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Abstract: The FSV method is a recognized validation tool that initially assesses the similarity between
data sets for electromagnetic measurements and models. Its use may be extended to many problems
and applications, and in particular, with relation to electrical systems, but it should be characterized
in terms of its uncertainty, as for measurement tools. To this aim, the Guide to the Expression
of Uncertainty in Measurement (GUM) is applied for the propagation of uncertainty from the
experimental data to the Feature Selective Validation (FSV) quantities, using Monte Carlo analysis
as confirmation, which ultimately remains the most reliable approach to determine the propagation
of uncertainty, given the significant FSV non-linearity. Such non-linearity in fact compromises the
accuracy of the Taylor approximation supporting the use of first-order derivatives (and derivative
terms in general). MCM results are instead more stable and show sensitivity vs. input data uncertainty
in the order of 10 to 100, highly depending on the local data samples value. To this aim, normalized
sensitivity coefficients are also reported, in an attempt to attenuate the scale effects, redistributing the
observed sensitivity values that, however, remain in the said range, up to about 100.

Keywords: electromagnetic modeling; FSV method; IEEE standards; simulation; uncertainty;
validation; verification

1. Introduction

Numerical models are widely used to assess performance, reliability, and safety
in various conditions and configurations for many systems and applications. Models
can replace the physical system [1] for several reasons: the system may be still in the
design phase, or it may be inaccessible or cannot be modified to perform the required
tests; for example, when aiming at testing exceptional, and possibly critical or dangerous,
conditions, as well as when the model represents a cheaper and faster solution, especially
in the case of complex or new fabrication technologies [2,3]. Models were used to this
aim, for example, when integrated circuits at the very beginning had extremely large
fabrication costs and uncertain fabrication times [2], or when expensive materials are
used, such as for superconductive coils [3]. Similarly, direct voltage control for complex
scenarios of interconnected renewables, and wind parks in particular, is fully tested using a
hardware-in-the-loop model in highly severe dynamic conditions, providing evidence of
real-world applicability and design margins beyond the availability of a single instance
of installation [4]. In this particular case, the proposed digital twin validation is achieved
by comparison with another trusted model running on a different simulator, in line with
the approach outlined in [5]. However, in the specific case of [4], the discussed validation
results are only qualitative, displaying overlapped curves, without a quantitative estimation
of the degree of similarity; thus, as a matter of fact, they leave the indeterminacy of the
accuracy of the proposed model. In addition, a thorough model validation was carried out
with multiple criteria, including FSV, in some different electronic and electrical applications:
load forecasting by means of wavelets [6], the impact of batteries on DC grid impedance and
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the transmission efficiency of power line communication signals [7], and the demonstration
of efficient shielding of an inductive power transfer system [8].

When comparing simulated and experimental data (or those originating from a trusted
model), several characteristics denoting the similarity can be collected and processed to
formulate the necessary judgment: curve shapes, peaks, and slopes are all elements that
capture the attention of the expert, who will put in the background other features that are
often caused by noise, outliers, and other artifacts.

Several validation methods have been proposed in various fields of science; for exam-
ple, those applied to economics, crystallography, and electromagnetics, and they have been
reviewed, discussed, and quantitatively assessed and confronted for some test cases [9].
The relatively recent Feature Selective Validation (FSV) method [10] is a complex and com-
plete validation tool with wide applicability to several fields of engineering, with particular
emphasis on electronic and electrical engineering: pure EMC applications were presented
in 2010 from studying reverberating chambers [11], and near- and far field radiation from
heatsinks [12]; a thorough validation of a railway line model against experimental data is
discussed in [13], with considerations on the influence of second-order system elements;
counterfeiting detection via electromagnetic fingerprint is instead evaluated in [14]; finally,
the modeling of a high voltage direct current system is discussed in [15]. Older examples
can be found, especially in the field of microelectronics, when models of semiconductor
devices began to appear at different levels of complexity [1], and are now widely available
resources in many desktop circuit simulators.

A validation tool should be considered as an instrument that performs a quantitative
assessment of an existing instrument (the model); in other words, a calibration. This is
achieved by comparing a set of simulation outputs with a set of reference data, which may
be experimental measurements or other simulation results, possibly provided by a trusted
(validated) model or simulator. Such a validation instrument should be characterized
in terms of uncertainty, so as to provide a final statement of confidence intervals for the
observed accuracy of the validated model. For the purpose of verifying the FSV method
itself, it can be fed with experimental or simulation results only, providing data curves with
a controlled amount of diversity (e.g., slightly adjusting one parameter of the experiment,
or simply repeating experiments under identical conditions for the utmost similarity, except
for noise and repeatability issues).

The FSV tool is particularly useful when a simple metric that measures the distance (or
error) between the simulation output and the reference data is not sufficient. The reason is
that simple metrics, based, for instance, on Euclidean distance (known also as L2 norm) or
absolute difference (known also as L∞ norm) calculated with a bin-to-bin correspondence
are not able to capture the similarity of shape and slope, and they miss the similarity
between slightly shifted and stretched curves (as is commonplace when there are slight
deviations of parameters of frequency responses).

From a metrological standpoint, the resulting uncertainty of the validated model will
never be better than the uncertainty of the validation instrument, and efforts should be
undertaken to minimize the uncertainty of the reference cases (experimental data) and their
propagation through the validation instrument itself (the FSV method, in our case).

Uncertainty evaluation for FSV is not completely new [16,17], but these approaches
were semi-quantitative and uncertainty propagation was never considered. In particular,
in [16], the term uncertainty is erroneously used as an equivalent of the error between data
points, and the analysis is based on the interpretation of the crossing points of curves [17].
Focuses that are made instead on the histogram that is the very final result of the FSV
method then provide an interesting analysis based on fuzzy set theory, but they neglect the
behavior of the intermediate quantities amplitude difference measure (ADM) and feature
difference measure (FDM), which will be discussed in Section 2.

