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Abstract: Downlink schedulers play a vital part in the current and next-generation wireless networks.
The next generation downlink scheduler should satisfy the demand for different requirements,
such as dealing with ultra-dense networks and the need to run real-time (RT) and non-real-time
(nRT) applications, with a high quality of service (QoS). Many researchers have developed various
schedulers for these, but none have introduced one scheduler to target them all. This paper introduces
a novel channel/QoS aware downlink scheduler algorithm, called Advanced Fair Throughput
Optimized Scheduler (AFTOS), for ultra-dense networks. AFTOS is a multi-QoS scheduler that aims
to maximize system spectrum efficiency and user throughput with enhanced fairness, delay, and
packet loss ratio (PLR). It is capable of handling RT and nRT traffic. We developed two new policies,
called Adjusted Largest Weighted Delay First (ALWDF) and Fair Throughput Optimized Scheduler
(FTOS), for RT and nRT traffic. Then, we joint them to introduce our novel downlink scheduler
Advanced Fair Throughput Optimized Scheduler (AFTOS). For evaluating the suggested algorithm,
we undertook experiments to decide the ideal parameter value for the proposed approaches and
compared the proposed solution to current best practices. The findings prove that the AFTOS
algorithm can achieve its objectives, outperforming the alternative techniques.

Keywords: channel aware; downlink scheduling; GWO algorithm; next generation cellular networks;
QoS aware; RT and nRT traffic

1. Introduction

The 3rd Generation Partnership Project (3GPP) established the long-term evolution
(LTE) system to ensure quality of service (QoS) performance for non-real-time and real-time
services. An effective technique for resource allocation scheduling is essential to achieve a
satisfying service level in an LTE system, especially in light of the increasing demand for
network applications [1]. LTE handles high data rates, maximum spectral efficiency, large
coverage area, and low latency. LTE implements orthogonal frequency division multiple
access (OFDMA) on the downlink and single-carrier frequency division multiple access
(SC-FDMA) on the uplink to achieve a high peak data rate [2].

The radio resource management (RRM) techniques developed for the LTE/LTE-
Advanced network environment will be important for successive generations. These
strategies should become more intelligent and adaptable in the future as networks, and
user features and needs grow more diversified and demanding [3].

Many papers evaluate the cellular networks and scheduling performance, such as [4–8].
The significant shortcomings of downlink scheduling are:

• Intelligent applications and devices development has made the users of current and
next-generation wireless networks be able to use several applications at the same time.
With a need to use both RT and nRT traffic (e.g., browsing social media websites and
chatting, or downloading data and playing an online game), downlink scheduling
should combine and manage both traffic concurrently. Most of the recent downlink
schedulers in the literature, however, treat each traffic alone [9–13].
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• The channel quality indicator (CQI) of the user equipment (UE) determines the number
of resource blocks (RBs) to be distributed across the cell’s users. Because of the low CQI
value, users near the cell edge will experience RB starvation, as seen in the well-known
channel aware scheduler Max Throughput (MT) [14]. The scheduler will always look
for the user with the best CQI since it cannot distinguish between good and bad
channel conditions. As a result, even users with good CQI will receive significantly
less throughput than users with the best CQI. This means while we optimize the
system performance, we must keep a particular level of fairness among system users.

Maximizing the user throughput with a high level of fairness, especially for users
with low CQI (user edge), is a problem. Many researchers developed various schedulers
to handle this. Any solution targeting next-generation wireless networks should further
consider QoS criteria and ultra-dense networks.

