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Abstract: To achieve an accurate, efficient, and high dynamic control performance of electric motor
drives, precise phase voltage information is required. However, measuring the phase voltages of
electrical motor drives online is expensive and potentially contains measurement errors, so they are
estimated by inverter models. In this paper, the idea is to investigate if various machine learning
(ML) algorithms could be used to estimate the mean phase voltages and duty cycles of the black-box
inverter model and black-box inverter compensation scheme with high accuracy using a publicly
available dataset. Initially, nine ML algorithms were trained and tested using default parameters.
Then, the randomized hyper-parameter search was developed and implemented alongside a 5-fold
cross-validation procedure on each ML algorithm to find the hyper-parameters that will achieve high
estimation accuracy on both the training and testing part of a dataset. Based on obtained estimation
accuracies, the eight ML algorithms from all nine were chosen and used to build the stacking ensemble.
The best mean estimation accuracy values achieved with stacking ensemble in the black-box inverter
model are E2 = 0.9998, MAE = 1.03, and RMSE = 1.54, and in the case of the black-box inverter
compensation scheme R = 0.9991, MAE = 0.0042, and RMSE = 0.0063, respectively.
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1. Introduction

A power inverter is a power electronic device that converts direct current (DC) to
alternating current (AC). Such power electronic circuits are used to convert one power
source waveform into another, in this case from DC to AC. Power electronics have a key role
in the conversion of waveforms of power sources and management of renewable energy
sources systems [1]. The design of a power inverter dictates input and output voltage,
frequency, and overall power handling. A stable DC source that provides enough power
for the entire system is required for the proper functioning of the power inverter.

The power inverter can be classified based on the input voltage, so 12 V is the most
common voltage used for smaller consumer and commercial inverters, 24-48 V are com-
mon for home energy systems, 200 to 400 V for photovoltaic solar panels, 300-450 V for
electric vehicle battery packs, and hundreds to thousands of volts for high-voltage power
transmission systems.

The output waveform of a power inverter can be a square wave [2], sine wave [3],
pulsed sine wave [4], or pulse-width-modulated wave (PWM) [5,6]. Common types
of power inverters produce square waves or quasi-square waves [7], where the output
frequency of AC is usually 50 or 60 Hz. However, in power inverter designs used for a
motor, driving the variable frequency results in variable speed control. The output voltage
is usually regulated to be the same as the grid line voltage, even when there are changes in
the load that the inverter is driving. Today, power inverters are used in various devices
such as converters of DC from batteries or fuel cells to AC [8], uninterruptible power supply
(UPS) [9-11], electric motors for producing a variable output voltage range to regulate the

Electronics 2022, 11, 2623. https://doi.org/10.3390/ electronics11162623

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics11162623
https://doi.org/10.3390/electronics11162623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0314-243X
https://orcid.org/0000-0002-5964-245X
https://orcid.org/0000-0003-3121-2228
https://orcid.org/0000-0003-2817-9252
https://doi.org/10.3390/electronics11162623
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162623?type=check_update&version=2

Electronics 2022, 11, 2623

2 of 28

speed of an electrical drive [12-14], refrigeration/air conditioning [15-17] for compressor
motor speed to drive refrigerant flow in refrigeration, which results in regulation of system
performance, power grid as grid-tied inverters [18-21] to feed into the electric power
system and synchronverters [22-25] to simulate a rotating generator for grid stabilization,
and convert low-frequency main AC power to higher frequencies in the induction heating
process [26-29].

To achieve accurate, efficient, and highly dynamic control performance of electric
motor drives, precise phase voltage information is required. This requirement is mandatory
for the dynamic control of electric drive performance where torque-controlled operation
is considered.

Today, most electric drives do not measure the phase voltages online, so they have to
be estimated with inverter models. However, estimation is not accurate due to various non-
linear switching effects that occur on a nanosecond scale, and the application of analytical
(white box) modeling is hardly feasible. The challenge could be solved with the application
of Artificial Intelligence (AI) algorithms that require data acquisition from inverter models.

The development and advancement of power inverters can be achieved with the ap-
plication of Al algorithms. Several research papers listed below show some advancements
in the field of power inverters with the application of AL. Fuzzy logic has been successfully
applied in [30,31] for speed control of motor systems with inverters. The normal model of
an inverter-induction motor combination and a vast range of faulted models have been de-
veloped in [32] using a generic commercial simulation tool to generate voltages and current
signals at a broad range of operating points chosen using an ML algorithm. The structured
neural network system has been developed to detect and isolate the most common types of
faults of inverter-motor combination: single switch open circuit faults, post-short circuits,
short circuits, and the unknown faults. Countless conducted system simulations showed
that neural network system trained using a machine learning approach achieves high accu-
racy in detecting whether a faulty condition occurred. The genetic algorithm was applied
in [33,34] for harmonic minimization in multilevel inverters. In [35], the authors have
utilized the hybrid Al technique of the neuro-genetic algorithm for condition monitoring,
fault diagnosis, and the evaluation of an induction motor without any additional informa-
tion. The term neuro-genetic algorithm is the combination of a backpropagation neural
network and genetic algorithm. In [36], the authors have developed a comprehensive Al
framework for the fast and reliable classification of distributed generation units’ islanding
and non-islanding events, with the focus on practical limitations and requirements of a
smart power electronics inverter as the desirable observational site.

In this paper, the idea is to investigate the possibility of utilizing a complex ML
ensemble system (stacking ensemble) to estimate the mean phase voltages and duty cycles
of a three-phase IGBT two-level inverter for electrical drives. The ML ensemble system is a
technique that combines basic ML algorithms to produce one optimal estimation model.
So, the idea is to develop an optimal estimation model using an ML ensemble system
that can estimate mean phase voltages and duty cycles. Generally, two different models
were considered:

e  Black-box inverter model;
¢ Black-box inverter compensation scheme.

Here, the term “black-box” refers to the utilization of complex ML algorithms. In the
black-box inverter model, the goal is to obtain ML algorithms that could estimate the mean
phase voltages of the inverter with high accuracy. In a black-box inverter compensation
scheme, the goal is to obtain ML algorithms that could estimate the duty cycles of the
inverter with high accuracy. To build this complex ensemble, system selection of basic ML
algorithms is required in specific steps. The first step is to investigate which one of the
available ML algorithms can achieve good estimation accuracy with default parameters,
which can be described as an “out of the box” approach. The second step is to investigate the
randomized hyper-parameter search with cross-validation to see if estimation accuracies
could be improved. Finally, those ML algorithms that achieved the highest accuracies are
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randomly selected in the training process of ensemble methods to see which combination
of estimators achieves the highest estimation accuracy. To summarize, the hypotheses of
this research are:

* Isit possible to achieve high estimation accuracies of black-box inverter models and a
black-box inverter compensation scheme targeted variables (to clarify, the targeted
variables in the black-box inverter model are mean phase voltages i1, ;_1,x € 4,b,c,
while the targeted variables in the case of the black-box inverter compensation scheme
are duty cycles at k — 2 sample d y_», x € a,b, c), using different ML algorithms with
default parameters;

* Isit possible to improve the estimation accuracies of black-box inverter models and
a black-box inverter compensation scheme targeted variables, with a randomized
hyper-parameter search with 5-fold cross-validation applied on ML algorithms used
in the previous step;

* Isit possible to develop the stacking ensemble (using ML algorithms that achieved
the highest estimation accuracies in the previous step) and, on that stacking ensemble,
apply the randomized hyper-parameter search with 5-fold cross-validation to achieve
high estimation accuracy with improved generalization and robustness of targeted
variables in the black-box inverter model and black-box inverter compensation scheme.

The structure of this paper can be divided into the following sections, i.e., Materials
and Methods, Results, Discussion, and Conclusions. In the Materials and Methods section,
research methodology, dataset description with statistical and correlation analysis, utilized
ML algorithms, 5-fold cross-validation procedure with randomized hyper-parameter search,
and stacking ensemble methods are described. In the Results section, the results of an
initial investigation are presented as well as the results of a randomized hyper-parameter
search in combination with a 5-fold cross-validation and stacking ensemble are presented.
In the Discussion section, the results obtained in the previous section are discussed. In the
Conclusions section, the conclusions are given based on the hypotheses defined in this
section and the Results and Discussion sections.