Considering FSV as a measuring gauge to assess the performance of a model against
reference data, the GUM (Guide to the Expression of Uncertainty in Measurement) [18]
should be used for its characterization. In the following, the law of propagation of uncer-
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tainty (LPU) through the algorithm is calculated by determining the sensitivity coefficients
as first-order derivatives, then by looking for a confirmation using Monte Carlo analysis,
which instead provides a more general method to estimate dispersion and confidence
interval. The FSV implementation used for the evaluation takes into consideration the
findings in [19], as summarized in Section 2.

The work is then structured as follows. Section 2 briefly presents the FSV algorithm
implementation, making reference to previous literature to document the details. Section 3
simply exposes the Type B approach to the LPU determination through first-order deriva-
tives as sensitivity coefficients. Section 4 reports the calculated derivatives and sensitivity
coefficients of the FSV formulation, which is a novel analysis approach. The Monte Carlo
method (MCM), as a more generally applicable method (as indicated by GUM), is then
introduced in Section 5, clarifying the simulation conditions. The results for selected test
cases are then reported and discussed in Section 6, providing quantitative results for the
reliability of the Type B approach through derivatives, the sensitivity values calculated
using the MCM approach and their dependency on data values, and ways to provide
sensitivity information for general use.

2. Implementation of the FSV Method

The problem of the validation of a model may be stated as the quantitative assess-
ment of the similarity between the model output o and the experimental data m (which
we said may also be from another model or theoretical results). The discussion of FSV
implementation (IEEE Std. 1597.1 [10]) and its possible pitfalls and unclear points, with
consequences for variability and systematic errors, can be found in [19]. Only the main
elements for supporting the estimate of uncertainty and its discussion are reported below:
the approach and equations are taken from the IEEE Std. 1597.1, besides other references
where explicitly indicated.

The FSV assessment can be decomposed in three phases:

• First, the original data sets are preprocessed to extract the “dc”, low frequency (“lo”)
and high frequency (“hi”) portions, obtained via first a Fourier transform (FFT), fol-
lowed by Inverse FFT, after cutting the frequency intervals and smoothing the data;

• The three sub-intervals are fed to the second phase, where the ADM and FDM quanti-
ties are calculated;

• Their root-mean-square combination is the Global Difference Measure (GDM) and
represents the last phase.

For the presentation of results, a useful technique is the “Grade and Spread” dia-
gram [20–22]: the spread term measures the spread of the distribution, and the grade
term is similar to skewness. As a note, for an assessment of the results, skewness and
kurtosis will be used, as the shape of the distribution has an influence on the confidence
interval determination.

When calculating the FFT, a zero padding of vectors should be avoided, using vec-
tors that are as close as possible to their original length and possibly FFT, with prime-
number factorization.

For the padding of points missing after the calculation of the derivative, the two
methods “taper” and “fcb” show very similar results, which are most important for the
categories of Excellent and Very Good, where a minimum of dispersion is desirable: the
“taper” method is implemented in the following. To clarify, “taper” and “fcb” are defined
in [19] as progressively reducing the distance between the two samples used to calculate
the derivative (until the first and last points are reached) for “taper”, or using a forward,
center, and backward difference calculation for “fcb”.

2.1. Vectors Preparation

Identified as the first step, the original data vector x in domain d is decomposed into
dc, lo, and hi vectors, proceeding through the transformed domain D. The separation is per-
formed with a DFT (Discrete Fourier Transform)/IDFT (Inverse DFT) pair [10], identifying
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the three intervals DC, LO, and HI in domain D based on the calculation of the Ib index: the
first five data samples, the samples up to index Ib, and then that remaining beyond Ib.

X = DFT{x} DC′ = X[0, 1, . . . , 4]
LO′ = X[5, 6, . . . , Ib] HI′ = X[Ib + 1, Ib + 2, . . . , N − 1]

(1)

The amount of applied zero padding, zp, is the minimum for bringing the vectors
DC (used only for ODM), LO, and HI to the same length, so as to combine then their
anti-transformed versions for the calculation of indexes.

DC = zp(DC′) LO = zp(LO′) HI = zp(HI′) (2)

dc = IDFT{DC} lo = IDFT{LO} hi = IDFT{HI} (3)

The determination of Ib is based on the known 40% threshold that is applied to the
area of the curve (that means Ib indicates the index at which the low-frequency portion of
data points amounts to 40% of the total).

Ib :
Ib

∑
i=0
|X[i]| = 0.4

N−1

∑
i=0
|X[i]| (4)

Vector separation across Ib is implemented with a linear tapering across Nb samples; then,
the IDFT for each of them is calculated to return to the original domain, as indicated in (3).

2.2. Calculation of FSV Indexes

To complete steps two and three, the ADM, FDM, and GDM indexes are calculated,
as shown below. Equations (5)–(12) are taken from the IEEE Std. 1597.1 [10], and are
slightly reshaped for clarity. In particular, the numeric coefficients of the FDM expressions
are provided in the IEEE Std. 1597.1, without an explanation, but they are supposed
to come from the number of samples used in the derivative operators described in the
standard itself.

ADMi =

∣∣ ∣∣olo,i
∣∣− ∣∣mlo,i

∣∣ ∣∣
1
N ∑N−1

j=0

∣∣∣olo,j

∣∣∣+ ∣∣∣mlo,j

∣∣∣ + ODMi expODMi (5)

ODMi =
χi
δi

=

∣∣ ∣∣odc,i
∣∣− ∣∣mdc,i

∣∣ ∣∣
1
N ∑N−1

j=0

∣∣∣odc,j

∣∣∣+ ∣∣∣mdc,j

∣∣∣ (6)

FDM1
i =

∣∣o′ lo,i
∣∣− ∣∣m′ lo,i

∣∣
2
N ∑N−1

j=0

∣∣∣o′ lo,j

∣∣∣+ ∣∣∣m′ lo,j

∣∣∣ (7)

FDM2
i =

∣∣o′hi,i
∣∣− ∣∣m′hi,i

∣∣
6
N ∑N−1

j=0

∣∣∣o′hi,j

∣∣∣+ ∣∣∣m′hi,j

∣∣∣ (8)

FDM3
i =

∣∣o′′ hi,i
∣∣− ∣∣m′′ hi,i

∣∣
7.2
N ∑N−1

j=0

∣∣∣o′′ hi,j

∣∣∣+ ∣∣∣m′′ hi,j

∣∣∣ (9)