The proportional fairness (PF) [14] scheduling algorithm is another channel-aware ap-
proach that compromises fairness and spectral efficiency. Comparing present and historical
average channel throughputs is the PF method’s foundation. This connection establishes a
weighting ratio for the predicted channel throughput to rank users with less CQI. Because
of the qualities mentioned, researchers have examined PF widely, and adapted to accom-
modate the QoS characteristics of various traffic classes. Another well-known scheduler
is the Modified Largest Weighted Delay First (MLWDF), which achieves optimal system
performance and preserves more user fairness than competing techniques. This sched-
uler is very dependent on the quality of service and packet latency. The complexity of
the throughput-optimal MLWDF method is the lowest among all other scheduling algo-
rithms, and it takes real-time traffic into account. The key objectives of this scheduler are
to improve QoS, increase spectral efficiency, and offer high user fairness [15]. Ref. [16]
proposed a solution for user edge starvations using a multi-objective optimization algo-
rithm to maximize the throughput and the delay sensitivity by dividing the cell users into
cell-center and cell-edge users and prioritizing the transmission for cell-edge users. They
maximized the cell-edge throughput, but did not consider any delay-related parameters in
their performance matrices. Ref. [17] demonstrated a novel resource allocation approach for
multiple-input multiple-output (MIMO)-OFDMA downlink systems. This approach first
distributes available physical resource blocks (PRBs) to active users in the cell using a single
objective optimization algorithm, and then determines the right modulation and coding
scheme (MCS) index by taking power allocation into account. The numerical findings
showed that the system’s throughput and fairness are boosted compared to the well-known
techniques for empty and loaded networks, but, their algorithm did not consider QoS
restrictions, such as the packet delay and packet loss ratio, and was also computationally
complex. Ref. [18] established a unique RRM technique called Resource Allocation Scheme
to Optimize Throughput (RASOT). This technique assigns an SINR threshold and gives
preference to users with a lower SINR threshold to allocate resources. The evaluation
findings show that the proposed technique could increase the cell-edge throughput when
compared to the earlier methods and offer a higher level of fairness. Yet, the suggested
scheduler is a channel-aware algorithm that does not consider any QoS requirements,
rendering it unsuitable for next-generation wireless communications.

The next generation of wireless technologies needs a multi-QoS downlink scheduler
designed for an ultra-dense network (number of resources, such as subcarriers, are equal
to or lower than the number of users) to rank metrics, such as latency, transmission
rate, and capacity, achieve many advantages at the same time, and guarantee fairness
among system users. Still, one of the most significant shortcomings of the well-known
downlink schedulers in the literature, such as MT and PF, is that trade-offs exist in their
problem treatments and goal achievements. Thus, developing multi-QoS schedulers for
an ultra-dense network is vital to prioritizing many metrics in networks, such as latency,
transmission rate, packet loss ratio, and capacity, to make sure that users receive the
required level of service equally.
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This paper introduces a novel channel/QoS aware downlink scheduler algorithm
called Advanced Fair Throughput Optimized Scheduler (AFTOS) for ultra-dense networks.
The proposed scheduler is a multi-QoS scheduler with multiple goals (i.e., maximizing
the system spectrum efficiency, maximizing the user throughput with a superior fairness,
minimizing the delay, and decreasing the PLR). It deals with both RT and nRT traffic.
Our proposed scheduler has a novel design to achieve the goals mentioned. We used the
weighted joint policy developed by [19] that had a new balanced approach in scheduling
where the aim of QoS fulfillment may be interchanged against the possible system through-
put. In addition, we implemented two weighting elements to correlate RT (delay-related
scheduling policy) and nRT (throughput maximization scheduling policy) traffic. For the
latter, to maximize the throughput and fairness, we proposed a new channel-aware sched-
uler called Fair Throughput Optimized Scheduler (FTOS) based on a new meta-heuristic
algorithm called Grey Wolf Optimizer (GWO). We chose GWO because of its superior
qualities to other swarm intelligence approaches. GWO has been customized for a wide
range of optimization tasks, has a few parameters, and needs no derivation information
during the first search. It is straightforward, simple to use, adaptable, and scalable, with
the unique potential of striking the optimal balance between exploration and exploitation
throughout the search, resulting in positive convergence [20].