2. Materials and Methods

In this section, dataset description, research methodology, various ML algorithms, ran-
domized hyper-parameter search with cross-validation, stacking ensemble, and evaluation
methodology are described.

2.1. Dataset Description

The dataset description subsection is divided into system description and statistical
analysis. The system description is the detailed description of the system, which authors
in [37] used to develop the dataset. In the sub-subsection “statistical analysis”, the results
of statistical analysis and correlation analysis applied to the dataset are presented.

2.1.1. System Description

In this paper, a publicly available dataset [37] was utilized, which was obtained using
data acquisition and measurement techniques of various signals of a system that consists
of a 3-phase power inverter that is a part of the control system for an induction motor. In
addition to the inverter and an induction motor, the system consists of DC-link, capacitor
stabilizer, digital control system, sensors, and induction motor. The schematic overview of
the system is presented in Figure 1.
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Figure 1. Graphical representation of the drive system.

As seen from Figure 1, the induction motor (LUST ASH-22-20K13-000) is fed by a
three-phase two-lever IGBT inverter (SEMIKRON Semiteach IGBT), the schematic view of
which is shown in Figure 2.

7

Figure 2. Schematics of the inverter in the drive system.

A digital control system performs the control of the motor by the use of field-oriented
control (FOC) with a switching frequency of 10 kHz. This type of system can be used for
scalar and vector control of an induction motor. The induction motor control is achieved by
changing the voltage and frequency of the 3-phase inverter. The change in the voltage and
frequency is achieved with sinusoidal PWM. The PWM pulses are supplied to the gates
of the insulated-gate bipolar transistor (IGBT) of the inverter. The measurement structure
used by the authors in [37] is shown in Figure 3.
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Figure 3. Measurement structure.

As seen, Figure 3 consists of a scope (Teledyne LeCroy 12-bit HDO4104), differential
probes (1xPMK Bublebee 1 kV CAT III, 2xTeledyne LeCroy ADP305), phase-current sen-
sors (3XxSENSITEC CMS2015 SP10), and digital control system (dSPACE MicroLabBox).
The pulsating phase voltages u,, up, and 1. were measured simultaneously using scope
and three differential probes. To identify mean phase voltages at each PWM interval, the
trigger signal and signal that indicates a new PWM interval were used to synchronize the
rapid control prototyping system (RCPS) and the scope. The voltages were recorded by the
scope, and all other signals were recorded by the RCPS at any operating point.

To capture measurement data in complete current and voltage range, the authors
in [37] have connected an induction motor to another motor that was speed-controlled by
an industrial inverter and control unit. By doing so, the induction motor is operated in
current-control mode, which enables the measurement of various duty cycles and current
amplitude combinations. The system in this configuration enables data acquisition of
samples in steady-state and dynamic operation at various motor speeds.

2.1.2. Dataset Statistical Analysis

The dataset [37] consists of phase voltages, phase currents, duty cycles, DC-link
voltage, and speed for 235 thousand sampling steps. Generally, the signals can not be
interpreted as continuous measurement records since the dataset is a sequence of several
small recorded sequences. So, required past values of the signals for training the inverter
models and compensation scheme must be included as additional signals in the dataset for
each sampling step.

As already stated, two different models are analyzed: the black-box inverter model
and the black-box inverter compensation scheme.The targeted output in the black-box
inverter model are mean phase voltages i, ;1 of phases x € a,b,c, while the targeted
output in case of the black-box inverter compensation is the duty cycles d, ;_, of phase
x € a,b,c. The duty cycles d, ;_, are calculated by a rapid control prototyping system
during the PWM period [k — 2,k — 1] - T; and are based on the measured phase currents
ix,k —2,x € [a,b,c], and the DC-link voltage during that PWM period, and is set by the
inverter during the following PWM period [k — 1,k| - Ts. In Tables 1 and 2 the results of the
statistical analysis (mean values, standard deviation, and minimum and maximum values)
of input and output variables are presented.
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Table 1. Statistical description of the black-box inverter model. (The k refers to sampling step).

Model Variable Name Symbol Mean STD Min Max
igk 0.0005 2.19 -7.3 7.47
Phase Currents ip & —0.0076 2.1553 —6.3202 6.6681
ick —0.0089 2.2162 —7.1129 7.4371
igk—1 0.0005 2.1992 —7.3001 7.4702
Phase Currents at k — 1 ipk—1 —0.0077 2.1553 —6.3202 6.6681
fek—1 —0.0089 2.2161 —7.1129 7.4371
Input
Variables dyj—2 0.5002 0.2119 0 1
Duty cycles at k — 2 dyj—2 0.5002 0.2117 0 1
deg— 0.5001 0.2117 0 1
dai—3 0.5002 0.2119 0 1
Duty cycles at k — 3 dpi—3 0.5002 0.2117 0 1
dek—3 0.5001 0.2117 0 1
DC-link voltage at k Uge 567.13 4.9936 548.01 575.55
DC-link voltage at k — 1 Uge k—1 567.13 4.9934 548.01 575.55
Uy p—1 283.41 114.64 —2.2884 573.34
goutput Mean phase voltages at k — 1 T 283.46 11429 —2.0879 5732
ariables
U g1 283.74 114.6 —2.3124 573.17
Table 2. Statistical description of the black-box inverter compensation scheme.(The k refers to
sampling step).
Model Variable Name Symbol Mean STD Min Max
Uy g1 283.41 114.65 —2.2884 573.33
Mean phase voltages at k — 1 Upj—1 283.46 114.29 —2.0879 573.2
Ue k-1 283.74 114.6 —2.31 573.17
dai—3 0.5002 0.212 0 1
Duty cycles at k-3 dpp_3 0.5002 0.2117 0 1
dek—3 0.5001 0.2117 0 1
Input -
Variables igk—3 0.0005 2.1989 -7.3 7.47
e S bk s ~0.0078 2.1551 632 6.6681
ick—3 —0.0088 2.216 —7.1129 7.4371
igk—2 0.0005 2.199 -7.3 7.47
Phase currents ati — 2 ipj—2 —0.0077 2.1552 —6.32 6.6681
fck—2 —0.0089 2.2161 —7.1129 7.4371
DC-link voltage at k — 3 Ude k—3 567.13 4.9931 548.01 575.5533
DC-link voltage at k — 2 Uge —2 567.13 4.9933 548.01 575.55
dof—2 0.5 0.2119 0 1
V?llrli;ﬁ;lll;s Duty cycles at k — 2 dypi_» 0.5002 0.2117 0 1
dej—2 0.5001 0.2117 0 1

As seen in Tables 1 and 2, a total of 6 different output variables are estimated using dif-
ferent ML regression algorithms. Three variables in the black-box inverter model and three
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in the black-box inverter compensation scheme. For each target value, the chosen ML algo-
rithms are trained and tested. The duty cycle depends on the time T, i.e., on the switching
on or off of the IGBT switch in a certain time interval and the target waveform; the voltage
values 1, 1, Up 1, and U x_1 must be approximately similar in the positive and negative
half-cycle. As seen from both tables, the range between minimum and maximum values
differs from variable to variable. Initially, the application of scaling and normalization
techniques on the dataset was considered, however, high accuracy was achieved with ML
algorithms on the original dataset, so the application of data preprocessing methods was
omitted from further investigations.

In addition to the initial statistical analysis, it is good practice to investigate the
correlation between input and output variables, i.e., perform correlation analysis. Here,
Pearson’s correlation analysis was applied. The correlation between any input variable and
the output variable is in the range of —1.0 to 1.0. The —1.0 correlation value between input
and output variables means that if the input value decreases, the output value increases,
and vice versa. On the other hand, the correlation value of 1.0 between the input and output
variables means that if the input variable increases, the output variable also increases. It
should be noted that the worst correlation values are in the range of —0.5 to 0.5, especially
0, which means that variation of input variable value will have absolutely no effect on the
output variable. In Figures 4 and 5, the results of Pearson’s correlation analyses are shown
for both models in the form of a correlation heat-map.