FDMi = 2
∣∣∣FDM1

i + FDM2
i + FDM3

i

∣∣∣ (10)

The prime and double prime indicate the first and second derivatives, and the sub-
scripts indicate the considered vector portion (“lo” or “hi”). Derivatives in FDMi are
calculated as a difference, using an index interval that is ±2 for “lo” and ±3 for “hi”, but
without dividing by the differential of the independent variable, which would make these
terms difference quotients. This may be identified as a little pitfall, and will be considered
again in Section 3, when the propagation of uncertainty is calculated.
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GDM is calculated using the original definition [10], which is the root summed square
of the ADMi and FDMi terms, as shown in (11) and (12):

GDMi =

√
(ADMi)

2 + (FDMi)
2 (11)

GDM =
N−1

∑
i=0

GDMi (12)

2.3. Visualization and Interpretation

The IEEE Std. 1597.1 requires classification of the FSV GDM values with an interpreta-
tion scale, as in Table 1.

Table 1. Interpretation scale for GDM.

Lower Bound Upper Bound Quality Descriptor

0.0 0.1 Excellent (E)
0.1 0.2 Very Good (VG)
0.2 0.4 Good (G)
0.4 0.8 Fair (F)
0.8 1.6 Poor (P)
1.6 +∞ Very Poor (VP)

3. Propagation of Uncertainty

When speaking of model uncertainty, it is assumed that systematic errors have been
compensated for or removed, and that the remaining error is random and may be de-
scribed by random variables and their statistics. Examples of systematic errors for the
FSV algorithm itself are those considered in [19], due to ambiguity in some points of the
standard and implementation issues. Of course, other systematic errors may affect the mea-
sured data, and also in this case, it is supposed that they have been removed, or that they
are negligible.

The quantities are then characterized by uncertainty regarding their estimate, which is
best expressed as the dispersion of their probability density function (PDF), either derived
from the observed distribution (Type A approach [18]), or based on the available informa-
tion (or some degree of belief) of the possible sources of variability (Type B approach [18]).

For the propagation of uncertainty, a model is necessary; i.e., an algebraic relationship
F between the input quantities Xi and the output Z: Z = F(Xi). In general, the propagation of
uncertainty between two quantities p and q is based on sensitivity coefficients Sp(q), which
indicate that uncertainty propagates from q (the independent variable) to p, and they are
determined as first-order derivatives between the two quantities of interest.

Using first-order derivatives, a linearization by Taylor expansion is implicit around a
point µ, defined by the expectation of Xi (or mean) µi = E(Xi), as shown in (13).

z = F(µ) +
n

∑
i=1

(
∂F
∂xi

)
µ

(xi − µi) (13)

The first term is the expectation of the output, and the second term determines the
uncertainty of z. Two important limitations arise:

1. To apply (13), the non-linearity of F must be negligible (GUM Clause 5.1.2 [18]);
otherwise, the linear truncation in the Taylor expansion could lead to misleading
results (we will see that this is often the case due to the significant non-linearity in the
FSV method);

2. The assumption of normality of Z derived from the application of the Central Limit
Theorem (GUM Clause 5.1.2 [18]) should be considered with caution; this will be
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verified indirectly by calculating the skewness and kurtosis of the MCM output, but
not by thoroughly assessing the normality of distribution.

Related to point 1, a key element that needs verification is the use of absolute values
for both the data vectors and the FSV derivative: such non-linearity is variable and depends
on the type of data fed to FSV, and can thus be assessed accurately only on a case-by-case
basis, which thus undermines the generality of the approach based on derivatives.

The so obtained closed-form uncertainty expressions are then validated via MCM,
which can similarly be applied to cases where the formal calculation of derivatives is
impossible or too complex. MCM is by all means a valid and effective tool in general, and
for situations in which it is difficult to apply the GUM uncertainty framework, or where its
conditions are not fulfilled. Taking from [23]:

1. The contributory uncertainties are not of the same magnitude: it is evident that ADM
and FDM respond differently to different types of input data (e.g., containing wide
slopes or narrow zig-zags, or some amount of noise);

2. The calculation of the partial derivatives is affected by heavy approximations, or is
even not possible, as it turns out when considering non-linearity;

3. The probability distributions are not the assumed Gaussian or Student t, which was
verified, at least for the GDM, in [20];

4. As often occurs, PDFs are not symmetric [20]; or
5. The output quantities are characterized by a significant standard uncertainty in the

order of their magnitude; this last statement is added for completeness, but it is in
general not relevant, as long as input data have a good measurement quality, with
uncertainty in the order of some % or less.

4. Law of Propagation of Uncertainty and First-Order Derivatives

This section reports the core of the problem, i.e., verifying whether an approach to
uncertainty propagation based on first-order derivatives is viable and accurate.

The determination of the propagation of uncertainty is achieved by the calculation
of the partial derivatives of relevant FSV indexes, namely ADMi and FDMi, with respect
to one of the input vectors (the m vector is assumed without loss of generality), assuming
the other vector o is held fixed (the m and o vectors are, in reality, interchangeable). This
approach is novel as it could not be found in the related literature.

First-order derivatives are calculated based on the assumption that all variables are
uncorrelated, as is customary. Equation (14) repeats the ADMi expression, making explicit
the terms that are then derived in (15) to (19) with respect to the applicable input data,
namely mlo,i and mdc,i. The derivative sensitivity coefficients for the three FDMi terms are
calculated in (20) to (22), and then the overall derivatives with respect to the applicable
input data (mlo,i and mhi,i) are shown in (23) and (24).

