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Abstract: There are no restrictions on religious or cultural practices in India. India’s temples are
becoming an ideal platform for Hindu groups to express their ideals in a global context. For the
sake of devotees, temples now require widespread accessibility and participation by a wide range of
individuals on major holidays. A pilgrim may be unable to determine which site to visit, or where
to stay, due to a variety of considerations such as cost, location, and the interests of each individual
user. A user’s preferences are taken into consideration when a personalized recommendation list is
generated. A large number of systems use Collaborative Filtering to produce user recommendations.
In order to generate user-specific recommendations, this system uses a filtering method dubbed the
“hybrid approach.” The Proposed OTPS Cluster technique is used to determine TPS (Time, Place,
and Service). Users’ interests and TPA recommendations are taken into account. Users can forecast
the location of the temple based on the temple’s history. Collaborative Filtering and Material-Based
Filtering were used to propose sites based on comparable users and content, respectively. Testing
shows that the algorithm is capable of solving difficulties in standard tour routing and providing a
temple visit route that is tailored to each individual’s preferences. This study makes use of data from
the South Indian city of Temple in the form of temples.

Keywords: recommendation systems; place recommendation; time optimization; TPS clustering

1. Introduction

Since the beginning of time, Hinduism has been practiced as a way of life. The
macrocosm (the universe) and the microcosm (the individual) are both represented in
Hindu temple construction, which is linked to astronomy and sacred geometry. To ensure
the spiritual and social well-being of the community, temples are always located at the
heart of Hindu towns. Recommendation systems, or “recommenders systems,” are a
major research area. By analyzing the habits of its customers, it recommends products
that are likely to be of value. In general, recommendation lists are generated based on
user preferences, item features, user–item past interactions, and some other additional
information such as temporal (e.g., sequence-aware recommender) and spatial (e.g., POI
recommender) data. Recommendation models are mainly categorized into collaborative
filtering, the content-based recommender system, and the hybrid recommender system
based on the types of input data.

The following are the steps of recommendation systems [1]. To begin, people converse
and discuss their preferences via the user interface they are using. Second, the consumers’
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implicit and explicit data is collected. Recommendation engines are then used to make
recommendations from the obtained data. Preprocessing, learning, evaluating, and pre-
dicting are all components of the recommendation engine [2]. Without a recommendation
system, users would spend a lot of time choosing the right destination from the many
routes available. This can frustrate users and discourage them from using the web search
any longer. Recommendation systems are defined as the techniques used to predict the
rating one individual will give to an item or social entity [3]. Finally, the most accurate
predictions are sent out to the customers as shown in Figure 1.
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The recommendation system (RS) has gained its popularity in many domains such
as movies, books, music, search queries, and social tags due to its capability of predicting
future preference with a set of items for users. Collaborative filtering is a technique or
method of predicting user preferences and finding things that users may like based on
information gathered from various other users with similar likes or preferences. It takes
into account the fundamental fact that if MX and MY respond to certain items to a certain
extent, they may have the same opinion on other items. Collaborative filtering tends to find
similar users and recommend what they like. Rather than recommending the use of item
features, this type of recommender system classifies users into similar cluster types and
recommends each user based on their cluster preferences.

Planning a vacation to an unfamiliar location can be unnerving, especially for tourists
with physical restrictions or language barriers, as there is little or no information on site.
Websites provide information about points of interest (POI) based on ratings provided
by other users. It may not suit everyone’s tastes. The proposed Temple recommendation
engine uses personal information to provide recommendations and attempts to obtain
travel-related attributes such as user mentions, media attachments, etc. OTPS cluster
technology is used to determine the TPS (Time, Place, and Service).