We designed its cost function as a simple single objective with a one-dimensional
search space to maximize the throughput for the users in the cell, making it fast, simple,
and easy to apply. To minimize the delay and achieve the QoS requirement for RT traffic,
we adjusted the Largest Weighted Delay First (LWDF) algorithm to develop a new QoS
scheduler called Adjusted Largest Weighted Delay First (ALWDF). By combining the two
schedulers, FTOS and ALWDF, using a weighted joint policy, we proposed our novel
downlink scheduler, Advanced Fair Throughput Optimized Scheduler (AFTOS). The
following summarizes this paper’s contributions:

• Introduced a novel multi-QoS called AFTOS for an ultra-dense network to (i) maximize
the spectrum efficiency and the throughput for the users in the cell with a superior
fairness, and (ii) minimize the delay and the PLR to make it very suitable for next-
generation cellular network requirements.

• Introduced a new and novel channel-aware scheme called FTOS that used GWO to
maximize the user throughput with a significant fairness and integrate it with any
other QoS schemes.

• Proposed a new QoS-aware scheme called ALWDF that adjusts the parameters of
the well-known LWDF scheduler to minimize the head of line (HOL) delay and the
probability of the packet to be lost.

• Implemented an efficient policy for mixed RT and nRT traffic since the researchers
rarely applied this policy in the literature.

The state-of-the-art scheduling schemes combine all related parameters into one, where
the dependency of the parameters to each other is high. This can make the scheduling
algorithms too conservative. In the proposed scheme, we reorganized the mathematical
expression for the scheduling metric and applied optimization to the new expression.
The new expression has two weighted terms and aims to increase the independence of
throughput related parameters from delay related parameters. In this way, the schedulers
can work less conservatively in increasing the system performance [13].

Section 2 of this paper outlines the related work and Section 3 is on the methodology.
There are six subsections of Section 3 to present the system model and explain the joint
weighted policy for combining RT and nRT traffic. In the third subsection, we introduce the
delay-related (RT) policy, and in the next subsection, we explain the throughput maximiza-
tion policy (nRT). The proposed scheduling algorithms are presented in the fifth section,
and the performance evaluation methods are introduced in the last subsection of Section 3.
Suggested method implementation is described and compared to existing algorithms in
Section 4. We finish the paper with a conclusion and suggestions for future work.



Electronics 2022, 11, 2895 4 of 23

To make it easier for the reader to follow the information in the paper, we have listed
the acronyms in Table 1.

Table 1. The acronyms on the paper.

Words Acronyms

Real-Time RT
Non-Real-Time nRT
Quality of Service QoS
Advanced Fair Throughput Optimized Scheduler AFTOS
Packet Loss Ratio PLR
Adjusted Largest Weighted Delay First ALWDF
Fair Throughput Optimized Scheduler FTOS
The Third Generation Partnership Project 3GPP
Long Term Evolution (LTE) LTE
Orthogonal Frequency Division Multiple Access OFDMA
Single-Carrier Frequency Division Multiple Access SC-FDMA
Radio Resource Management RRM
Channel Quality Indicator CQI
User Equipment UE
Resource Blocks RBs
Max Throughput MT
Proportional Fairness PF
Grey Wolf Optimizer GWO
Head Of Line HOL
Medium Access Control MAC
evolved Node B eNB
Mobile Users MUs
Sub-carriers SC
Base Station BS
Largest Weighted Delay First LWDF
Modified Largest Weighted Delay First MLWDF
Nonlinear Problem NP
Channel State Information CSI
Transmission Time Interval TTI
Particle Swarm Optimization PSO
Additive White Gaussian Noise AWGN
No-Free-Lunch NFL