ADMi =

∣∣ ∣∣olo,i
∣∣− ∣∣mlo,i

∣∣ ∣∣
1
N ∑N−1

j=0

∣∣∣olo,j

∣∣∣+ ∣∣∣mlo,j

∣∣∣ + ODMi expODMi =
αi
βi

+
χi
δi

exp
(
χi
δi

)
= γi + θieθi (14)

Sαi (mlo,i) =
∂αi

∂mlo,i
= −sgn

( ∣∣olo,i
∣∣− ∣∣mlo,i

∣∣ )sgn(mlo,i) Sβi (mlo,i) =
∂βi

∂mlo,i
=

1
2N

sgn(mlo,i) (15)

Sχi (mdc,i) =
∂χi

∂mdc,i
= −sgn

( ∣∣odc,i
∣∣− ∣∣mdc,i

∣∣ )sgn(mdc,i) Sδi (mdc,i) =
∂δi

∂mdc,i
=

1
2N

sgn(mdc,i) (16)

Sγi (mlo,i) =
∂(αi/βi)

∂mlo,i
=

α′iβi − αiβ
′
i

β2
i

=
−βisgn

( ∣∣olo,i
∣∣− ∣∣mlo,i

∣∣ )sgn(mlo,i)− 1
2N

∣∣ ∣∣olo,i
∣∣− ∣∣mlo,i

∣∣ ∣∣sgn(mlo,i)

β2
i

(17)



Electronics 2022, 11, 2532 7 of 24

Sθi (mdc,i) =
∂(χi/δi)

∂mdc,i
=

χ′iδi − χiδ
′
i

δ2
i

=
−δisgn

( ∣∣odc,i
∣∣− ∣∣mdc,i

∣∣ )sgn(mdc,i)− 1
2N

∣∣ ∣∣odc,i
∣∣− ∣∣mdc,i

∣∣ ∣∣sgn(mdc,i)

δ2
i

(18)

SADMi (mlo,i) = Sγi (mlo,i) SADMi (mdc,i) =
(χ′iδi − χiδ

′
i)

δ2
i

(
χi
δi

+ 1
)

eχi/δi SADMi = SADMi (mlo,i) + SADMi (mdc,i) (19)

SFDM1
i
(mlo,i) =

∂m′lo,i

∂mlo,i

∂FDM1
i

∂m′lo,i
= m′′lo,i

−sgn(m′lo,i)
2
N ∑N−1

j=0

∣∣∣o′lo,j

∣∣∣+ ∣∣∣m′lo,j

∣∣∣− 2
N sgn(m′lo,i)

(∣∣∣o′lo,i

∣∣∣− ∣∣∣m′lo,i

∣∣∣)[
2
N ∑N−1

j=0

∣∣∣o′lo,j

∣∣∣+ ∣∣∣m′lo,j

∣∣∣]2 (20)

SFDM2
i
(mhi,i) =

∂m′hi,i

∂mhi,i

∂FDM2
i

∂m′hi,i
= m′′hi,i

−sgn(m′hi,i)
6
N ∑N−1

j=0

∣∣∣o′hi,j

∣∣∣+ ∣∣∣m′hi,j

∣∣∣− 6
N sgn(m′hi,i)

(∣∣∣o′hi,i

∣∣∣− ∣∣∣m′hi,i

∣∣∣)[
6
N ∑N−1

j=0

∣∣∣o′hi,j

∣∣∣+ ∣∣∣m′hi,j

∣∣∣]2 (21)

SFDM3
i
(mhi,i) =

∂m′′hi,i

∂mhi,i

∂FDM3
i

∂m′′hi,i
= m′′′hi,i

−sgn(m′′hi,i)
7.2
N ∑N−1

j=0

∣∣∣ô′′hi,j

∣∣∣+ ∣∣∣m̂′′hi,j

∣∣∣− 7.2
N sgn(m̂′′hi,i)

(∣∣∣ô′′hi,i

∣∣∣− ∣∣∣m̂′′hi,i

∣∣∣)[
7.2
N ∑N−1

j=0

∣∣∣ô′′hi,j

∣∣∣+ ∣∣∣m̂′′hi,j

∣∣∣]2 (22)

SFDMi (mlo,i) =
∂FDMi

∂FDM1
i

∂FDM1
i

∂mlo,i
= 2sgn(FDM1

i ) SFDM1
i
(mlo,i) (23)

SFDMi (mhi,i) =
∂FDMi

∂FDM2
i

∂FDM2
i

∂mlo,i
+

∂FDMi

∂FDM3
i

∂FDM3
i

∂mlo,i
= 2sgn(FDM2

i ) SFDM2
i
(mhi,i) + 2sgn(FDM3

i ) SFDM3
i
(mhi,i) (24)

It is observed that the derivatives to use for the propagation of uncertainty are intended
in the “usual” way of limiting of the difference quotient, while the derivatives indicated in
the original FDM expressions (indicated by a hat ˆ) are calculated simply as differences.

We may spend a few words on the selected method for derivative calculation in FSV
and the IEEE Std. 1597.1. The objective is, of course, a reduction in the impact of noisy or
peaky data: the numerator of the difference quotient picks two data points farther away,
resulting in a sort of masking of small local peaks. Better smoothing is achieved using
higher-order methods for the calculation of the derivative, such as the five-point stencil:

f ′ =
f (x− 2dx)− 8 f (x− dx) + 8 f (x− dx)− f (x + 2dx)

12dx
(25)

Here, the numerator depends on the curve characteristics and on the variability of the
samples. Applying an independent random variation at each sample and reasoning on
the expectation, the average of the numerator does not change, whatever the method of
calculation of the derivative. The standard deviation, conversely, will be lower, passing
from a classic two-point difference to more elaborated schemes, such as the 5-point stencil.

It is also worth noting that the FDMi sensitivity coefficients contain a second-order
((20) and (21)) or a third-order (22) derivative of the input data, in principle suffering from
noisy or peaky data. We will see that they suffer indeed from edge effects, but they are not
substantially larger than the ADMi sensitivity values.

Going back to the objective of this section, the calculated sensitivity coefficients
(see (15) through (24)) may be used to derive the uncertainty of the output quantity GDM
described by (11) and (12). We may assume that the elements of the input data vectors are
independent. However, a small amount of correlation between the adjacent FSV quantities
is due to the calculation of derivatives made by taking the difference of adjacent samples:
this is too complicated to propagate, and is in any case a second-order aspect. For this



Electronics 2022, 11, 2532 8 of 24

reason, the FSV quantities ADMi and FDMi are assumed to be independent for each i-th
sample of the input vectors.