Pearson's correlation heatmap for black-box inverter model
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Figure 4. Pearson’s correlation heat-map for black-box inverter model.

As seen in Figure 4, the three targeted output variables, i.e., mean phase voltages at
k —1 sample (i, k1, Upx—1, and U, ,_1), has a good correlation with the majority of input
variables. However, the correlation with the u,.  and u4. 1 variables is near 0, so the
initial presumption is that these variables will not have any influence on their estimation.
The mean phase voltages at k — 1 sample have the highest correlation (0.99), with duty
cycles at the k — 2 sample (d, k2, dpx—2, and d.;_») and duty cycles with k — 3 sample
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(dg k-3, dp—3, and d. x_3), while the lowest negative correlation is with phase currents (i, x,
ipk, and i, ;) and with phase currents at k — 1 sample (i, k1,4 1, and igg_1).

Pearson's correlation heatmap for black-box inverter compensation scheme
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Figure 5. Pearson’s correlation heat-map for black-box inverter compensation scheme.

The correlation heat-map shown in Figure 4 shows that targeted output variables,
i.e., duty cycles at the k — 2 sample (d, 2, dyx—», and dj ), have a good correlation with
the majority of input variables, however, there is not any correlation with DC-link voltage
at k — 2 sample (u4.x—2) and k — 3 (14, x—3), respectively. The three duty cycles at k — 2
sample variables have the highest correlation (~1.0) to duty cycles at k — 3 sample (d, x_3,
dyx—3,and d. ;_3) and mean phase voltages at k — 1 sample (i, x_1, Up k—1, U k—1) While the
lowest negative correlation (~—0.8) is to phase currents at k — 3 sample, and k-2 sample,
respectively. However, in each model during the training of different ML algorithms, all
input variables will be included.

It should be noted that these black-box inverter models were created for two reasons.
The authors in [38] have suggested these models (the combination of input and output
variables). This suggestion of data configuration for both models was tested and verified
by conducting Pearson’s correlation investigation, which showed an excellent correlation
between input and output variables and can be seen for each model in Figures 4 and 5,
respectively. However, the investigation showed that each black-box inverter model has
two variables with the lowest correlation to the target variables. As already stated, in the
black-box inverter model, the DC-link voltage at k (u4.x) and DC-link voltage at k — 1
(14 k—1) have the lowest correlation (=~ 0) with target variables (i, 1, Upx—1, and i ;_1).
In the case of the black-box inverter compensation scheme, the DC-link voltage at k — 2 and
k — 3 do not have any correlation with target variables (d, x5, dpx—2, and d.y_»). The DC-
link voltages at k,k — 1,k — 2, and k — 3 were suggested by the authors in [38], so the results
of the correlation analysis for these variables were left in Figures 4 and 5. The dataset also
contains the speed ([ref/min]) at k. However, correlation analysis showed this variable
does not have any correlation (= 0) with the target variables in both models.
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2.2. Research Methodology

In this paper, the idea is to investigate if an ML algorithm or ensemble consisting of
different ML algorithms could estimate the mean phase voltages of the black-box inverter
model and duty cycles of the black-box inverter compensation scheme with high accuracy.
The procedure of this research can be summarized in the following steps:

*  Perform the initial investigation using the original dataset with various ML algorithms
with default parameters to select only those that achieve reasonable high accuracy in
mean phase voltages and duty cycle estimation.

¢ Onselected ML regression algorithms, perform a randomized hyper-parameter search
with 5-fold cross-validation to find which combination of hyper-parameters for each
ML algorithm achieves the highest estimation accuracies.

*  Select ML algorithms that achieved the highest estimation accuracies in previous steps
to build a stacking ensemble and to investigate if even higher estimation accuracies
could be achieved.

The graphical representation of the research methodology is shown in Figure 6.

=) Qo—ﬂ

e Results
Machine Learning Evaluation of trained ML
Algorithms with default algorithms
parameters

— & ¥

\

w

Dataset Random Results
hyperparameter search Evaluation of trained ML
with cross-validation and algorithms
evaluation
I a
. Evaluation of stacking
Stacking ensemble ensemble

Ebbb Results

Figure 6. Graphical representation of research methodology procedure.

2.3. Various Machine Learning Algorithms

In this paper, the Python programming language was utilized with the scikit-learn
library version 1.0.2 (December 2021). The library contains all the ML algorithms that were
used in this investigation. Here, only a basic description of each ML algorithm used is
given, and they are Automatic Relevance Determination (ARD), Bayesian Ridge, Elastic
Net, Huber, K-Neighbours, Lasso, Linear, Multi-Layer Perceptron (MLP), and Ridge. Each
description of the ML algorithm is accompanied by a range of hyper-parameters that were
used in their randomized hyper-parameter search during the training of the ML algorithms.
It should be noted that not all hyper-parameters are shown in the following tables. However,
only the hyper-parameters that were used in the randomized hyper-parameter search are
shown and described.

2.3.1. ARD Regression Algorithm

The Automatic Relevance Determination regression algorithm [39,40] (ARD) is a
linear model, similar to Bayesian Ridge Regression. In this algorithm, the weights of
the model are assumed to be in Gaussian distributions. The precisions of the weights
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distributions (lambda) and the precision of the noise distribution (alpha) are estimated,
which is performed by iterative procedures (Evidence Maximization).
The list of hyper-parameters with a predefined range is given in Table 3.

Table 3. An overview of the used hyper-parameter range for ARD regression method.

Parameter Name Lower Bound Upper Bound
n_iter 100 1000
tol 1x10730 1x10°%
alpha_1 1x 10720 1x 1071
alpha_2 1x 10720 1x 107!
lambda_1 1x107%0 1x10°1
lambda_2 1x10720 1x107!
compute_score True, False

threshold_lambda 1000 100,000

In Table 3, n_iter is the maximum number of iterations that will be used when train-
ing the algorithm. tol will stop the algorithm if w parameter values have converged,
i.e., dropped below tol value. alpha_1 is a shape parameter for the Gamma distribution
prior over the alpha parameter. alpha_2 is the inverse scale parameter, i.e., the rate parame-
ter for the Gamma distribution is prior over the alpha parameter. lambda_1 is the shape
parameter for the Gamma distribution which is over the lambda parameter. lambda_2 is
the inverse scale parameter, i.e., the rate parameter for the Gamma distribution which is
prior over the lambda parameter. If compute_score is set to True, then the objective function
will be computed at each step of the model. treshold_lambda is a threshold for removing
weights with high precision from the computation.

2.3.2. Bayesian Ridge Regression Algorithm

The Bayesian Ridge Regression Algorithm [40,41] includes regularization parameters
in the estimation procedure, and these are tuned to the data at hand. The fully probabilistic
model is achieved by assuming the y as Gaussian distribution around Xw:

p(y|X, w,a) = N(y|Xw,a) 1

where « is a random variable that is estimated from the data. In Bayesian Ridge Regression
prior to the coefficient, w is given with spherical Gaussian:

p(w|A) = N(w|0,A"'1,) ¢)

The parameters w, &, and A are estimated jointly during the training of an estimator.
The list of hyper-parameters with a predefined range is given in Table 4.

In Table 4, num_iter is the maximum number of iterations that the algorithm will
execute. The tol hyper-parameter will stop the algorithm execution if w has converged.
alpha_1 is a shape parameter for the Gamma distribution before the alpha hyper-parameter.
alpha_2 is the inverse scale parameter or rate parameter for the Gamma distribution prior
over the alpha parameter. [ambda_1 is the shape parameter for the Gamma distribution
prior before the lambda parameter. lambda_2 is the inverse scale parameter or rate parame-
ter for the Gamma distribution prior over the lambda parameter. alpha_init is the initial

1

value for alpha, i.e., when None, the alpha_init is equal to Var)” lambda_init is the initial

value of lambda, i.e., if it was set to None the lambda_init is equal to 1. compute_score is a
Boolean type of hyper-parameter. If True, then it will compute the log marginal likelihood
at each iteration of the optimization. fit_itercept is another Boolean-type hyper-parameter.
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If True, it will calculate the intercept for this model. If False, the interception will not be
used in calculations, which means that data is expected to be centered.