2. Related Works

At the medium access control (MAC) layer, downlink schedulers are responsible for
distributing physical resource blocks (PRBs) between flows (eNB). Many packet scheduling
techniques have been developed to offer RT and nRT operations over LTE while retaining
good QoS delivery. LTE schedulers are designed to handle diverse traffic by considering
many QoS criteria, including latency, packet loss, CQI, and goal rates. Hence, ref. [9] aims
to decrease (RT) traffic latency while maintaining a high degree of QoS. By developing a
“Delay-based and QoS-aware Scheduling (DQAS)” strategy with a minimal complexity
overhead. In addition, the “Least Delay Increase (LDI) algorithm” was designed to find
a balance between delay and system throughput. Simulation findings demonstrate that
DQAS considerably ensures a low end-to-end latency trend independent of increasing
RT load and a fair throughput and data drop level compared to other current schedulers.
Ref. [11] demonstrates the impact of QoS Class Identifier (QCI) characteristics on various
delay-aware scheduling techniques. They also present a collection of algorithms to enhance
the Log-rule, Linear-rule, and (MLWDF) scheduling methods. The proposed algorithms
increase the QoS performance for various traffic classes, RT and nRT. The TES and TES+
are innovative packet scheduling systems for future ultradense networks proposed by [13].
They offered two new scheduling decision-making parameters and reconstructed the
parameters utilized by existing schemes. The performance of innovative schemes was
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compared to that of well-established schemes. Simulation findings indicate that suggested
scheduling methods can outperform all competing scheduling systems.

Some researchers also utilized optimization techniques to develop new scheduler
schemes. Ref. [21] demonstrated a genetic algorithm-based downlink scheduling algorithm
for LTE networks. This research presented a novel scheduling method for improving the
network’s lackluster performance degradation by adding a genetic algorithm (GA) concept
before allowing users to use radio resources. A simulation was used to evaluate the sug-
gested method’s performance, and the findings show that it significantly outperforms the
other algorithm in terms of the measured metrics. The spectral efficiency was increased by
65.76 percent, the throughput was increased, and the average latency was reduced. Ref. [1]
developed a novel downlink-scheduling method for video applications on LTE culler net-
works; it considered QoS requirements and channel circumstances. The efficiency of the
proposed algorithms was measured in terms of latency, throughput, PLR, and fairness.
Based on the acquired results, the algorithms significantly improve the efficiency of video
streaming when compared to conventional LTE algorithms. An algorithm for dynamic
scheduling delay-sensitive vehicle safety applications in cellular networks was presented
for a delay-aware control technique for maximizing system throughput using a cross-layer
method [22]. To start, they modeled the resource allocation issue using the multi-input
single-output (MI-SO)-based queuing theory. Second, the approach converted the problem
of throughput and latency for dynamic communication systems to a stochastic network
optimization problem and then used the Lyapunov optimization method to find their trade-
offs. Finally, they applied an enhanced branch-and-bound method to find the best solution
for these decomposed sub-problems inside the system capacity zone. The simulation results
prove that their technique can ensure the delay while maintaining the highest possible
system performance. Introduced by [23], the Dragonfly-Based Joint Delay/Energy (DJDE)
LTE Downlink Scheduling Algorithm (DJDE) considered the clients’ QoS needs while
attaining high energy efficiency. The suggested approach uses the Dragonfly algorithm
to improve several scheduling strategy integrations. They performed a comprehensive
series of tests to evaluate the suggested solution compared to state-of-the-art procedures.
A novel multi-objective optimization technique was introduced in [24], where the sched-
uler combines both traffic. The authors aimed to find the optimal solution in the Pareto
front value to maximize the throughput and minimize the delay. Their results achieved
their goals, but it was computationally complex and needed a decision maker involved.
Their model did not consider the ultra-dense networks or the user fairness required for
following generation networks. Ref. [25] conducted an LTE Downlink Scheduling with
Sharing Spectrum for Surviving LTE-WiFi Systems that examined the influence of packet
scheduling on LTE cell performance. It optimized and increased packet success rates using
the Hungarian algorithm. The study showed that using Hungarian optimization improved
the throughput distribution and packet success rate (PSR).

