 6.2 explains how they are computed during integration testing (i.e., when multiple
test cases are tested at once).

5.1. Smoke/Fire Sensor

The smoke and fire sensors have two data signals and two validity signals labeled
SIG1_A, SIG1_AV, SIG1_B, and SIG1_BV. Each signal can be set to true or false, which results
in 24 = 16 possible combinations for the first test case. The alarm shall become active
within one second if (i) one valid sensor raises the alarm, or (ii) no sensor is valid. The
alarm output is split into fours signals. All shared outputs are for redundancy purposes
expected to be equal by design at all times.

Not all possible 16 test cases are relevant. It suffices to test one representative for each
equivalence class (cf. Section 4.1). Table 3 shows the relevant test steps and their outputs.

Table 3. Test Case 1—Smoke and Fire.

Inputs Outputs

Step SIG1_A SIG1_AV SIG1_B SIG1_BV OUT1 OUTSHARE1 OUTSHARE2 OUTSHARE3

1 1 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1
3 1 0 0 0 0 0 0 0
4 1 1 0 0 1 1 1 1
5 1 1 0 1 0 0 0 0
6 0 1 0 1 0 0 0 0

5.2. Battery Chargers

The battery chargers comprise eight input signals from the sensors: Four original
signals and four validity signals, labeled SIG2_A, SIG2_B, SIG2_C, SIG2_D, and SIG2_AV,
SIG2_BV, SIG2_CV, SIG2_DV. There are 28 = 256 possible test steps of which only 13 are
deemed relevant, shown in Table 4. Signals SIG2_B and SIG2_C (and their validity signals
respectively) are identical. Although they can be set to different values in theory, such a
case never occurs as it is physically impossible. This feature is documented in the internal
documentation. Hence, they are treated as one signal, indicated by the brackets in Table 4.
This reduces the number to practically six signals, or 26 = 64 possible combinations.

Table 4. Test Case 2—Battery Chargers.

Step SIG2_A 〈SIG2_B SIG2_C〉 SIG2_D SIG2_AV 〈SIG2_BV SIG2_CV〉 SIG2_DV OUT2 OUTSHARE1 OUTSHARE2 OUTSHARE3

1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 1 0 0 0 0
4 1 0 0 1 1 1 1 1 1 1 1 1
5 0 1 1 0 1 1 1 1 0 0 0 0
6 1 1 1 0 1 1 1 1 1 1 1 1
7 1 0 0 0 1 1 1 1 0 0 0 0
8 1 1 1 1 0 1 1 1 1 1 1 1
9 1 1 1 1 0 0 0 1 0 0 0 0
10 1 1 1 1 1 0 0 1 1 1 1 1
11 1 1 1 1 0 1 1 0 0 0 0 0
12 1 1 1 1 1 1 1 0 1 1 1 1
13 1 1 1 1 1 0 0 0 0 0 0 0

The next simplification comes from the requirements analysis: The output shall be 1
when there are at least two valid true input signals (treating SIG2_B and SIG2_C as one).
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Since battery chargers are less critical than smoke/fire sensors, one valid alarm does not
necessarily lead to an alarm. Instead, majority consensus applies. The first six steps in
Table 4 (after the initialization step) iterate through the actual signals being set to trueor
falsewhile all validity signals are true. Then, the exact same set of combinations is executed
on the validity signals, while the actual signals are true. Thus, actual signals and validity
signals can be treated as equal partitions, with each partition requiring the same six steps
(plus one initialization step where all signals are true). The output signals comprise one
individual signal OUT2 and the three shared signals. Table 4 shows all relevant input
combinations with their expected output.

5.3. Derailment Sensors

The derailment sensors have four inputs and four outputs. This test case shares the
same relevant input combinations with the first test case as shown in Table 5. Notably, the
expected output differs due to different safety constraints. In case of smoke/fire, one valid
alarm or no valid sensor trigger the alarm. In case of derailment, even one inactive sensor
(i.e., validation channel set to false) triggers the alarm. Only when all signals are true and
valid is the (safety) predicate satisfied.

Table 5. Test Case 3—Derailment Sensor.