Table 4. An overview of the used hyper-parameter range for Bayesian Ridge Regression Algorithm.

Parameter Name Lower Bound Upper Bound
num_iter 500 1000
tol 1x1074 1x1073
alpha_1 1x107° 1x107!
alpha_2 1x107° 1x 107!
lambda_1 1x107° 1x1071
lambda_2 1x107° 1x107!
alpha_init None (0,10)
lambda_init None (0,10)
compute_score True, False
fit_intercept True, False

2.3.3. ElasticNet Regression Algorithm

The ElasticNet regression algorithm [40,42] is a regularized regression method that
linearly combines L1 and L2 penalties of lasso and ridge regression methods. This method
is useful in the case where there are multiple correlated features. The difference between the
ElasticNet and Lasso is that Lasso is likely to pick one of these features, while the ElasticNet
is likely to pick both at once. The ElasticNet is trained with both the L1 and L2-norm for
regularization of the coefficient. This combination allows the learning of a sparse model
where few of the weights are non-zero, while still maintaining the regularization properties
of the Ridge regularization method. The list of hyper-parameters with predefined values
range that was used in the randomized hyper-parameter search is shown in Table 5.

Table 5. An overview of the used hyper-parameter range for ElasticNet Regression Algorithm.

Parameter Name Lower Bound Upper Bound
alpha —10 10
[1_ratio 0 1
max_iter 10,000 100,000
tol 1x10-% 1x107°
random_state 0 50
selection cyclic, random

In Table 5, alpha is the constant that multiplies the ratio, % is the tuning parameter
that decides how much we want to penalize the model. [1_ratio, called the ElasticNet
parameter, can be in the range 0-1. If [1,atio is 1, the penalty would be L1, and if 0, the
penalty would be 12. If the value of the I1_ratio is between 0 and 1, then the penalty
would be a combination of L1 and L2. fit_intercept is a Boolean type of hyper-parameter,
and if set to True, then the constant is specified, which is added to the decision function,
otherwise no intercept will be used in calculations. max_iter represents the maximum
number of iterations taken for conjugate gradient solvers. tol represents the tolerance
for the optimization. This value and the updates are compared, and if found updates are
smaller than tol, the optimization checks the dual gap for optimality and continues until it is
smaller than tol. random_state is the seed of the pseudo-random number generated, which
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is used while shuffling data. The selection hyper-parameter can be cyclic (features looping
over sequentially) or random (random coefficients will be updated in every iteration).

2.3.4. Huber Regression Algorithm

According to [40,43], the Huber regression algorithm is a linear regression model
that is robust to outliers. This is achieved by applying the linear loss to samples that are
classified as outliers. The list of hyper-parameters with predefined values range that was
used in the randomized hyper-parameter search is shown in Table 6.

Table 6. An overview of the used hyper-parameter range for Huber Regression Algorithm.

Parameter Name Lower Bound Upper Bound
epsilon 1.1 10
max_iter 10,000 100,000
alpha 1x 10710 1x1073
fit_itercept True, False
tol 1x10°% 1x10710

In Table 6, epsilon controls the number of samples that should be classified as outliers.
The smaller the epsilon, the more robust it is to outliers. max_iter is the maximum number
of iterations that the algorithm should run for. If this value is reached or the algorithm
converges before the maximum number of iterations, the execution of the algorithm will
be terminated. alpha is the regularization parameter. fit_intercept calculates the intercept
for this algorithm, i.e., data are not centered. If False, data are already centered around
the origin. fol is the tolerance value, and it will stop the execution of an algorithm if
max(|pgi|) <=tol i=1,...,n, where pg; is the i-th component of the projected gradient.

2.3.5. K-Neighbors Regression Algorithm

K-neighbors regression is a non-parametric supervised learning algorithm [40,44].
The output of k-NN is the property value for the object. The value is the average of the
values of k-nearest neighbors. The list of parameters with predefined range is given in the
Table 7.

Table 7. An overview of the used hyper-parameter range for K-Neighbors Regression Method.

Parameter Name Lower Bound Upper Bound
n_neighbors 2 10
Weights uniform, distance
algorithm auto, ball_tree, kd_tree, brute

In Table 7, n_neighbors specifies the number of neighbors to use by default for
kneighbors queries. kneighbors is the function that finds the K-neighbors of a point and
returns indices of and distances to the neighbors of each point. weights can be set to uniform
(all points in each neighborhood are weighted equally) or distance (the weight point are
calculated by the inverse of the distance, i.e., closer neighbors of a query point will have
greater influence than those far away). The algorithm hyper-parameter can be set to auto
(automatically choose any other type of algorithm), ball tree, k-d tree, and brute.

2.3.6. Lasso Regression Algorithm

The Least Absolute Shrinkage and Selection Operator (Lasso) is the regression al-
gorithm that estimates the sparse coefficient [40,45]. This algorithm is an example of a
regularized regression, which is one of the approaches to tackle the problem of over-fitting
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by the addition of additional information to shrink the parameter values of the model to
induce a penalty against complexity. The list of hyper-parameters with predefined values
ranges that was used in the randomized hyper-parameter search is shown in Table 8.

Table 8. An overview of the used hyper-parameter range for Lasso Regression Algorithm.

Parameter Name Lower Bound Upper Bound
alpha 0.1 10
fit_intercept True, False
max_iter 1000 10,000
tol 1x107% 1x 10710
random_state 0 50
selection cyclic, random

In Table 8, alpha is the tuning parameter that decides how much the model will
be penalized. fit_itercept specifies a constant which should be added to the decision
function. If False, no intercept will be used in the calculation. tol is the tolerance for the
optimization. The parameter value and updates are compared, and if they are smaller than
the predefined value, the optimization checks the dual gap optimally and continues until
the dual gap value is smaller than tol. max_iter is the maximum number of iterations taken
for conjugate gradient solvers. random_state represents the seed of the pseudo-random
number generated, which is used while shuffling the data. selection can be set to cyclic
(features looping over sequentially) or random (random coefficient will be updated in
every iteration).

2.3.7. Linear Regression Algorithm

Linear regression is one of the best statistical methods used to study the relationship
between a dependent variable (Y) with a given set of independent variables (X) [40,46].
The relationship is established with the help of fitting the best line. The list of hyper-
parameter values used in the randomized hyper-parameter search is shown in Table 9.

Table 9. An overview of the used hyper-parameter range for Linear Regression Algorithm.

Hyper-Parameter Bounds

it_intercept True, False
p

In Table 9, fit_intercept is a Boolean type of hyper-parameter that is used to calculate
the intercept for the model. If set to False, no intercept will be used in the calculation.

2.3.8. Multi-Layer Perceptron

The multi-layer perceptron (MLP) [40,47] is an ML algorithm that during the training
process tries to connect a set of inputs (X) to the output (). The general structure of MLP
consists of three layers, i.e., input, hidden, and the output layer. The input layer consists
of a set of neurons (x1, Xy, ..., X;;), which are inputs. The neurons in the hidden layer
transform the values from the input layer with weighted linear summation wjxq + wox, +
...+ wyxy, followed by a non-linear activation function. The output layer receives the
data from the hidden layer and transforms it to the output value. The MLP Regressor
trains using backpropagation with no activation function in the output layer. The list of
hyper-parameters with a predefined range is given in Table 10.