Other researchers developed techniques based on the deep learning approach and
the frame-based game theory. The proposal by [26] aimed to mitigate the harmful effect of
obsolete CQI on communication degradation, particularly in high-speed mobility condi-
tions. This paper’s authors suggested a technique for predicting CQIs using a deep learning
method built on the Long Short-Term Memory (LSTM) algorithm. The LSTM approach
surpassed the feed-forward neural networks (FNN) method to enhance the system’s down-
link transmission performance. Ref. [27] presented downlink scheduling in LTE using deep
reinforcement learning (RL), LSTMs, and pointers. The paper used a deep RL method to
train the network using the CQI and the buffer capacity of each user equipment (UE) as
observations. They maximized the system throughput and fairness but did not target any
related delay parameters. Frame-based game theory (FGT) is a fairness-based approach
for allocating resources that may be deployed at an upper level in the LTE downlink MAC
layer; this technique was proposed by [10]. FGT’s primary objective is to enable classes
with diverse QoS requirements to get a fair share of the existing channel resources to
broadcast their flows. The findings demonstrated superior QoS indices for FGT on RT
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and nRT services in terms of throughput, PLR, and cell spectrum efficiency. In addition,
the Shapley formula was utilized to allocate the available data between the RT and nRT
traffic categories.

Other researchers suggested techniques that targeted video traffic. In [28], the authors
studied the impact of giving video traffic a primacy on QoS. They proposed a QoS-aware
downlink scheduler in a single-cell LTE network to overcome this issue. In addition,
they applied a utility-based scheduling technique in the proposed packet scheduler to
investigate the impact of adopting Wyner–Ziv coding on prioritizing video traffic over
other forms of traffic. When using Wyner–Ziv coding, numerical studies showed that video
traffic priority did not affect the system’s performance compared to other current methods.

Ref. [29] presented an upgraded EXP rule (eEXPRULE) scheduler to optimize radio
resource consumption in the LTE networks. Extensive simulations acknowledged that the
suggested scheduler significantly improved the video application performance without
affecting VoIP performance. For example, the eEXPRULE scheduler boosted video through-
put by 50%, spectrum efficiency by 13%, and fairness by 11%, respectively, and decreased
video PLR by 11%. In ref. [30], the impact of downlink scheduling for multi-user scalable
video streaming over OFDMA channels was investigated. They presented a scheduling
method based on fuzzy logic that prioritizes transmission to various users depending
on video content and channel circumstances. The suggested method ensured more fair
resource allocation over the full sector coverage, enhancing video quality at the cell’s edges
while minimizing degradation for users closest to the base station.