2. Literature Survey

This work uses clustering to find relevant routes for the user prior to route optimization
so that route ranking can be accomplished. Recommender systems (RSs) were generally
defined as expert systems which are used to recommend products or services to the
users. Figure 2 portrays the working of a traditional recommender system. Objects are
grouped together in clusters where they are more closely related to one another than
they are to the objects in other groups [4]. Machine learning, pattern recognition, image
analysis, information retrieval, bioinformatics, data compression, and computer graphics
are some of the most common applications of exploratory data mining and statistical data
analysis. Timeliness is one of the most important challenges. Factors such as the very short
duration of news articles, recency, popularity, trends, and the large number of news articles
delivered per second are taken into account. Another major challenge in the news space
is the very dynamic behavior of users. Personalization is a useful feature of NRS, as it
provides information based on reader preferences and interests [5]. A single algorithm is
not needed to perform cluster analysis; rather, it is a generic activity carried out by a range
of algorithms, each with a somewhat different take on what constitutes a cluster and how
to find them quickly [6]. The model-based filtering methodology describes how machine
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learning algorithms can be implemented for movie recommendation purposes, and how to
predict unrated movie ratings and branch or sort movies based on viewer preferences. The
CF algorithm is a very efficient technique for applying MRS [7]. It is common for clusters to
be made up of groups with a little distance between each other, dense regions of data space,
and certain statistical distributions. In this way, clustering can be treated as an optimization
problem. A clustering algorithm and parameter settings should be chosen based on the
specific data collection and the intended use of the resulting clustering data. The idea of
social network data mining is similar to GPS trajectory data mining. In GPS trajectory data
mining, the main applications include association rules, abnormal behavior, travel mode,
and GPS trajectory recommendation [8]. Problems with recommender systems using AI
and improvements to these systems using AI approaches such as fuzzy techniques, transfer
learning, genetic algorithms, evolutionary algorithms, neural networks and deep learning,
and active learning will be examined [9]. The Knowledge Base Graph Integration module
extracts core entities from images, text and maps them as knowledge base entities. Then,
they extract the subgraphs closely related to the central entity and transform the subgraphs
into low-dimensional vectors to realize the subgraphs’ embedding [10]. RS-based users’
behavior and collaborative location and tracking [11] uses Twitter data to personalize
place of interest (POI) recommendations. Their model takes into account tweets related
to travel. User preferences for the different categories are first identified [12]. In social
network trajectory data mining, applications mainly include location recommendation,
path recommendation, and behavior preference recommendation [13]. As a process of
knowledge discovery or an interactive multiobjective optimization involving trial and error,
cluster analysis is not often seen as an automatic operation [14]. A latent factor (LF)-based
approach becomes highly popular when implementing a recommender system. However,
current LF models mostly adopt single distance-oriented Loss, such as an L2 norm-oriented
one, which ignores target data’s characteristics described by other metrics, such as an
L1 norm-oriented one [15]. A novel end-to-end framework called KBRD, which stands
for Knowledge-Based Recommender Dialog System, integrates the recommender system
and the dialog generation system. The dialog system can enhance the performance of the
recommendation system by introducing knowledge-grounded information about users’
preferences, and the recommender system can improve that of the dialog generation system
by providing recommendation-aware vocabulary bias [16]. Moreover, as a representation
of global information, the Knowledge Graph itself contains rich semantic information. The
Knowledge Graph can increase the interpretability of recommendation results as well as
improve the accuracy of recommendations and the diversity of recommendation results [17].
Sometimes it is necessary to tweak things like data preprocessing and model parameters to
get the results you want. A survey of collaborative filtering (CF)-based social recommender
systems provide a brief overview over the task of recommender systems and traditional
approaches that do not use social network information, but a recommender system that
suggests information to users based on their current mood or emotion [18]. In this model,
the facial expression recognition technique uses a convolutional neural network (CNN) to
extract features from the facial image and then artificial neural networks [19].

It is a difficult job for recommender systems to provide suggestions based on user
preferences. Based on the Travel Recommender and POI Recommender, the location
recommendation and social media recommendation algorithms are implemented.
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3. Proposed System

Data flow in the news recommendation system will be discussed in this section.
Recommendations should arrive in real time, which is an important consideration. The
system should be able to capture and recommend fresh news articles to the user as soon
as they enter the system [20]. The information is passed along from one component to the
next until it reaches the user in the form of a list of suggested readings. The process go in
the following order through the system as shown in Figure 3:

1. Scraper: Access content from a variety of news sources. Initiates database entry of articles.
2. Filterer: Identifies articles that are not duplicates of existing articles and matches the

standards, such as size and language, to be classed as articles legitimate enough to be
processed. Filtered news is marked as such and is saved in a separate database from
the scraped material.

3. Classifier: Filtered data is seen, and articles are assigned NER and LDA classifications.
The LDA classifications are applied to the filtered articles, and the items are then
tagged as classified.

4. Node Manager: A VMM-Tree is constructed from the most recently processed articles’
cumulative and time-decayed subject ratings. The tree is serialized and stored in the
database in this manner.