The number of hidden layers and number of neurons per hidden layer are both
parameters required to define hidden_layer_sizes, which can be written as (hly, hlp, ..., hly),
where 7 represents the number of hidden layers and the il value represents the number
of neurons in the hidden layer. activation represents the type of activation function that
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will be used in each neuron in all hidden layers (identity, logistic, tanh, and relu). solver
is the type of solver used for weight optimization (Ibfgs, sgd, and adam). Ibfgs is an
optimizer in the family of quasi-Newton methods. sgd is the stochastic gradient descent
solver. adam is the stochastic gradient-based optimizer. alpha is the strength of the L2
regularization term. batch_size represents the size of mini-batches used for the stochastic
optimizer. learning_rate represents the learning rate schedule for weight updates (constant,
invscaling, and adaptive). The max_iter value represents the maximum number of iterations.
The tol h value represents the tolerance for the optimization. If the loss or score is not
improving by at least tol for the specific number of iterations, convergence is reached and
the training stops. n_iter_no_change is the maximum number of epochs in which the tol
value is not improved.

Table 10. An overview of the used hyper-parameters range for MLP Regression Algorithm.

Parameter Name Lower Bound Upper Bound
Number of Hidden Layers 2 5
No. Neurc});; grer Hidden 10 200
activation identity, logistic, tanh, relu
solver Ibfgs, sgd, adam
alpha 1x10°° 1x 1072
batch_size 200 300
learning_rate constant, invscaling, adaptive
max_iter 200 2000
tol 1x10°10 1x1073
n_iter_no_change 10 10,000

2.3.9. Ridge Regression

The ridge regression (Tikhonov regularization) can be described as a linear least
squares estimator with L2 regularization. [40,48]. This ML algorithm solves a regression
model where the loss function is the linear least squares function and regularization is
given by L2-norm. The list of hyper-parameters with pre-defined values range used in the
randomized hyper-parameter search is shown in Table 11.

Table 11. An overview of the used hyper-parameter range for Ridge Regression Algorithm.

Hyper-Parameter Lower Bound Upper Bound
alpha 1.0 1000
fit_intercept True False
max_iter 100 100,000
tol 1x107? 1x1073
solver auto, svd, cholesky, lsqr, sparse_cg, sag, saga

In Table 11, alpha is the tuning parameter that decides how much the model is to
be penalized. fit_intercept is the constant which is added to the decision function. If set
to False, no intercept will be used in the calculation. max_iter represents the maximum
number of iterations taken for conjugate gradient solvers. The tol value represents the
precision of the solution. solver represents the solver that will be used in computational
routines, and auto , svd , cholesky , Isqr , sparse_cg, sag, and saga are available.
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2.4. Randomized Hyper-Parameter Search with Cross-Validation

Cross-validation is one of the key methods used for the determination of both regres-
sion and generalization performances. In the case of this research, the k-fold cross-validation
procedure is used. Such a procedure is performed by dividing the training data sets into
k parts, where one part of the data set is used for testing, while other parts of the data
set are used for training [49]. In the case of this research, a 5-fold cross-validation is used.
The dataset is initially divided into train and test datasets in the same ratio as in the pre-
vious investigations (train-70%, test-30%). Additionally, the training dataset was used to
perform the 5-fold cross-validation.

A schematic representation of the used cross-validation procedure is given in Figure 7.

e N
il

i i, ——

Figure 7. The scheme of cross-validation process with randomized hyper-parameter search using
various evaluation metrics (R2, MAE, and RMSE) with final evaluation on the test dataset.

As seen from Figure 7, the dataset is initially divided on the train and test set in the
ratio 70:30, where 70% of the dataset is used for cross-validation with randomized hyper-
parameter search. In the first loop, the hyper-parameters of the ML algorithm are randomly
chosen from a predefined range and used in a 5-fold cross-validation on the training dataset.
The performance of the model is evaluated, and average R%, MAE, and RMSE values are
calculated. In the termination criteria block after each cross-validation, the evaluation metric
values are compared with predefined termination criteria values (R > 0.99, MAE < 10.0,
and RMSE < 12.0). If obtained averaged values are above (R?) or below (MAE and RMSE)
predefined values, the cross-validation process with randomized hyper-parameter search is
terminated, and if not, new parameters of the ML algorithm are randomly selected, and the
process is repeated. If, however, the termination criteria are met, the parameters of the ML
algorithm are used to re-train the model on the training dataset, and a final evaluation is
performed on the test dataset to obtain R%, MAE, and RMSE values.

2.5. Stacking Ensemble Method

The idea behind the ensemble method is to combine multiple base estimators to
improve generalization and robustness when compared with the performance of a single
estimator. In this research, the stacking ensemble method is used. This ensemble learning
method seeks a diverse group of members by varying the model types fit on the training
data and using a model to combine predictions [50]. In this method, there are usually two
levels of models: level-0 and level-1 models. The level-0 are ensemble members, while
level-1 is usually one model used to combine the predictions of ensemble members. The
structure can be expanded to multiple levels, so, for example, level-1 can have 3 to 5
models, and in level-2 is one model that combines the predictions made by level-1 models.
The general schematic overview of the stacking ensemble learning model with two levels
(level-0, and level-1) is shown in Figure 8.

The key elements of this model are an unchanged training dataset, different ML
algorithms for each ensemble member, and an ML algorithm to learn how to combine
predictions. In this paper, the stacking ensemble regression algorithm is used.
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Figure 8. Schematic view of stacking ensemble.

2.6. Evaluation Methodology

To evaluate the estimation accuracies of all ML algorithms in this paper, three types of
evaluation metrics were utilized, i.e.,: coefficient of determination (R?) [51], mean absolute
error (M AE) [52], and root mean squared error (RMSE) [53].

The majority of papers with Al and ML investigation, regardless of training/testing
procedure, always show only scores obtained with evaluation methods achieved on test
results. However, the evaluation scores obtained on the training set are also important.
For example, if evaluation scores on the training dataset are high, and on testing datasets are
lower, it could potentially indicate over-fitting. So, in this paper, the idea is to show mean
values of train/test scores with standard deviation. The large standard deviation between
estimation accuracies achieved on the train and test datasets could potentially indicate that
over-fitting occurred. On the other hand, the small standard deviation between estimation
accuracies obtained on train and test datasets could indicate that the ML algorithm has
stable, generalized, and robust estimation of targeted values. So, the standard deviation in
this procedure is a key factor that could potentially indicate if over-fitting occurred.

The procedure for obtaining mean values of evaluation scores as well as standard
deviation is very simple and consists of a couple of steps, i.e.,

*  Train an ML algorithm on the training part of the dataset;

*  Evaluate the ML algorithm on the training dataset using the previously mentioned
evaluation metric methods;

¢  Evaluate the ML model on the testing dataset using previously mentioned evaluation
metric methods;

*  Calculate the mean value of train and test evaluation metrics scores using the formula

Kz — R%rain + Rt2est
2
m _ MAEt—rain ;‘ MAEtest (3)
m — RMSEtrain + RMSEtest;

2
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. Calculate the standard deviation of train and test evaluation metric scores using

formulas
1 Y =2
R%TD = NZ(R?_R )2
i=1
1Y -
MAEgrp = NZ(MAEI-—MAE)Z
i=1
1 N -
RMSEgrp = NZ(RMSEi—RMSE)Z. 4)

In the case of simple ML algorithm training using a classic split of the dataset, the N
in the previous equation is equal to 2.

3. Results

In this section, the results of the conducted investigation are presented. First, the results
of the initial investigation are shown, i.e., the results of ML algorithms with default hyper-
parameters. The next step was to perform the 5-fold cross-validation on the training
dataset with a randomized hyper-parameter search. Throughout these two investigations,
the selection of ML algorithms was conducted, and only the best in terms of estimation
accuracies and small standard deviation between train and test accuracies were used to
build, train, and test the stacking ensemble model.

3.1. Results of Initial Investigation

The initial selection of previously mentioned ML algorithms is presented. The idea was
to investigate the initial performance of the used ML algorithms and see their estimation
performance with default parameters, i.e., a kind of “out of the box” approach. In Figure 9,
the results of the estimation performance on the training and testing portion of the dataset
are shown.