There are also other approaches proposed for the allocation of resources in the cellular
network. For instance, [31] carried out remote radio head scheduling (RRH) in LTE-
Advanced networks. They offered a scheduler for RRH that was based on soft computing.
The fairness index, throughput, spectral efficiency, and rank indicator distribution were
used to assess the suggested technique’s results. The suggested approach tried to enhance
the scheduling performance. Experiments show that the suggested model is superior to
state-of-the-art techniques. Ref. [32] studied the modified proportional fair scheduling
algorithm for heterogeneous LTE-A networks. The findings showed that the proposed
Quadratic Proportional Fair (QPF) algorithm outperforms the original PF in spectral ef-
ficiency, energy per bit, and fairness by 8.4%, 14%, and 9.3%, respectively. The Vienna
simulator was used to evaluate the suggested algorithms’ performance. An algorithm
for dynamic scheduling delay-sensitive vehicle safety applications in cellular networks
was presented for a delay-aware control technique for maximizing system throughput
using a cross-layer method. Ref. [33] proposed an algorithm for allocating proportional
fair buffers in the 5G-enhanced mobile broadband. The buffer status was merged with
the PF measure in the paper to provide a novel scheduling technique for enhanced mobile
broadband (eMBB) support that is both efficient and scalable. The suggested scheduling
strategy’s success was shown by a detailed experimental study that evaluated several
QoS key performance indicators (QoS KPIs) such as throughput, fairness, and buffer state.
Ref. [34] presented a resource allocation method for wireless communication systems
considering channel transmission quality and data latency. Considering current devel-
opments in 5G communication networks, the authors used f-OFDM (filtered-orthogonal
frequency division multiplexing) technology in their simulation scenarios. They compared
the resource allocation algorithm performance using QoS characteristics, such as average
latency, throughput, processing time, loss rate, and fairness index. Ref. [35] developed an
LTE downlink channel aware optimized proportional fair scheduler, known as Channel
Aware Optimized Proportional Fair (CAOPF), based on CQI. The introduced scheduler’s
performance was compared to existing schedulers such as Round Robin (RR) and PF. It
achieved good performance results, except the authors did not consider the ultra-dense
networks in their environment. Ref. [36] demonstrated channel-aware integrated time and
frequency-based downlink LTE scheduling (ITFDS) in mobile ad-hoc networks (MANET)
for both real-time and non-real-time applications. The authors made a comparison between
their novel approach and the LWDF and PF algorithms. In terms of aggregate throughput,
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their approach did not outperform the other algorithms. They distributed resources to
users in the frequency domain using the most significant LWDF scheduling technique.
Ref. [37] developed an enhanced best-CQI scheduling technique to increase the network’s
throughput. To test the proposed algorithm’s throughput performance, they compared it to
three user scheduling algorithms. The experiment used a line-of-sight (LOS) connection
with a carrier frequency of 2.6 GHz to simulate vehicular LTE (LTE-V). In [38] the authors
used an enhanced fair earliest due date first scheduling method for multimedia content in
the LTE downlink architecture. A unique scheduler is introduced that enables LTE cellular
networks to fulfill a QoS by ensuring a certain delay threshold for delay-sensitive services.
Considering many criteria, the suggested scheduling technique allocated the existing RBs
to the existing UEs. The suggested scheduler operating mechanism considers the expiry
date of every packet, the channel condition, the average throughput attained by every UE,
and the PLR for each UE. The results obtained were evaluated to determine the perfor-
mance of the recommended scheduling method. Ref. [12] reported that a queue-optimized
scheduler can handle real-time (RT) and non-real-time (NRT) services in the LTE downlink
architecture. The suggested scheduler’s first level is based on an improved queue length
threshold that is dynamically updated to keep throughput around its average value. The
scheduling technique prioritizes users according to their service needs to increase QoS
provision. Ref. [39] developed a latency-rate downlink packet scheduler for LTE networks
(LR-DPS) for downlink traffic resource rescheduling to meet the input traffic’s maximum
delay requirements. The authors established three hierarchical phases for the proposal, and
a token bucket restricted the traffic. Determining the time distribution and source rates
were part of the next stage to adhere to the constraints. The third step included allocat-
ing data to RBs stably to make sure of fairness. The outcomes of simulations involving
various types of traffic show that the LR-DPS satisfied the criteria, whereas other eminent
schedulers surpassed the specified maximum delay by up to 90%. Ref. [40] proposed an
enhanced downlink packet scheduling algorithm for delay-sensitive devices in human-
to-human (H2H) and machine-to-machine (M2M) communications over LTE-Advanced
networks. This work recommended an energy-efficient, QoS-aware scheduler with reduced
scheduling complexity eNodeB for transmission of delay-sensitive data. At the eNodeB,
they have devised an enhanced greedy algorithm to distribute resources to UEs to transfer
real-time data. The results proved that the suggested scheduling approach significantly
enhances cell edge user coverage. They compared this greedy scheduler’s performance to
the other two well-known schedulers, the LOG rule, and the EXP rule. Ref. [41] conducted
an enhanced joint scheduling (eJS) strategy with improved performance for GBR and
non-GBR services in the 5G RAN. eJS attempts to guarantee that accommodated data radio
carriers meet minimal data rate standards. As a result, the eJS scheme beat the reference
schemes regarding throughput and fairness while meeting a more significant number of
GBR DRBs. “Max rate delay urgency first” (MRDUF) was developed as a “hybrid network
user satisfaction-based downlink scheduling strategy” by [42]. The MRDUF technique con-
currently addresses rate and delay requirements and employs a hybrid strategy consisting
of time- and frequency-domain schedulers using two scheduling algorithms, namely “first
come, first served (FCFS)” and MT, for the LTE-A downlink environment. According to
simulation findings, their suggested method outperforms MT, PF, blind equal throughput
(BET), and earliest deadline first (EDF) scheduling strategies.