5. Recommender: For each user, the system finds a subject set that it believes is relevant,
and then recommends articles from those topics using a rating algorithm when they
interact with the system.
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Our embedding layers Figure 4 include dense embedding, sparse embedding, and
positional embedding. Positional embedding is used for attention modules, while dense
embedding is used for numerical data types [21]. There are three inputs, two dense and
one sparse, in the dataset. Time and service are dense inputs, but place is sparse. Due to
their differences in characteristics, these two inputs are each treated differently. Using MLP,
for example, the dense layer is embedded, while embedding lookup transforms sparse
features into numerical vectors. Sequential hyperinteraction is then applied to each dense
and sparse input to retrieve the historical pattern. Lastly, nonsequential hyperinteraction
can be used to learn more about user–item interaction than can be learned from sequential
data [22]. The two losses, regression and classification, are then calculated.
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3.1. Location Recommendation System

The location-based social network was used to predict the recommended destinations
for the user in the proposed recommendation model. The socially relevant trust walker
algorithm uses the existing rating scores for related location categories to determine the
rating score for each location [23]. As location-based technologies (such as GPS) become
available, social networks use location data to operate in different ways. For example,
users can share their current location on websites, upload geotagged photos to social
media platforms, and write reviews about places they have visited. Location is therefore
considered one of the key elements of user context, and in-depth knowledge of user
behavior and interests can be derived from user location data [24].

Locations having a higher relevance score are recommended to users after calculating
the location category’s rating score. In order to make recommendations more useful, a
social trust walker algorithm was implemented. Figure 5 depicts the proposed recommen-
dation model. There are two primary components in the proposed location recommender
system: user interface and ratings prediction. Rating prediction is based on the user inputs
from various locations and the reviews received.
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• Location Mining:

In general, a travel itinerary is a series of attractions in a specific order. For example,
for a left-to-right order, the leftmost point in the sequence is considered the start point and
the rightmost point is considered the end point, the last stop.

Route extraction is the first step in the recommendation approach, which handles the
process of retrieving data from data sources and recombining that data to generate routes for
further data processing or storage. It generates route sets by extracting more features such
as geolocation, route information, etc., from the travel dataset beyond individual attractions.

• Powerful route generation:

Given a set of frequent roots, R, the requirement when a root can be added to the
robust roots is to find all nonempty subsets that satisfy the minimum condition. Similar
to frequent root generation, we also need to look for efficient ways to generate robust
roots. This generates robust routes by merging two routes that share the same prefix in the
consequent part of the rule.

In this method, we applied user-based collaborative filtering to calculate similarity
scores between users and local experts. It provided users with location recommendations
around a given geographical location based on their preferences. A user’s location history
and local expert social opinion may share similar interests. Compared to user profiles and
user location histories, user paths contain a richer set of information, such as the order of
movement between locations and the time spent at each location. Therefore, route data can
be used to more accurately estimate user preferences.

3.2. Collaborative Filtering Architecture

After doing an evaluation of the algorithm’s effectiveness, we observed that it was
78 percent successful. Given that we do not know anything about the objects or their users,
we make the assumption that persons who give the same item equivalent ratings are also
similar. Collaboration filtering is a strategy used by recommendation systems to make their
recommendations [25,26]. Ant colony optimization performed well in solving the traveling
salesman problem (TSP), is prone to local optima, and has limited convergence speed. To
solve this problem, multi-colony ant colony optimization based on a generalized Jaccard
similarity recommendation strategy [27].

Ratings and reviews of tourist places are based on collaborative filtering. Users rate
tourist destinations for various purposes. Users specify reviews of places and hotels they
have visited and are used to find ratings for specific places and hotels. Uses collabora-
tive filtering data mining techniques using three data mining algorithms such as pattern
matching, clustering, and association [28,29]. Collaborative filtering is a generic term that
refers to the process of filtering information or patterns using techniques that necessitate
collaboration across diverse agents, views, data sources, and other factors. For a variety of
reasons, including the ability to analyze large datasets, collaborative filtering is employed.
Collaborative filtering outperforms content-based filtering in terms of accuracy [30]. With
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the use of collaborative filtering architecture Figure 6, we can divide the suggestion process
into three parts:

• User assessments are taken into account while creating a visual representation of
temple information.

• We may then use our own collaborative filtering method to determine the degree of
similarity between tourists based on their previous visit history [9] and other relevant data.

• The creation of tourism attraction recommendations. Recommendations for top attrac-
tions, restaurants, and hotels are generated by comparing your tastes with those of
other visitors.
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To put it another way, we refer to two things as similar if one user gave them the same
rating. A weighted average of reviews from this user’s most X similar items is then used to
determine how likely a user is to purchase an item. Item-based CF has the advantage of
being more stable than human-based CF in that the ratings for a given item do not change
dramatically over time [28]. When comparing two vectors, the concept of similarity states
that this is equal to 1 if they are identical, and 0 if they are orthogonal. A number between
0 and 1, indicating the degree to which the two vectors resemble one another, is what we
mean by the term “similarity”.