As seen in Figure 9, the algorithms used with default parameters have achieved ex-

tremely high values of R values, low MAE and RMSE values, and low standard deviation

values. Generally, estimation accuracies (ﬁz, MAE, and RMSE values with extremely small
standard deviation between train and test scores) are higher in the case of the black-box
inverter compensation scheme (d, x_», dp x>, and d. x_,) than in the case of the black-box
inverter model. However, two ML algorithms had poor estimation performance when
compared with the others, and these are the ElasticNet and K-Nearest Neighbors in the
case of the black-box inverter model output variables and MLP in the case of the black-box
inverter compensation scheme output variables. The ElasticNet algorithm for , ;_1, p _1,

and . achieved low R (0.65, 0.65, and 0.63) and high MAE (50.81, 50.07, and 51.25)
and RMSE (67.7, 66.7, and 69.04) values. However, the standard deviation between es-
timation accuracies achieved on the training and testing parts of the dataset is small
(R%TD ~ 0.001, MAEstp = 0.09, and RMSEgTp = 0.157). Due to a small value of R and
high values of MAE and RMSE, these values are omitted from Figure 9. The K-Neighbors
in the case of the black-box inverter model achieved low values of R~ for all three output
variables (1, x_1, Upx—1, and U ;_1) with the highest standard deviation values (indicated

by the error bars in Figure 9), which indicates a high difference between R’ scores achieved
on training and testing data, respectively. The achieved MAE and RMSE mean values in
the case of K-Neighbors were applied on the black-box inverter model, where the mean
values of these metrics are the highest when compared with the results achieved with other
ML algorithms. The standard deviation values are the highest, which means there is a
huge difference between MAE and RMSE values achieved on the training and testing
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parts of the dataset. In the case of the MLP regressor, the estimation accuracies were high
(~1) in the case of the black-box inverter model output variables. However, in the case of
the black-box inverter compensation scheme output variables, the estimation accuracies

are very low, i.e., for the d,_»,dy_», and d.;_, output variables, the values of R are
0.06,0.26, and 0.0398, respectively. Due to the small values of Fz, they are not visible in

Figure 9.
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Figure 9. Fz, MAE, and RMSE values with standard deviation shown as error bars.

The default hyper-parameters of each ML algorithms that were used to obtain results

are shown in Figure 9 are given in Table 12.

All the ML algorithms used in the initial investigation are used in a randomized hyper-
parameter search with 5-fold cross-validation performed on the train part of the dataset to
investigate if when using this method the estimation accuracies could be improved and the

standard deviation lowered.
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Table 12. Default hyper-parameters of ML algorithms used to obtain the results shown in Figure 9.

ML algorithm HyEer—parameters (Ugk—1, Upg—1,
Uck—1, Aak—2, Apk—2, dek—2)

number of iterations = 300, tolerance = 1 x 1073,
alphal =1 x 107, alpha2 =1 x 107°,
lambdal =1 x 107, lambda2 =1 x 10~¢,
threshold lambda = 10,000

ARD

number of iterations = 300, tolerance = 1 x 1073,
alphal =1 x 107°, alpha2 =1 x 107°,
lambdal =1 x 107°, lambda2 = 1 x 1079,
alpha initial = None, lambda initial = None,

Bayesian ridge

Huber epsilon = 1.35, max_iter = 100,
alpha = 0.0001, tolerance =1 X 105

alpha = 1.0, 11_ratio = 0.5,
Elastic Net max_iter = 1000, tolerance =1 x 10~*
positive = False, selection = cyclic

n_neighbors = 5, weights = uniform,
algorithm = auto, leaf_size = 30
P = 2, metric = minkowski,
metric_params = None

K-Neighbors

alpha = 1.0, fit_intercept = True,
max_iter = 1000, tolerance = 1 x 104

Lasso ..
positive = False, random_state = None,
selection = cyclic
Linear fit_intercept = True, False

hidden_layer_sizes = (100), activation = relu,
solver = adam, alpha = 0.0001,
MLP batch_size = auto, learning_rate = constant,
learning_rate_init = 0.001, power_t = 0.5,
max_iter = 200, shuffle = True,
random_state = None, tolerance =1 x 104

Ridge alpha = 1.0, max_iter = None, tolerance = 1 X 1073,
solver = auto, positive = False, random_state = None

3.2. Randomized Hyper-Parameter Search with Cross-Validation

In this investigation, the hyper-parameters of each ML algorithm were randomly se-
lected from a predefined range. The dataset, as in the previous case, was split into train and
test datasets with the ratio of 70:30. Then, the training of each ML algorithm was performed
on the training dataset using 5-fold cross-validation. After cross-validation, the estimation
accuracies are calculated on the train and test datasets and used in termination criteria. If the
values are above predefined estimation accuracies (R? > 0.999, MAE < 7.0, RMSE < 10.0),
the model is trained again on the training dataset and evaluated on the test dataset. If not,
then the parameters are randomly chosen and the cross-validation process is repeated

until termination criteria are met. Fz, MAE, and RMSE values with standard deviation
presented as error bars are shown in Figure 10.

From Figure 10, all ML algorithms achieved high estimation accuracies in both models
(black-box inverter model and black-box inverter compensation scheme) with low standard
deviation, except the K-Neighbors, so it was omitted from further investigations. It should
be noted that extremely high estimation accuracies are achieved with all ML algorithms in
the case of the black-box inverter compensation scheme output variables. The K-Neighbors
algorithm showed the same problems, even though the randomized hyper-parameter
search with 5-fold cross-validation was performed. The standard deviations were the same
as in the case of the initial investigation with default parameters. The small but noticeable



Electronics 2022, 11, 2623

20 of 28

standard deviations occurred in the case of MLP and Ridge regression for the case of the
black-box inverter model output variables. The parameters for each ML algorithm achieved

using the best estimation result shown in Figure 10 are given in Table 13.
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Figure 10. Kz, MAE, and RMSE values with standard deviation achieved with each ML algorithm

using randomized hyper-parameter search with cross-validation.

From Table 13, it can be noticed that tolerance hyper-parameters for ML algorithms
such as ARD, Huber, ElasticNet, and Lasso are very low (10721 — 107¢). The hyper-
parameter value range was in some ML algorithms widened since the small ranges did not

produce any significant benefit to the values of estimation accuracy.

The next and final step is to use all ML algorithms shown in Figure 10 and build
the stacking ensemble to investigate if when using the ensemble method the estimation

accuracies could somehow be improved.



Electronics 2022, 11, 2623 21 of 28

Table 13. The hyper-parameters of each ML-algorithm in randomized hyper-parameter search with
5-fold cross-validation.

ML Algorithm Hyger—parameters (Ugk—1, Upg—1,
Uck—1, dak—2, Apk—2, Ack—2)
n_iter = 854, 286, 934, 555, 284, 354
tolerance = 3.4624 x 10726,9.8841 x 1026,
4.787 x 10726,9.8719 x 10726, 7.764 x 10~%7,
6.02 x 10726
ARD alphal = 0.023148, 0.0648, 0.05917, 0.05919, 0.0947, 0.0237
alpha2 = 0.02833, 0.00509, 0.01208, 0.09771, 0.05974, 0.058
lambdal =0.0864, 0.04028, 0.03316, 0.03642, 0.0789, 0.076
lambda2 = 0.06796, 0.00708, 0.08056, 0.03634, 0.02163, 0.0746
threshold_lambda = 37,335, 21,754, 41,212, 59,922, 53,871

n_iter = 566, 784, 880, 830, 974, 733
tolerance = 0.00028, 0.00049, 0.00033, 0.00055, 0.00099, 0.00059
alphal = 0.0577, 0.036, 0.0045, 0.017, 0.062, 0.057
Bayesian ridge alpha2 = 0.081, 0.0205, 0.0233, 0.025, 0.08, 0.098
lambdal = 0.052, 0.0558, 0.065, 0.037, 0.052, 0.09
lambda2 = 0.0301, 0.006, 0.023, 0.065, 0.085, 0.066
lambda_init = None, 6.329, 0.34, None, 3.368, None