3. Methods

This paper proposes a channel/QoS aware downlink scheduling algorithm to handle
both nRT and RT traffic simultaneously. We suggest novel policies for each traffic and add
them together. In the following sections, we first refer to our system model, introduce the
weighted add policy for mix RT and nRT traffic, explain each traffic policy, and describe our
novel channel/QoS aware scheduler. In addition, we define the performance evaluation
method in the last section.
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3.1. System Model

This article addresses a wireless cellular network that comprises a single 5G small
cell or evolved Node B (eNB) and K mobile users (MUs) within a 5, 10, and 15-m radius.
Each user comprises two data feeds, RT and nRT. It is supposed that the system employs
OFDM to split a frequency selective broad channel into several smoothed narrow-band
sub-channels. The eNB handles the communication procedures between the eNB and the
MUs (downlink) and between the MUs and the eNB (uplink).

It correctly checks the instant channel condition of MUs on each RB. An RB is a
frequency-time domain assignment of radio resources in an OFDM-based system. For
example, in 4G systems, RB comprises 12 subcarriers (SC) spread out 15 kHz apart (resulting
in an overall bandwidth of 180 kHz) and has a period of 7 OFDM symbols (the entire period
of 1 ms). The eNB collects MU data requests across the uplink streams, determines the kind,
quantity, and other essential details about the required data, and then buffers the requests
as packets delivered to the MUs. The packet scheduling unit in the eNB determines which
RBs will be assigned to the i-th user, 1 ≤ i ≤ K. For highly dense networks, the number
of cell users is assumed to be greater than the number of subcarriers. For instance, in a
cellular network with 100 subcarriers, the cell may have 120 MUs.

From the BS to every MU, a wireless channel is considered autonomous and identically
spread with Rayleigh fading. The Rayleigh fading distribution is a widely employed
technique for describing a multipath fading wireless channel in an urban environment with
unpredictable user mobility [13].

During LTE downlink transmission, the resource scheduling algorithm at the eNB
or 5G small cell allocates available RBs to the MUs that need allocation. For simplicity,
we undertook a set of MUs in a single eNB, where MUs = {1, 2, . . . , K} and subcarriers
(SCs) = {1, 2, . . . , N}. In our suggested model for RT policy, we adjusted the LWDF scheme
to reduce the delay component (RT component) and maximize the throughput component
(nRT component) using the GWO.

3.2. Joint Weighted Policy

To meet the demand of next-generation users to use mixed RT and nRT traffic si-
multaneously, we have applied a joint weighted policy developed by [19]. Therefore, two
weighting elements, one for RT traffic and another for nRT traffic, were considered (ALWDF
(delay-related policy or RT policy) and FTOS (throughput maximization policy or nRT
policy)), as seen in Figure 1.

Apart from the need to handle both types of traffic concurrently, applying rules in
isolation (as seen in Figure 2) or using one policy only to manage the two types of traffic
has the following downsides:

1. By focusing only on ensuring the latency QoS, the policy of RT traffic erodes the goal
of throughput maximization.

2. Rather than focusing on increasing system throughput moderately, the nRT traf-
fic strategy will disregard the delay limitation on RT packets, which increases the
likelihood that RT packets will surpass their delay threshold.

3.3. Delay-Related (RT) Policy

In this section, for the delay-related scheduler policy, we manipulate the well-known
scheduler LWDF. The new version is called adjusted LWDF (ALWDF).
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The LWDF policies are used often in real-time operating systems and wired net-
works [14]. It is used to keep deadlines from expiring. The LWDF metric is calculated using
the system parameter δi in Equation (1), which shows the probability of a packet being lost
because of a deadline expiration.

mLWDF
i,k = − log δi

τi
× DHOL,i (1)

Here, DHOL,i denotes the HOL packet delay, the time interval between the packet’s
arrival and successful transmission, while the delay threshold τi for user i is determined
by user applications (online gaming, in this case) [15].