5. Monte Carlo Method and Uncertainty Estimation

In the MCM-based uncertainty analysis, calculations are performed repeatedly, each
with differing input values, to obtain probability distributions of the target output. Input
values are sampled from their respective distributions, either known or assumed [24,25].
Calculations consist of running the model subject to assessment, which in the present case
is the FSV evaluation for a given test data set. MCM is thus inherently computationally
expensive, particularly when running the model requires much computing time. For the
specific data vectors of the considered test cases (amounting to some hundreds of samples,
as clarified below in Section 6) and the number of iterations M determined below, the
computational time for the MATLAB scripts with figure generation was about 4 h, running
within a virtual machine using Windows 7 64 bit, 16 GB RAM, and four physical Intel
i7 10875H cores with 2.3 GHz clocks.

For the MCM computational load, a minimization of the number of runs is a relevant
point to consider [26]. Two elements in general can reduce the number of runs and the
overall computational effort and time: sampling efficiency and convergence monitoring.

The concept of sampling efficiency can be best described as the number of simulation
runs required to reach some level of accuracy. A well-known variance-reduction technique
for MCM is Latin hypercube sampling [27], with improved performance over random
sampling, with the specific objective of better space filling.

The ability then to halt the analysis when a sufficient level of accuracy has been reached
equally allows for a reduction in the overall duration and calculation time: this is achieved
by monitoring convergence, followed by the addition of successive trials if the stop criterion
is not met. When only the mean of the desired target output is relevant, an estimate of
the sample variance can be used as a stop criterion; conversely, when more complex
aggregate results are the objective (distributions, percentiles, and dispersion itself, as in the
present case), the batch statistics and the similarity of distributions can be applied instead.
However, whereas for random sampling the addition of new trials is straightforward,
optimized space sampling techniques are not so flexible, since the sampling scheme is
generally predetermined.

For this reason, in this work, the analysis for the determination of the uncertainty and
the sensitivity coefficients is carried out using a basic random sampling scheme and by
keeping the MCM code simple.

Sensitivity coefficients are determined by dividing the sample dispersion of the output
σZi (in our case, corresponding to σADMi or σFDMi) by the applied standard deviation σn of
the injected noise at each MCM run.

With random sampling and a priori determination of the trials, the number of trials M
for a given coverage probability p can be determined based on GUM [18]:

M >
104

1− p
(26)

For p = 95%, the resulting minimum number of trials is 2 × 105 (selected for the tests
carried out in the following).

The combined uncertainty u and the confidence interval CI can be estimated from the
set of the output results Zi using the known multiplicative factor of the sample standard
deviation of the set σZi, assuming that it is approximately Gaussian u = 1.96 σZi for the
mentioned p = 95% level of confidence.

As the resulting PDFs may be asymmetric (a behavior common to almost all indexes,
as discussed in [1,20]), higher-order moments are relevant as well. Skewness sk and kurtosis
ku are important parameters of the distribution of the output results. The accuracy provided
by MCM is inversely proportional to the number of trials M: for a normal distribution
sk = 0 with a standard deviation of

√
(6/M), and ku = 3 with a standard deviation of
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√
(24/M), that for the selected M value are both well below 1%, so that the sk and ku

estimates are to be considered “exact”.
To limit the effects of the intrinsic non-linearity implicit in the FSV method, the applied

MCM perturbation is limited to σn = 0.1%: the random noise applied to each data sample
is obtained using a zero-mean normal distribution with a dispersion equal to 0.1% of the
data sample value.

6. Comparison and Verification of the Approaches to the Propagation of Uncertainty

The results obtained with the two methods (sensitivity coefficients with first-order
derivatives of Section 4 and MCM of Section 5) are now compared for a set of test cases
where raw data are available and the problem details are well known.

There is a significant degree of variability in the derivatives and a general sensitivity
to the data range, which obviously depends on the problem nature, with the data being,
for instance, large impedance values (e.g., railway pantograph impedance values [13,28]),
near-unity reflection coefficients (as provided by scattering parameters of cable harness,
transmission lines, and connectors), or very small electric field values (as is common in
electromagnetic emissions measurements caused by electronic devices, power converters,
and electrical machinery [29–31]), to give some examples. As such behavior was observed
in the preliminary tests, additional verification of the suitable data pre-conditioning and
derived indexes, with more general validity, was carried out.

Data were taken from two real test cases:

• Test case 1: impedance curves of a 2 × 25 kV 50 Hz railway line (Italian high-
speed line), with measurements carried out between 100 Hz and 20 kHz for the
purpose of the validation of line models [13]; this data set contains vectors of N = 201
data samples.

• Test case 2: scattering S11 reflection loss, related to the input impedance of a test
fixture for avionic connectors under various mechanical stresses (unpublished results);
measurements were carried out with a vector network analyzer between 100 MHz
and 6 GHz; this data set contains vectors of N = 418 data samples.

It is worth underlining that a characteristic of several performance indexes was used
for model validation: the use of absolute values for index calculation in the case of noise
injection causes under-utilization of the Excellent sub-interval, thus negatively biasing the
overall judgment towards poorer performance [9,20].

Test cases were selected, so as to carry out the verification using real data for different
degrees of similarity between the curves, and thus, of different ADMi and FDMi values:
FSV expressions are in fact non-linear, and the values of the derivatives depend on the
position along the data vector. Different degrees of similarity between pairs of data vectors
are available; in particular, in test case 2: impedance curves were taken by moving along
the railway line by 500 m each time, as shown later in Section 6.1, and at positions towards
the end, there is better overlapping for adjacent positions.

Selected test cases are briefly introduced in the following, before providing a compari-
son of analytically calculated first-order derivatives with MCM results.

As will be demonstrated, the sensitivity of ADMi and FDMi changes significantly for
the data provided in linear scale and using a logarithmic compression (dB); for this reason,
the results of ADMi and FDMi sensitivity are shown for both scenarios for each test case.