Temple recommender systems predict AU (active user) preference for items in real
time. The proposed system creates a model based on AU historical data in a tree-like data
structure to reduce computational complexity. Recommendations are triggered when the
item the AU is looking for is detected. If there is an item rating record in the AU history, the
parameters are predicted based on tree structure. If there is no article history, the proposed
system predicts the priority based on the similarity.

Collaborative filtering does not require known features on items or users, which is
suitable for different sets of objects. If you want an advisor to recommend a new temple
to someone who has just visited a temple that is not on the list, try adding the same to
the recommendation spell when selecting for cooperation. Collaborative filtering is very
commonly used in recommendations, but challenges in using it include: collaborative
filtering can cause issues such as new items added to the list to cold start. They do not
recommend them until someone reviews them. Lack of data can affect the quality of user-
based recommendations and exacerbate the cold start issues mentioned. With a simple
implementation, you will find that recommendations are usually already popular, and
items in the long tail section can be skipped.

4. Results and Discussion
4.1. Time Recommendation System Algorithms

Personalized TPS recommendations are contrasted to other route-planning systems.
Figure 7 Plots the evaluation on different method discussed in this section.
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The history of the trip information is extracted. The trips that have same
origin/destination place are put together in chronological order. Then, we use an average
on all durations for these trips whose start time is within the same time slot to represent the
travel time of the two locations during the time slot. A temple’s trip contains the information
beginning at the entrance of the temple (TT) and lasting until encountering a finish-off event.
The target of the data preparation is to derive the sample training data from original temple’s
trace. We put similar trips together to derive a sample observation.

Definition 1. (temple trip): a temple trip TTr is a quaternion containing the following four items:
start location (TTr.sl), start time (TTr.st), finish location (TTr.fl), and duration (TTr.du).

The start location, the end location, and the start time of a temple are the three basic
features of each trip. If two trips have basic features similar to each other, they are similar.
We use the start region and end region to replace the points.

4.2. Random Time Planning System (RTPS)

This method constructs time schedule by randomly selecting five POIs.
We will use a linear recurrence relation as follows,

Xi = mXi−1 + p (1)

where m = 2 and p = 5 (m and n are chosen integer)

Ui = Xi/p (2)

Ui = 2/5 = 0.4

4.3. Famous Time Planning System (FTPS)

However, this strategy does not allow us to prioritize or optimize the most popular time
schedules. All users get the same POI recommendations calculated by Jaccard Similarity.

J(A, B) = |A∩B|
|A∪B| (3)
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4.4. Ranked Famous Time Planning System (RFTPS)

This technique proposes the most popular routes based on a user’s time preferences cal-
culated by Pearson correlation coefficient, but does not optimize for the user’s time constraints.

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2X

√
∑n

i=1 (yi − y)2
(4)

4.5. Optimized Time Planning System (OTPS)

A travel route is a sequence consisting of multiple travel POIs, denoted as R = {p1, p2,
. . . , pN}, where pi is the temple location included in the route and N is the number of locations.

The travel time required by the user from POI P ∗ POI Px to POI Py POI Py can be
defined as:

TTravel(px, py) = Dist(px, py)/speed

Route advice, including time ranking, is included in this algorithm. The following
metrics are used to evaluate the above-mentioned route recommendation techniques.

• Rating prediction metrics
• Ranking recommendation matrix
• Rating prediction metrics

The F1 score is a number between 0 and 1 and is the harmonic mean of precision and recall.

F1 = 2 ∗ precision ∗ recall
precision + recall

(5)

Ranking Recommendation Matrix

With the input of users’ ratings on the temple locations, we would like to predict how
the users would rate the temple locations so the users can get the recommendation based
on the prediction.

Assume we have the ranking table of five people and five temples, and the ratings are
integers ranging from 1 to 5, the matrix is provided by the Table 1.

Table 1. Rating matrix.

Temple 1 Temple 2 Temple 3 Temple 4 Temple 5

person 1 5 3 2
person 2 4 3 4
person 3 3
person 4 4 5 2
person 5 3 5 4

Define a set of people (P), temples (D), R size of |P|, and |D|. The matrix |P|∗|D|
includes all the ratings given by users.