Step SIG3_A SIG3_AV SIG3_B SIG3_BV OUT3 OUTSHARE1 OUTSHARE2 OUTSHARE3

1 1 1 1 1 1 1 1 1
2 1 0 1 1 0 0 0 0
3 1 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0
5 1 1 0 1 0 0 0 0
6 0 1 0 1 0 0 0 0

6. Test Generator

The starting point for understanding the test cases includes (i) the requirements
analysis and (ii) the manually implemented test scripts in C# derived from the requirements.
The available scripts initialize the system by setting all relevant input signals to true
(cf. Listing 3). Afterwards, the system is set to different input configurations—by changing
those values that differ from the previous configuration—and it is tested, if the system
provides the expected output within 1 s. After executing all steps, the system is brought
to a post condition in which it can shut down. Failed steps where the output is not as
expected do not stop the test sequence. For test cases 1–3, the order in which the steps are
executed (i.e., their sequence) is arbitrary. Safety is only state based, not trace-based. This
means that safety is defined here momentarily over the one state and not a sequence of
states over time.

6.1. Manual Test Scripts

The manually written test scripts set only those signals that change with regards to
the previous system state (similar to the script discussed in Listing 2). For instance, the
implementation of the first two steps in test case 1 from Table 3 read as shown in Listing 4
in C#:

Test step 2 in lines 8–11 only sets signal SIG_AV. This accelerates test execution as
redundant signal-setting is avoided. Setting one signal takes about 20 ms in the simulator.
Studying the manually implemented test cases revealed a mistake in a script, where the
wrong signal was updated. Since only signals that change with regards to the previous step
are updated, such mistakes can manifest until they are overwritten by another update as
discussed in Figure 1. Therefore, even if the sequence of steps is not relevant for the test
itself, it is relevant for mistake propagation. Undetected mistakes (false negatives or false
positives) cannot occur in the test routine with KV-maps. Notably, the mistaken test step
from the manual implementation here failed neither the unintended configuration nor the
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correct one. The mistake was also corrected by chance directly in the following step by
overwriting the affected signal before it could propagate through the following steps.

Listing 4. Two Sequential Test Steps Setting only Changing Signals.� �
1 /** Step 1 **/
2 RTSIM.SIG_A.Force(true);
3 RTSIM.SIG_AV.Force(true);
4 RTSIM.SIG_B.Force(true);
5 RTSIM.SIG_BV.Force(true);
6 WaitForCondition(RTSIM.OUT1, Is.Equal, 1, 1000);
7 /** analogously for OUTSHAREs**/
8 /** Step 2 **/
9 RTSIM.SIG_AV.Force(false);

10 WaitForCondition(RTSIM.OUT1, Is.Equal, 1, 1000);
11 /** analogously for OUTSHAREs**/� �

However, the mistake raised the question as to whether or not all signals should be
set each time. When implementing manually, changing all signals each step takes longer
and means higher chances of mistakes (based on human nature). Setting all signals each
time is a bad option. For automatic implementation on the other hand, such mistakes
do not occur. Setting all signals every step takes longer (raising complexity linear in the
number of signals). A benefit of setting all signals is interchangeable steps. Since the
system is to be tested, it is expected to violate the requirements. Testers want to re-test
flagged configurations. A failed test step including its full configuration is a clear benefit
over the reconstruction of a configuration over the trace of past steps. Additionally, fully
set configurations allow for concurrent testing to distribute a stack of steps onto multiple
systems or simulators.

The manually implemented test cases execute sequentially. Although the test cases
share output signals, the requirement analysis does not demand testing test cases together
(i.e., a shared output is only true when all its inputs are true). Without a requirement for
integration testing, test cases can be dealt with one by one, and alone they do not face state
space explosion. A state space explosion occurs when the number of states is exponential
in the number of processes or signals constituting the states. In case integration testing
would be required, 6× 13× 6 = 468 test steps would have to be implemented instead of
6 + 13 + 6 = 25 (i.e., exponential vs. linear complexity) for the three featured test cases.

The TCMS test suite is a real industrial example, suitable to investigate how testing
a larger system can be accomplished in the future. Assuming linear complexity at this
point just because the requirements analysis does not explicitly require integration tests
is dangerous, especially when test cases share common outputs. Considering this, our
sandbox test cases allowing for a holistic analysis is a strong asset: The proposed tool for
automatic test step generation includes optional integration testing to demonstrate and
address the severity of the state-space explosion at this level, which nicely shows to be
somewhat of a borderline of what can be implemented manually and what would require
automatic generation.