6.1. Test Case 1: Railway Line Impedance

The tests carried out on a 2 × 25 kV 50 Hz railway line in Italy [13] provide a large set
of curves, with various degrees of differences, thus allowing a test of FSV characteristics
under a range of conditions (see Figure 1). It may be observed that all curves are similar at
low frequency, and then begin to separate at some kHz.
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providing data to FSV as they are, without logarithmic pre-processing. The tests consist 
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Figure 1. Line impedance curves of test case 1 [13] for positions along the line from 45.0 km to
48.5 km. Note the closer similarity of curves in the last positions beyond 47 km.

The curves displayed in Figure 1 are plotted with a logarithmic vertical axis, as is
customary for this type of curves: this raises the point for if they should be provided to the
FSV algorithm in a linear or log-compressed scale, the latter implying a dB representation.
If in principle there is no reason to propend for one or another representation, we will see
in the following a different behavior of the sensitivity coefficients.

6.1.1. Different Curves (45.0 and 45.5 km) with Linear and Logarithmic Scales

Two curves are selected with significant differences (as is visible in Figure 1, mostly
a difference in amplitude, but also of resonance positions at a higher frequency) and
providing data to FSV as they are, without logarithmic pre-processing. The tests consist of
a preliminary check that analytically calculated ADMi and FDMi and those resulting from
the average of the MCM simulation output correspond (a sanity check is made to spot out
biasing of the MCM output), as shown in Figure 2.
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Figure 2. Z (45.0 km) and Z (45.5 km) input data in linear scale: (a) ADMi and (b) FDMi plots as
provided by analytical calculation (blue) and by means of MCM output (brown); blue and brown
curves are overlapped with underlying brown curve visible at the edges of the blue one. The relative
error remains below 0.15% in all cases, demonstrating the reliability of MCM simulations and lack
of biasing.

As shown in Figure 2, ADMi and FDMi capture the differences mainly between 10 and
15 kHz, and 16 and 20 kHz. In the first interval, ADMi and FDMi take higher values for a
matter of scale, as explained below for logarithmic compression.

The relative error is calculated as the difference between the analytical FSV calculation
and the mean of the MCM output normalized by their half sum.

For this first set of data, a thorough check is performed for the influence of the
logarithmic compression of data, for which ADMi and FDMi are provided below in Figure 3,
and also for the logarithmic case. The logarithmic compression has enhanced the differences
between the curves occurring at lower amplitude, namely between 16 and 20 kHz, and now
prevailing over those occurring between 10 and 15 kHz. It is evident, however, that the
ADMi and FDMi values are smaller when logarithmic compression is used (see Figure 3),
simply because the absolute value of the input data is smaller.
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Figure 3. Z (45.0 km) and Z (45.5 km) input data in logarithmic scale: (a) ADMi and (b) FDMi plots as
provided by analytical calculation (blue) and means of MCM output (brown); blue and brown curves
are overlapped with underlying brown curve visible at the edges of the blue one. The relative error
remains below 0.15% in all cases, demonstrating the reliability of MCM simulations and lack of biasing.

It may be concluded thus that logarithmic compression has helped form a more
balanced assessment of curve similarity and diversity.

Sensitivity, as resulting from analytical calculations (the implementation of first-order
terms of Section 4) and MCM simulations (as the standard deviation of the output), is
shown in Figures 4 and 5.
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Figure 4. Z (45.0 km) and Z (45.5 km) input data in linear scale: (a) ADMi and (b) FDMi sensitivity curves,
comparing analytical calculation (blue) and normalized standard deviation of MCM output (brown). The
analytically calculated coefficients have been amplified by a factor of 100 for a matter of visibility.
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Figure 5. Z (45.0 km) and Z (45.5 km) input data in logarithmic scale: (a) ADMi and (b) FDMi

sensitivity curves, comparing analytical first-order derivative calculation (blue) and normalized
standard deviation of MCM output (brown).

As already observed, for the linear case, both the ADMi and FDMi quantities, and
their sensitivity coefficients as well, have maximum values where the data is at the highest
peak, at around 12 kHz. This confirms that all such quantities are not normalized, and
suffer scale problems. By comparing Figure 4 (where the blue curve is amplified by a factor
100) and Figure 5, it is evident that providing data in the linear or logarithmic scale has
a dramatic influence on the behavior of sensitivity: in this latter case, with logarithmic
compression, the analytic and MCM curves are closer. This means that the problem with
the logarithmic scale is formulated in a way that favors the analytic calculation of the
sensitivity coefficients, and that in general, the sensitivity is lower, as confirmed by the
MCM results, which are smaller by a factor of 4–5 and more uniform.

MCM output was checked for normality in a compact way, aiming at spotting out
inconsistencies of sensitivity value distributions over the entire data vectors, where the
output deviates from the expected normal distribution. To this aim, the skewness sk and
kurtosis ku are plotted for ADMi and FDMi sensitivity (the latter being brought around 0
by subtracting the expected value of 3 for a Gaussian distribution). The results are shown
in Figures 6 and 7.
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Figure 7. Z (45.0 km) and Z (45.5 km) input data in logarithmic scale: skewness in dark color and
kurtosis (offset around 0) in light color for ADMi (orange sk and yellow ku) and FDMi (blue sk and
light blue ku).

It may be said that sk is limited to very small values, and thus, the output distribution
is symmetric; in addition, except for a few points, ku also indicates normality.

Last, having observed that the sensitivity coefficients SADMi and SFDMi are influenced
by the local magnitude of the data, the normalization of such coefficients is investigated in
Section 6.3.

Another case is now verified, where the two curves are very similar, so that ADMi and
FDMi should be smaller, in order to confirm at which extent sensitivity coefficients suffer
from scale problems.

6.1.2. Similar Curves (47.5 and 48.0 km) with Linear and Logarithmic Scales

Two impedance curves are taken that are very close to each other, thus showing values
of ADM and FDM that are at least 4–5 times smaller than those of the previous section
(Section 6.1.1.), referring instead to more different impedance curves. ADMi and FDMi
amplitudes for analytical and MCM calculations are shown in Figure 8. Figure 9 reports
the ADMi and FDMi sensitivity curves. Figure 10 shows sk and ku for ADMi and FDMi
calculated on the new alike impedance curves.
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Figure 8. Z (47.5 km) and Z (48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi plots 

as provided by analytical calculation (blue) and mean of MCM output (brown); blue and brown 

curves are overlapped with underlying brown curve visible at the edges of the blue one. The rela-

tive error has increased to a fraction of % or a few % at some points, where the ADMi or FDMi 

values are the lowest; on average, correspondence between analytical and MCM curves is quite 

good. 