epsilon = 1.703, 67.87, 72.22, 1.15, 1.631, 9.89
max_iter = 80,657, 26,744, 14,533, 41,745, 24,066, 93,820
Huber alpha = 0.00027, 0.04, 0.0071, 0.00036, 2.623 x 10~°, 0.00014
tolerance = 3.77 x 10721, 0.0184, 0.07, 5.31 x 10~21,
6.69 x 10721,3.954 x 10~21

alpha = 0.62, 0.048, 0.029, 0.94, 1.29, 0.51
11_ratio = 0.99, 0.93, 0.845, 0.36, 0.27, 0.98
max_iter = 83,712, 11,323, 69,707, 17,535, 27,655, 41,066
Elastic Net tolerance = 9.41 x 107°,8.25 x 107°,9.13 x 1079,
436 x107°,4.997 x 1076,8.18 x 106
random_state = 33, 10, 9, 19, 20, 14
selection = cyclic, random, cyclic, random, cyclic, random

alpha = 0.74, 0.67, 0.32, 0.58, 0.76, 0.28
max_iter = 2814, 9494, 1431, 3395, 2852, 2568
tolerance =5 x 1011, 8,57 x 10711,
Lasso 9.44 x 10711,5.45 x 10711, 5.328 x 10711, 5.27 x 10~ 11
random_state = None, None, None, 48, None, 7
selection = cyclic, random, cyclic, cyclic, random, cyclic

Linear fit_intercept = False, True, True, True, True, True

hidden_layer_size = (107, 139), (140, 76, 99, 64, 113),
(139, 144, 128, 157), (111, 45, 121)

(129, 71, 75), (152, 178, 110)
activation_function = logistic, relu, relu, relu, logistic, logistic
solver = adam, adam, adam, adam, adam, adam

MLP alpha = 0.00019, 0.007, 0.005, 0.0078, 0.0028, 0.0059
batch_size = 214, 246, 238, 277, 263, 220
learning_rate = constant, invscaling, constant,
adaptive, constant, constant
max_iter = 1153, 299, 1346, 338, 1169, 1967
tolerance = 6.22 x 1072, 1.75 x 107°,5.02 x 107>, 3.77 x 107
5.46 x 107°,7.068 x 107>
nlter_no_change = 956, 23, 1310, 193, 1140, 710

alpha = 682.580, 368.425, 254.265, 805.43, 453.45, 580.24
fit_intercept = False, True, False, True , False, False
max_iter = 66,120, 78,658, 34,453, 25,145, 82,456, 75,458
Ridge tolerance = 5.143 x 107°,3.128 x 1077,
4126 x 1074, 2.464 x 1073,
3.126 x 1074,1.236 x 10~8
solve = sag, saga, cholesky, sag, saga, sag
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3.3. Ensemble Methods

In this section, the results obtained using a stacking ensemble are presented. To de-
velop the stacking ensemble, all ML algorithms that were used in previous investigations
are used as base estimators inside the staking ensemble. The final_estimator, which is
used to combine the base estimator, is randomly selected from the base estimators list.
Here, the analysis of each output variable was performed using the stacking ensemble
with randomized hyper-parameter search with 5-fold cross-validation on the train part of
the dataset and final evaluation on the test part of the dataset. The results (Ez, MAE, and
RMSE with standard deviation) achieved in the estimation of variables in the black-box
inverter model and black-box inverter compensation scheme are shown in Figure 11.
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Figure 11. ﬁz, MAE, and RMSE values for each output variable with standard deviation values.

From Figure 11, it can be seen that estimation accuracies in the case of the black-box

inverter compensation scheme output variables are almost perfect, i.e., the values of R are
almost 1.0 (<0.9997) with extremely low MAE and RMSE values (~=0.001). The standard
deviation values in the case of the black-box inverter compensation scheme output variables
are virtually nonexistent, which means that the difference between estimation accuracies
achieved on the train and test part of the dataset is almost the same. The implementation
of the stacking ensemble with randomized hyper-parameter search and classic train/test

split of the dataset also showed improvement. I values are also near 1.0 (x0.99) while
values of MAE and RMSE are lowered when compared with the previous investigation,
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where the highest MAE and RMSE values were above 8 and 11 and, here, the highest
MAE value and RMSE values are slightly above 1.5 and 2.0 (in case of Uck—1). These
results were achieved with the stacking ensemble where the final_estimator is the MLP
that had the same hyper-parameters as the base MLP estimator for each output variable.
The parameters of each ML algorithm used in the stacking ensemble to obtain the result
presented in Figure 11 are shown in Table 14.

Table 14. The hyper-parameters of each ML-algorithm used in the stacking ensemble with random-
ized hyper-parameter search and 5-fold cross-validation.

ML algorithm Hyper-parameters (,x_1, Upk—1, Uck—1,
Aak—2, Apk—2, dek—2)
num_iter = 804, 957, 808, 375, 828, 813
tol =3.34 x 10726, 4.871 x 10727, 1.375 x 1026,
5.785 x 10726 6.439 x 10-%7 8.04 x 10~26
alpha_1 = 0.064, 0.0689, 0.0772, 0.0707, 0.0674, 0.03,
alpha_2 = 0.0868, 0.0819, 0.0603, 0.0432, 0.0936, 0.063
lambda_1 = 0.0351, 0.0655, 0.0839, 0, 073, 0.068, 0.007
lambda_2 = 0.0914, 0.0323, 0.0983, 0, 083, 0.0904, 0.08,
compute_score = True, True, False, True, True, True
threshold_lambda = 21,256, 89,378, 43,190, 60,432, 69,129, 26,796

ARD

num_iter = 997, 837, 948, 504, 777, 656
tol = 0.0003, 0.00063, 0.000707, 0.000546, 0.00078, 0.0005
alpha_1 = 0.0155, 0.036, 0.062, 0.0051, 0.0094, 0.058
alpha_2 = 0.0437, 0.055, 0.055, 0.065, 0.027, 0.022
lambda_1 = 0.0334, 0.019, 0.0103, 0.0576, 0.0996
lambda_2 = 0.0991, 0.019, 0.031, 0.0135, 0.0482, 0.076
lambda_init = 1.7039, 1.815, 5.966, None, 4.96, None
compute_score = False, False, False, True, False, False
fit_intercept = True, False, False, False, True, False

Bayesian ridge

epsilon = 9.68, 5.699, 7.41, 6.08, 1.36, 4.79
max_iter = 67884, 90043, 42378, 19418, 32229, 68369,
Huber alpha = 0.090261, 4.73 x 10~°, 0.000617, 0.00067, 0.00037, 2.7 x 10~°
fit_intercept = True, True, True, True, True, True
tol =7.33 x 10721, 7.206 x 10721, 9.34 x 10~21,3.52 x 102!
8.135 x 10721,1.23 x 102!

alpha = —9.79, 2.09, —9.98, —9.264, —2.35, —1.13
11_ratio = 0.245, 0.143, 0.37, 0.924, 0.27, 0.9
fit_intercept = False, False, False, False, False, False
Elastic Net max_iter = 32841, 41891, 35791, 54745, 54209, 84589
tol = 5.678 x 1077, 3.678 x 107°,8.99 x 107°,9.93 x 10~°
3.61 x 107, 8.86 x 107°
random_state = 28, 25, 31,42, 3, 13
selection = random, random, random, random, random, cyclic

alpha = 5.38, 7.606, 0.334, 2.01, 1.026, 5.52
fit_intercept = True, True, False, True, False, True
max_iter = 8423, 9285, 4220, 2606, 6958, 8770
Lasso tol = 6.75 x 19710,9.92 x 10711,9.92 x 10711, 3.027 x 10~ 1!
455x1071,9.19 x 10711
random_state = None, None, 27, 45, 16, None,
selection = cyclic, cyclic, cyclic, cyclic, random, random
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Table 14. Cont.