6.2. Script Generator Design

The manually implemented test scripts and the requirements analysis provided by
Bombardier defined Truth Tables 3–5. As discussed in the previous paragraph, we select
setting all signals each step and offer optional integration testing to test shared outputs
as first design goal. A challenge in implementing the script was the automatic test step
selection. How can which test steps are relevant be determined? The actual challenge
manifests in the step from having a textual description towards the actual implementation.
How can it be ensured that the generated code matches the textual specification? What
would be the best (i.e., clearest, most precise, shortest, impossible to misunderstand) contract
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linking text to code? A second design goal is to manifest this connection. The third
design request is the automatic output specification. Once the relevant inputs have been
determined, the expected outputs shall be automatically added. Concluding, the three
design goals are (i) integration testing, (ii) automatic test step identification, and (iii)
automatic output calculation.

The code for the test script generator, which has been custom-tailored to this task, is
available online (https://github.com/earthphoenix/BT, last visited 30 May 2022). The tool
is implemented in Erlang. In order to execute it, set the relevant parameters in the header
file gen_script_config.hrl. and compile the source code with c(gen_script). and
execute it with gen_script(start). The script builds the required test cases according to
the specification of the header file in five steps.
Step 0

Sets the desired options in the header file gen_script_config.hrl. The tool builds a
file comprising (i) an initialization sequence, (ii) automatically generated code for each test
step, and (iii) code shutting down the simulator or hardware. The initializing sequence is
in file tcHeader.txt, the code for shutting down in file tcFooter.txt. These commonly
change with different versions of the SuT. Once the desired outcome is specified in the
header file, the following five steps generate the matching test steps:

Step 1: Create Initial Vector
Step 2: Make Boolean Combinations
Step 3: Filter Relevant Steps
Step 4: Add Expected Outputs
Step 5: Replace with Code

Step 1
Creates a list with signal names depending on which test cases are activated in the

header file. Notably, shared output signals are only to be added once. The output is a list
containing unique atoms, one for each input and one for each output. Executing this step
takes less than a second and is linear in complexity.
Step 2

Generates all permutations. With 4 + 8 + 4 = 16 boolean input signals for test cases 1,
2, and 3, respectively, the resulting number of possible permutations for a full integration
test is 216 = 65, 536. In Erlang, this can be coded easily with pattern matching.

The first list [A, B, . . .] in Listing 5 contains placeholders, one for each input signal.
The number of input signals comes from the previous step that selected the test cases to
be included. The double pipe demarcates a list of variables, each allocated a list of all
possible values (here Boolean). Generating all permutations commonly requires less than a
second. This covers the first design goal and seamlessly allows for potential inclusion of
non-binary values.

Listing 5. Implementing Permutations in Erlang.� �
1 [[A,B,..] A <- [true,false], B <- [true,false], ...];� �

Despite complexity being exponential, the result is just a list of lists containing Boolean
signals. Its creation and storage at this point is not a challenge, even on limited hardware.
The boundaries here have not been tested, but are expected to be sufficiently high to not be
a problem, even when the number of test cases increases significantly.
Step 3

Filters those test steps that are actually deemed relevant. Since all permutations of
input signals are generated anyway, the flag ?IMPORTANCE in the header file overrides that
filter when set to false. The filter is applied before the outputs are generated (step 4) to save
some time by avoiding computing outputs of test steps that are filtered out regardless.

What makes a test step relevant? Formalizing this question seems simple. A test step
is important if it reflects expected behavior mentioned in the textual requirements analysis.

https://github.com/earthphoenix/BT
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The important test steps for the featured test cases for instance are those shown in the Truth-
Tables 3–5.