Figure 8. Z (47.5 km) and Z (48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi plots as
provided by analytical calculation (blue) and mean of MCM output (brown); blue and brown curves
are overlapped with underlying brown curve visible at the edges of the blue one. The relative error
has increased to a fraction of % or a few % at some points, where the ADMi or FDMi values are the
lowest; on average, correspondence between analytical and MCM curves is quite good.
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Figure 9. Z (47.5 km) and Z (48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi sen-

sitivity curves, comparing analytical first-order derivative calculation (blue) and normalized 
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Figure 9. Z (47.5 km) and Z (48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi

sensitivity curves, comparing analytical first-order derivative calculation (blue) and normalized
standard deviation of MCM output (brown).
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Figure 10. Z (47.5 km) and Z (48.0 km) input data in logarithmic scale: skewness in dark color and
kurtosis (offset around 0) in light color for ADMi (orange sk and yellow ku) and FDMi (blue sk and
light blue ku).

ADMi and FDMi are in general smaller and more evenly distributed, indicating that
there are no specific remarkable major errors between the two curves at 47.5 and 48.0 km,
but that the difference is spread over the frequency range.

The error between the respective ADMi and FDMi estimates (as from direct FSV
method application and as a mean of the MCM output) is in general very low, except for a
few short intervals amounting to a fraction of %, and in one case, to more than 2%. There is
no particular reason for this, except that all these intervals with larger-than-average errors
occur for extremely small values of ADMi and FDMi, namely amplifying unavoidable
small differences.

The sk and ku curves of Figure 10 confirm that more similar curves have a larger
amount of outliers (larger kurtosis) that correspond to the smallest ADMi and FDMi values
(see Figure 9, slightly before 10 kHz, at about 13 kHz and 15 kHz, and then at 20 kHz);
however, the scenario is more complex than this, as some medium-value intervals of ADMi
and FDMi are also characterized by large kurtosis, as for the samples at around 17 kHz.



Electronics 2022, 11, 2532 17 of 24

6.2. Test Case 2: Scattering Parameters

S11 curves are characterized by broad humps and deep downward peaks (see
Figure 11). The two curves refer to a very similar configuration so that they have only
one interval in the middle of the frequency axis, where they differ; other small differences
are hardly visible. The curves, contrarily to those of railway impedance, proceed from
negative values to zero with a smaller overall variation; they are also characterized by some
deep dips.
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ADMi and FDMi amplitudes for analytical and MCM calculations are shown in
Figure 12, accompanied by an estimate of the relative amplitude error.

Observing the reported error (between the direct FSV method application and the
mean of the MCM output) there are points with much larger errors; again, these are all in
correspondence with very low curve values and small unavoidable differences between
the two curves.

Regarding the behaviors of the ADMi and FDMi curves, they are positioned in a
range of values well below unity (due to the logarithmic scale and the similarity of the
two selected curves). The two curves are selected so that they have a localized smaller
difference in amplitude along the upward slope between 1.2 and 1.5 GHz, and a larger one
of between about 3.2 and 4 GHz; then, they feature a difference of amplitude in the two
downward peaks at 3 and 5.5 GHz. In addition, the downward peaks are very steep.

As a result, ADMi detects well the three intervals with differences in amplitude,
although smaller values could have been expected for the first interval between 1.2 and
1.5 GHz; the ADMi resulting amplitude is instead similar if it is compared to the interval
of between 3.2 and 4 GHz. The reason for this is that the larger amplitude difference in
the latter is compensated for by a smaller local amplitude in the sense of absolute value,
although we know that a −5 dB value is in reality physically larger than a −15 dB one.
This confirms the scale problems of the FSV internal indexes.

Figure 13 reports the ADMi and FDMi sensitivity curves for the S11 scattering parame-
ters case, and Figure 14 shows sk and ku for ADMi and FDMi.
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Figure 12. S11 input data in logarithmic scale: (a) ADMi and (b) FDMi plots as provided by analytical
FSV calculation (blue) and mean of MCM output (brown); blue and brown curves are overlapped
with underlying brown curve visible at the edges of the blue one.
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In the case of scattering parameters with a more limited dynamic range, the sensitivity
coefficients that are calculated analytically and that are determined by MCM more or less
correspond, showing that the compression of the dynamic range of input data is beneficial.
Violations of the normality assumption for the probability distribution of MCM output are
several, although limited, clearly corresponding to frequency intervals where the compared
data are very similar and where ADMi and FDMi have the lowest values.

6.3. Normalization of MCM Calculated Sensitivity

Two facts emerge from the results obtained so far:

• The analytically calculated sensitivity using first-order derivatives is always smaller
(or much smaller) than the MCM result, proving that the problem is not suitable for
the propagation of uncertainty by means of derivatives;

• Comparing linearly and logarithmically scaled data, the differences indicate a sec-
ond issue for the determination of FSV sensitivity, that of a possible dependency on
data format.
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The reason for the unsuitability of the analytical approach is for sure that the ADMi
and FDMi functions are highly non-linear, as demonstrated by the form of the first-order
derivatives themselves (where the sign functions are visible and frequent stepwise changes
occur). This is caused at least by the use of absolute value operators in the formulation of
ADMi and FDMi.

It is also observed that attempting to increase the order of the calculated derivatives to
improve the approximation is unsuccessful, as further derivation of Sγ and Sθ provides a
second-order derivative with terms of similar magnitude with the addition of a 1/(2N)2

term: only the latter has reduced magnitude, showing that higher-order terms of the Taylor
expansion are non vanishing, and that convergence is troublesome.

It is remembered only that the FSV method was first conceived in the field of electro-
magnetic compatibility, where the data are almost always provided in dB scale, leading us
to think that the dB representation is possibly favored.