Given with the input of two matrices A (|P| ∗ k) and (|D| ∗ k), it would generate the
product result R.

R = A ∗QT = Rˆ (6)

Optimized Time Planning System Using Clustering (OTPS_Cluster)

In the outlined above, when using fuzzy clustering, each data point can be included
in multiple clusters at the same time. Data points are assigned to groups in such a way
that those belonging to the same group are as similar as feasible, and those belonging to
separate groups are as dissimilar as possible, in order to do clustering or cluster analysis.
Clusters are detected using similarity measurements, such as distance, connectedness, and
intensity, which are used to identify them. Data or application specific similarity measures
might be used.
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Fuzzy C Mean Algorithm

Step 1: Initialize the data points into desired number of clusters randomly.
Table 2 below represents the values of the data points along with their membership

(gamma) in each of the cluster.

Table 2. Values of the data points along with their membership.

Cluster (1, 2) (2, 4) (3, 6) (7, 8) (7, 9)

1 0.6 0.5 0.2 0.1 0.4
2 0.3 0.4 0.5 0.9 0.7
3 0.5 0.3 0.4 0.6 0.1
4 0.4 0.8 0.3 0.7 0.9

Step 2: Find out the centroid.
The formula for finding out the centroid (V) is:

V{ij} =
(
∑ 1_n

∫ n
1 £{ik}m ∗ xk

)
∑n

k=0
( n

k
)
xk
∫ n

1 £{ik}m (7)

Step 3: Find out the distance of each point from centroid.
Step 4: Updating membership values.

£ =
n

∑
k=1

(n
k

)
d_

kj2
m 1
j

(8)

Step 5: Repeat the steps (2–4) until the constant values are obtained for the membership values.
Table 3 below represents the Evaluation on different method for the time recommen-

dation system (RS).

Table 3. Evaluation on different method for the time recommendation system (RS).

Performance RTPS FTPS RFTPS OTPS OTPS_Cluster

RS A 0.57 0.64 0.72 0.75 0.89
RS B 0.54 0.61 0.70 0.73 0.86
RS C 0.52 0.58 0.68 0.71 0.84
RS D 0.5 0.57 0.66 0.69 0.82

This allows the objects to belong to many clusters simultaneously with different
degrees of membership. Fuzzy clustering methods using fuzzy clustering rather than hard
clustering can be more intuitive in many cases. Membership degrees between 0 and 1 are
assigned to objects on the boundary between many classes, rather than requiring them to
fully belong to one of the classes. The hard partitioning’s discrete character also makes
it problematic for algorithms based on analytic functions, since these functions are not
differentiable. This paper introduces the Map Reduce framework to address the scalability
issue in fuzzy clustering.

Preprocessing Using MapReduce

Before you begin the clustering process, you need to clean up your data. Removed
from the database are duplicates and nulls. A location ID with the user’s name and rating
is established after preprocessing. Algorithm 1 MapReduce is used to produce user rating
pairs. After the program has been preprocessed, a separate file containing the location’s
name, users’ names, and ratings is generated.
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Algorithms 1: MapReduce

BEGIN
procedure map (LongWritable key, Text value)

String s=value.toString();
a - Array of String type
String a[]=s.split(“,”)
If (a.length)

t1.set(a[1]+”\t“)
t2.set(a[0]+”,”+a[2])

End if
context.write(t1,t2);

END

5. Conclusions

In today’s online world, recommendation engines are essential to any company’s
success. To produce appropriate recommendations in real time, a good recommendation
system must have strong correlation capabilities that go beyond the product. If you are
running an e-commerce business, recommender systems can be a strong asset. Moreover,
as technology advances, their worth will only grow. Social media data is used to implement
the POIs and route recommendation methodologies. The textual description also yields
information about a user’s potential interest in travel topics, such as Time, Place, and Service
(TPS). A Users preferences can be taken into consideration when a recommendation is given
to other user. In order to optimize revenues and communicate with customers based on the
information acquired based on their preferences, RS is critical in many enterprises and other
sectors. The CNN approach, which has been developed by a number of academics, has
shown promising results and performance over previous RS approaches. When it comes to
planning a pilgrimage, pilgrims have a hard time narrowing down the list of temples they
want to see. This recommender system provides recommendations for pilgrims to find
suitable shrines, and the system provides information on the location of temples and finds
the distances to the destinations. The OTPS provides more accurate results by providing
recommendations based on the user’s interests. Following the same concept, applications
can also be developed that can address the following issues: query processing and weather
recommendations
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