Linear fit_intercept = True, True, False, True, False, False

hid_layer_size = (70, 125, 157, 187), (18, 118, 199),
(162,191, 172), (130, 176, 53, 40, 111),
(107, 26, 116), (174, 170, 88, 122, 111)
activation = tanh, relu, relu, identity, logistic, identity
solver = Ibfgs, adam, adam, adam, Ibfgs, adam
MLP alpha = 0.0066, 0.00201, 0.0039, 0.00158, 0.0063, 0.0072
batch_size = 264, 247, 285, 222, 290, 287
learning_rate = constant, constant, constant, adaptive, invscaling, invscaling
max_iter = 1108, 447, 1942, 1942, 1436, 1755
tol =3.19 x 1070, 6.427 x 1075,2.023 x 107,
6.0536 x 107°,8.39 x 107° 6.75 x 10~
n_iter_no_change = 195, 218, 282, 959, 768, 494

alpha = 813.31, 149.53, 829.864, 897.206, 590.799, 846.2
fit_intercept = False, True, False, True, False, True

Ridge max_iter = 25,174, 60,066, 58,733, 45,444, 84,797, 60,136
tol = 1.08 x 1078, 0.000618, 0.00095, 0.00039
0.000669, 0.00078

solver = auto, Isqr, auto, Isqr, svd, Isqr

4. Discussion

The initial investigation using ML algorithms with default hyper-parameters with the
classic split of the dataset on training and testing data with a ratio of 70:30 showed that
the majority of ML algorithms have achieved high estimation accuracies. The algorithms

achieved high R” and low MAE and RMSE values. This is valid for all ML algorithms
except the ElasticNet, K-Neighbors, and MLP. In the case of ElasticNet, K-Neighbors’
estimation performance was poor in the case of the black-box inverter model output
variables. In the case of the MLP, the estimation performance was poor in the case of the
black-box inverter compensation scheme output variables. The standard deviation between
training and testing estimation accuracies R%TD, MAEstp, and RMSEgtp were low for
the majority of ML-trained algorithms, which indicates that over-fitting did not occur,
except for K-Neighbors in the case of the estimation of the black-box inverter model output
variables. The standard deviation values for that case indicate that differences between
estimation accuracies on the training and testing datasets are large, which can be noticed
with the error bars shown in Figure 9.

All the algorithms used in the initial investigation are used in a randomized hyper-
parameter search with 5-fold cross-validation performed on the training dataset to in-
vestigate if estimation accuracies could be improved and standard deviation lowered.
The investigation showed that almost all the ML algorithms achieved higher estimation
accuracies (higher than the initial investigation), except for the K-Neighbors, which showed
similar behavior as in the initial investigation with the default parameter. Although the
estimation performance was somewhat improved, the standard deviation, i.e., the differ-
ence between the estimation accuracy achieved on the train and test dataset, was large for
both models. So, this algorithm was omitted from further investigation using a stacking
ensemble. In the initial investigation, the ElasticNet achieved lower estimation accura-
cies in the case of the black-box inverter model output variables, however, in the case
of the randomized hyper-parameter search with 5-fold cross-validation, the estimation
accuracies were improved. In the case of the MLP regression algorithm in the initial in-

Lo . . =2
vestigation, the estimation accuracies were extremely low (R” = 0.06) for the case of the
black-box inverter compensation scheme output variables, however, in the randomized
hyper-parameter search with 5-fold cross-validation, the estimation accuracies were also

. =2 - L .

improved (R~ ~ 0.997). The standard deviation between estimation accuracy values is
virtually nonexistent for the majority of ML algorithms, however, the standard deviation
can be noticed in the case of the MLP regressor for the black-box inverter model out-



Electronics 2022, 11, 2623

25 of 28

put variables. So, the results of this investigation show that all ML algorithms will be
used to build the stacking ensemble, except for K-Neighbors, which was omitted from
further investigation.

As already stated in the final investigation, the stacking ensemble was used to in-
vestigate if estimation accuracy values could be improved with the ensemble method.
For this ensemble, eight different ML algorithms were used, and they are ARD, Bayesian
Ridge, Elastic Net, Huber, Lasso, Linear, MLP, and Ridge. Here, the stacking ensemble
was investigated using a randomized hyper-parameter search of each ML algorithm and
the application of 5-fold cross-validation on the training part of the dataset, while the test
dataset was used for final evaluation.

The investigation using a stacking ensemble showed that combining all eight ML
algorithms improved estimation accuracy values when compared with the previous in-

vestigation. R values for all six output variables (both models) are almost equal to 1.0.
MAE and RMSE values were lowered in the case of the black-box inverter model output
variables when compared with all previous investigations. The highest MAE and RMSE
values are in the case of 7. ;_1, where MAE = 1.8 and RMSE = 2.24, respectively. How-
ever, one key disadvantage is that training time of the stacking ensemble is much higher
than training an individual ML algorithm.

In Table 15, the discussion is summarized with improvements obtained at each stage
of the methodology development.

Table 15. Summarized discussion with improvements obtained at each stage of methodology
development in the case of the black-box inverter and inverter compensation scheme model.

Stage Description

Advantages:

-good estimation accuracies (ﬁz, MAE, RMSE),
-accuracies of duty cycles better than
in the case of mean phase voltages
Disadvantages:
-large STD between estimation accuracies
achieved on the train and test dataset

Initial investigation

in case of KNN
Advantages:
Random grid search -improved average estimation accuracy,
with 5-Fold Cross- -mean phase voltages and duty cycle accuracies improved,
Validation -STD between accuracies on the train and test dataset lowered
Disadvantages:

-KNN omitted from further investigation due to the same STD
as in previous case
-ElasticNet and MLP showed slight increase
in R%TD, MAEgrp, and RMSEgTp values

Advantages:
Ensemble Method -estimation accuracies are optimal since
algorithm combines estimations of 8 basic estimators
Disadvantages:
-training time longer than training individual ML algorithm

5. Conclusions

In this paper, various ML methods were used to estimate mean phase voltages at k — 1
of the black-box inverter model and duty cycles k — 2 of the black-box inverter compensation
scheme, respectively. The initial investigation showed that the majority of used ML methods
had high accuracy with default hyper-parameters. The investigation with randomized
hyper-parameter search and 5-fold cross-validation had a slight improvement in estimation
accuracies. Based on the conducted investigation, the following conclusions are:
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¢  The initial investigation showed that with the original dataset and ML algorithms
with default parameters good estimation accuracies could be achieved, so it was not
necessary to perform classic scaling and normalization techniques on the dataset.

*  The randomized hyper-parameter search with 5-fold cross-validation on the training
dataset showed that estimation accuracy values were improved for the majority of ML
algorithms with the exception of K-Neighbors, which showed the same behavior as in
the previous investigation.

¢  The final investigation with stacking ensemble with randomized hyper-parameter
search used for each ML algorithm and with 5-fold cross-validation showed improved
estimation performance when compared with the previous case.

Using the artificial intelligence approach to estimate the parameters of power elec-
tronics circuits, it is possible to obtain high-quality predictions of the target variables of
the inverter itself. The results of this research show the high accuracy of the target values,
in this case, the black-box inverter model and the black-box inverter compensation model,
which was also the goal of this research. The model follows the duty cycle estimation with
great reliability, and the given model has a high accuracy for the mean phase voltage for
k — 1, which contributes to the importance of integrating the Al algorithms themselves
into power electronics circuits. Estimation of the mean phase voltage has a crucial role for
devices of a sensitive nature in an environment that requires high accuracy of the power
supply for efficient operation.

Regarding future research plans and contributions in this branch of science, several
actions will be taken. It will be necessary to process the effect of heat on power electronics
circuits because the effect of temperature on the power electronics circuit itself can also
affect its properties. By increasing or decreasing the temperature, different triggering
characteristics of the transistor can appear, which can greatly affect the waveform con-
version of the circuit. In addition to the above, it will be necessary to make appropriate
heat regulations for maintaining a constant temperature of the inverter itself (cooling or
heating), which can affect the efficiency of the circuit itself. After performing the previously
defined actions, it will be necessary to create a realistic model of the system itself with the
associated DC power supply and inverter connected to the electronic drive and, after that,
it will be possible to implement the obtained artificial intelligence model for estimating the
target variables. With the successful execution of these actions, the scientific research on
this topic will be completed.
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