For the manually generated test cases and steps, a test engineer looked at the textual
description and then started coding. The naïve approach for the new tool would have been
to simply write all desired input combinations mentioned in the textual description in an if-
clause, acting like a bouncer in front of a club: if you are on the list you get in. Then, each
possible allocation from step 2 can be checked for being on that list. The implementation is
not much work for test cases comprising six or 13 relevant steps. Covering for a lot larger
sets in the future on the other hand might yet be challenging. For example, consider a
bouncer having to check many features of potential customers instead of six or 13. Therefore,
on the one hand side, the number of entries and the size of the underlying KV-map is
crucial in the first step. On the other hand side, integration testing becomes inherently
more challenging due to the case distinction discussed in the next step, when the shared
outputs are computed. Additionally, the second design goal described in Section 6.2 states
automatic test step identification. Lastly, having this automatized might reduce the risk of
missing and skipping relevant steps or adding irrelevant steps by mistake. After all, we
can formally prove which test steps are included with an automatic method. The trick is to
employ KV-maps for filtering, as discussed in Section 4. Figure 3 shows the mapping for
TCs 1 and 3 in Figure 3a and for TC2 in Figure 3b.
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Figure 3. Selecting Relevant Steps with KV-Maps Figures were created with the online tool from https:
//www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/, last visited
30 May 2022.

While the input-filter-maps of cases 1 and 3 are equal, their expected output-filter-
maps—for which KV-maps (cf. for instance Table 2 on page 7) can be employed as well as a
computation method—are different. The formulas underneath the graphs formalize the
resulting DNFs.

In case of integration testing, a test case is considered to be relevant if all individual
participatory input signals are relevant. For instance, consider a test step composing signals
from test cases 1 and 2. If a signal-combination of test case 1 is considered relevant but a
signal-combination of test case 2 is not, then the whole compound step is irrelevant.

https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/
https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/
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The novel filtering based on first creating all permutations (in step 2) and then filtering
them with KV-maps (in step 3) is expected to be less error-prone than the manual conver-
sion. For once, the created KV-map can directly be compared to the textual requirements
and each desired step can be appointed concretely to one 1 on the map (cf. Figure 3).
Second, all signals are set each step so the sequence of steps can later be changed if desired,
eradicating mistake propagation. The downside is that setting all signals consumes more
time, which is not considered crucial since (i) it is only linear in complexity, (ii) setting a
signal is considerably fast, and (iii) the testing process is parallelizable. The automatic code
generation in the next step is fast and also not an issue. Finally, mistakes are expected to be
observable much more easily, as a small mistake in the formal contract would result in a
pattern of faults throughout the test steps that is easily observable.

These maps are the formal contract. It is possible to put a finger on a cell, linking
it to both the textual requirements and the code line generated. If the test case was not
generated but appears in the textual form (or vice versa), it shows up here.
Step 4

Generates the expected outputs for the relevant test steps. The challenge is that some
test cases share some outputs. A shared output signal shall be true if all relevant test cases
want it to be true and false otherwise. For instance, if test cases 1 and 2 do not raise an
alarm but test case 3 does, the shared alarm lines shall still fire.

Step 3 provides a discussion—whether or not to utilize an automatic script for filtering
the relevant test steps. Similarly, step 4 can discuss if the expected results shall be hard-
coded or not. Since it might be desirable later to execute all permutations (i.e., by overriding
the relevance filter, setting the ?IMPORTANCE flag in the header file to false), hard-coding
is not an option (or someone has to manually code the expected outputs for 65,536 steps).
Again, the test engineer has to consult the requirements analysis and transfer how the
output signals are expected to be set according to a given input.

The script iterates through the test cases. Starting with test case 1, a simple if-clause
checks how all outputs are to be set. Test case two does the same, but distinguishes the
cases of the shared signals being true or false: If the step is true in both test case 1 and
2, then the shared signal is true, otherwise it is false (analogously for test case 3). The
challenge is that the position of the signals differs within the configuration depending on
which test cases have been activated in the header file as discussed in step 1. This makes
the case distinction inherently more challenging in the implementation.
Step 5

Replaces the generated atoms with text blocks. A step counter is added between each
two configurations for tracing failed steps (i.e., false-positives or false-negatives). The
generated code is then wrapped in the code from the header and footer files and written
into an executable file.