Comparing the sensitivity values obtained with the scattering parameters (small
negative values approaching zero) and railway line impedance values (large values ranging
approximately between 10 and several thousands), it is evident that sensitivity depends
on the scale of the provided data, and is different for different portions of each data curve.
In an attempt to generalize the MCM calculated sensitivity, a sort of normalization was
investigated, to decide the amount of sensitivity that one could expect, irrespective of the
data magnitude and their range of variation (dynamic scale).

An attempt has been made to normalize SADMi and SFDMi, so as to have a better
behavior where their value is scaled by the data magnitude. Since the data have a large
dynamic range and a few points may reach very small or large values, causing issues
of weird amplification or the attenuation of sensitivity coefficients after division, a local
smoothing of the data was used instead. Smoothing is achieved by applying a median filter
mf(mi,r) with a range r, which for the reported results was chosen as r = 11.

S̃ADMi =
SADMi

mf (mi, r)
S̃FDMi =

SFDMi

mf (mi, r)
(27)

The result is shown below in Figure 15 for the data of test case 1 (railway impedance),
represented both in linear and logarithmic scale. It is observed that the normalized coeffi-
cients S̃ADMi and S̃FDMi are unitless.
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in (a) linear and (b) logarithmic scale: SADMi is shown in light brown and SFDMi in light blue.

The normalized sensitivity curves do not have a more uniform profile than the sensi-
tivity coefficients curves alone, nor was this the main objective. What the S̃ADMi and S̃FDMi
achieve is weighting sensitivity with respect to data sample intensity, and this is relevant, as
it is possible to assume that data errors depend on scale, with a larger uncertainty at lower
values, but smaller error values. In other words, the normalized sensitivity coefficients
spot out areas of small data values with large sensitivity, and at the same time, reduce the
influence of large data values.

For completeness, the normalized coefficients are also calculated for test case 2
(S11 scattering parameters), showing a moderate range of values, as commented before (see
Figure 16). In this case (and similarly for Figure 15b above), although the quantities are in
dB, the normalization is intended as a ratio, operated to scale with respect to the numeric
values, so that the resulting normalized sensitivity coefficient is unitless and in linear scale.
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We may comment that the SFDMi coefficient suffers from edge effects, increasing always
towards the first and last samples of the data vector, as a consequence of the way in which
FDMi is calculated (with the local derivative taking some samples).

Although the sensitivity values SADMi and SFDMi have been observed in the range of
0.1 to 5 for all data vectors, when normalized by the median filter estimate of the local data
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amplitude, the resulting S̃ADMi and S̃FDMi values lie between approximately a few units
(or 10) and some hundreds of units.

7. Conclusions

FSV is a relevant algorithm for the validation of simulation results, and in general,
to assess the similarity between the simulation and/or experimental data. It belongs to a
family of algorithms to spot out similarity, beyond a simple comparison between arrays of
values, evaluating broader characteristics such as slope, number of peaks, and so on. FSV
has proven to be effective in several engineering fields, focusing on electromagnetism and
electromagnetic compatibility.

This work has addressed the characterization of FSV sensitivity, as is recommended
for any instrument (measuring tool), with the task of providing a similarity assessment of
the said simulation and/or experimental data. The commonly adopted approach is that of
determining sensitivity coefficients by first-order derivatives (in case some assumptions
regarding Taylor approximation and curve behavior hold), and more generally, by Monte
Carlo method (MCM) simulations.

We have demonstrated that, due to the nature of the FSV indexes (ADMi and FDMi),
the straightforward calculation of first-order derivatives leads to inaccurate, and sometimes
inconsistent, results. The first-order derivative results are always much lower if compared
to MCM (up to two orders of magnitude) and they highly depend on the type of data
and whether they are linearly or logarithmically projected. Logarithmic compression (or
another scale, compression mapping) should be used in order to have a better distribution
of sensitivity of ADMi and FDMi; this ensures more similarity between the sensitivity
coefficients resulting from first-order derivatives, and the dispersion of MCM output
(differences are reduced to a factor of 1 to 5, on average), showing that FSV non-linearity is
reduced. MCM always delivers consistent results and has been considered as the reference
to evaluate FSV sensitivity and uncertainty. MCM is an approach endorsed by GUM,
and should be preferred for a quantitative analysis of uncertainty propagation in FSV
expressions (and in general, for complex systems and algorithms).

By calculating the skewness and kurtosis of the MCM sample set, indexes are demon-
strated to have symmetric, nearly normal distributions; in some cases, a few samples, or
narrow intervals, deviate from normality and exhibit a more relevant number of outliers,
with kurtosis being several times larger than Gaussian kurtosis (equal to 3). This occurs
when the ADMi and FDMi values are extremely small (the compared curves are quite
similar locally) and the spread of values beyond normality (long tails) is in line with the
observed underestimation of the Excellent interval [9,20]. This supports a derivation of
uncertainty and confidence of interval based on a confirmed Gaussian assumption.

The derivation of uncertainty information by MCM is problem specific, although
general sensitivity figures were derived, showing multiplicative values starting from
a few % to some units, namely indicating that the amplification of data noise (or uncertainty)
occurs only at some intervals. To obviate scale problems, normalization of the sensitivity
coefficients was carried out using a smoothed version of the original data: the objective was
to provide a more fair representation of sensitivity, as its strong dependency on the local
ADMi and FDMi values was consistently observed. The resulting normalized sensitivity
ranges approximately between about 10 and 100, with narrow downward peaks (irrelevant)
and some larger values, especially at the beginning and end of data vectors (the edge effect,
caused by the FDMi calculation method).

The effectiveness of FSV as a gauging tool or instrument must be evaluated by means
of the propagation of uncertainty and evaluation of sensitivity to noisy data and data
uncertainty. However, no better validation metrics are known, from the point of view of
accuracy and limited sensitivity to data.

Further developments and studies are in the direction of evaluating the overall un-
certainty of the grade and spread of FSV output with methods that are more suitable for
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studying histograms and clustering variability, as well as some of the FSV variants that
have more recently been proposed.
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