6.3. The Scale of the TCMS

The scale of the presented industrial case study allows for a complete observation of
the test suite composition with KV-maps. It does not matter if tests are failing or not, so
large-scale studies focusing on classifying failing test cases, like the work by Jiang et al. [26],
for instance, would not be suitable. The goal here is not to boast with size or to compete
with efficiency, but to set up a small yet realistic proving ground for a proof-of-concept.
The point is that KV-maps can aid the process as minimal formal contracts. If a mistake
occurs and something was not tested as it should be, the KV-map is the ideal basis to find
the cause. Mistakes are visible at an early stage as tests are generated by patterns and are
thus less obfuscated.

Establishing KV-maps as a step between text and code has shown to be a valuable
asset here. Common tools for requirement analysis like IBM DOORS allow for linking
textual requirements to features. The KV-map serves the same purpose. Beyond that, it can
even be applied to build the code directly based on it. While automatic test step generation
from the IBM DOORS documentation is desired, it is only possible to link text fragments to
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lines of code. There is no possibility to check if the implementation is semantically correct.
While the same holds for the documentation towards the cells in a KV-map, the KV-map
allows to check if the code is correct or even have it generated automatically.

Another benefit is that automatic code generation is much faster than manual imple-
mentation for test cases that are beyond sandbox size. Even for this small scale case study
of three test cases, the manually implemented code targeted test cases only individually.
An integration test was not required. However, if it would be required (in the sense that it
would also be more complex than if one fires, the joint signal shall fire), it would have been
too much code to write. Six test steps were written for test cases 1 and 3, and 13 for test
case 2. The script builds 6× 13× 6 = 468 test steps in about 3 s (Pentium i5-3317U@1.7
GHz). Setting ?IMPORTANCE to false lets the system generate 65,536 steps taking 14 h on the
same CPU. The vast majority of that time is spent writing the actual code to an executable
file, not on its generation. The scaling is not linear, since the compound steps grow not only
in the number of steps, but also in the number of signals that have to be set.

Exploiting KV-maps for automatic code generation is reasonable for tests above
roughly 100 test steps (with a reasonably low number of variables). Despite the speed
increase in code generation, the main benefit remains provably correct code.

7. Brief Discussion and Conclusions

The presented script is easily extendable beyond binary domains, as discussed in
Step 2 in Section 6.2. While the complexity grows in the size of the domains that are to be
permutated, further approaches like abstraction refinement, binning, or over-approximation
can be exploited to cope with that. A greater challenge encountered when combining test
cases is the case distinction regarding shared signals, however. Sorting a configuration
based on which test case is activated in the header file has shown to be intricate.

The approach is easily applicable to other contexts than the TCMS. However, the
TCMS here was not only the initial motivation to utilize KV-maps in testing, but also nicely
allowed to demonstrate limitations and challenges of the method.

The customer’s goal was to get relevant test steps automatically (“magically”) from
the textual description on “the push of a red button”. That red button between requirements
analysis and test script used to be a test engineer that had to conduct the manual imple-
mentation. This lead to the question in the introduction—how the process of test step
implementation can be improved.

The traditional way of manually selecting test steps is prone to mistakes. Relevant steps
can be forgotten or spelling mistakes might lead to wrong test sequences. Additionally,
manual implementation commonly conservatively sets only those signals that change
between two steps, allowing for mistake propagation. Although the red button generating
required test steps for any textual requirements analysis is unrealistic, developing a tool
that is custom-tailored to the provided use-case is not. KV-maps provide a powerful
instrument in formalizing the informal filters from the textual requirements analysis before
implementing them. They make up leeway for an automatized test generation.

The paper introduced a (closed source) TCMS as SuT. It discussed manually built test
cases and pointed out challenges encountered like mistake propagation. As a solution,
a script was presented exploiting KV-maps for filtering relevant test cases. Beyond that,
KV-maps were utilized for specifying the expected output. The complexity of each part of
the presented tool was discussed. The answer to the research question is: The process of
test step implementation can be improved by KV-maps. General challenges and limitations
have been addressed and the benefits have been pointed out.

As a next step, a model-based approach will be established for the same test scenario.
This will complement the discussion, if in cases like these (i) the manual test generation,
(ii) a custom-tailored script based on KV-maps or (iii) an off-the-shelf solution based on
model-based test-step generation will be the optimal solution. The second option can also
feature alternatives to KV-maps like the Quine–McCluskey [27] algorithm for comparison.
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