We adjusted the formula of mLWDF
i,k scheme to be:

mALWDF
i,k = − ln δi

τi
× DHOL,i (2)

We minimized the probability of a packet being lost because of a deadline expiration
and the packet delay. For example, the value in the old version of LWDF is (0.06 × DHOL,i),
but it will be (0.006 × DHOL,i), in our proposed method.

The probability of packet loss has increased by substituting the ln function for log.
which reduces the chances of a packet being lost.

3.4. Throughput Maximization (nRT) Policy

For nRT in the proposed policy, we proposed a new channel aware scheme called FTOS.
We applied the GWO to fairly maximize the throughput for users in the small cell. GWO is a
meta-heuristic algorithm which applies the stochastic optimization method for the solution
searching process. We choose this method because meta-heuristics may be used in a variety
of contexts without affecting the algorithm’s structure. They are easily relevant to various
topics because of their predominance of closed-box thinking. For example, a designer
must be able to describe his or her challenge in terms of a meta-heuristic. In addition,
deterministic optimization or search approaches are inefficient in solving nonlinear problem
(NP)-hard problems. Stochastic optimization methods can rapidly discover near-optimal
solutions to NP-complex problems in an acceptances time.

Mirjalili et al. developed the GWO algorithm in 2014 [43]. They designed it to mimic
gray wolves’ natural hierarchy and social interaction. In a pack of wolves, there are many
distinct categories of members, depending on the amount of dominance, containing α, β, δ,
andω. The leading wolf is α; dominance and leadership authority decline from α toω.

GWO approach categorizes the population of possible solutions to an optimization
problem among four categories, illustrates this procedure for a group of six solutions. As
shown in Figure 3, the top three optimal solutions are α, β, and δ. The remaining solutions
are classified as ω wolves. The algorithm must update the hierarchy before altering the
solutions in each iteration [44]. The populations are sorted starting from the smallest to the
most significant based on their best fitness value. In a realistic optimization problem, it is
difficult to determine the position of the prey (the ideal solution) beforehand. However,
it is simple to come up with a solution by approximating the location of the best solution
based on the high-performing members of the existing population.
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The alpha (α), beta (β), and delta (δ) members estimate the optimum solution’s
location in the GWO method, while the other individuals change their positions by gaining
knowledge from alpha, beta, and delta, respectively [45].

GWO applies to various issues because of their predominant assumption of problems
as closed boxes [44], i.e., the GWO considers the input(s) and output(s) of a system, has a
few parameters and does not need derivation information during the first search. Thus,
we designed its cost function as a single objective function to maximize the instantaneous
data rate for users in the small cell with one input variable (Fading exponent (γ)), with the
lower pound (lp = 1) and upper pound (up = 3) (range of values for urban microcells) as
explained in Table 2. In addition, we changed the GWO’s primary controlling parameter
(a) to make it suitable for our problem, as given in Equation (3).

→
A = 2

→
a ·→r 1 −

→
a (3)

where components of
→
a are dropped linearly from 2 to 0 over iterations and

→
r 1 are random

vectors in the range [0, 1]. We may tune the parameter a to produce a variety of exploratory
and exploitative search patterns.

Table 2. GWO’s primary controlling parameters.

GWO Control Parameters Its Value in the Proposed Scheme Description

a 1
This value ranges from 0 to 2, allowing GWO to
transition between exploration and
exploitation smoothly.

→
r 1 0–1 Random vectors in the range [0, 1]

nVa 1 Number of variables

lb 1
It is a vector to define the lower bound for input
variables, one variable in this case (fading
exponent γ).

ub 3
It is a vector to define the upper bound for input
variables, one variable in this case (fading
exponent γ).

Maxiter 1000 Maximum iterations number for the optimizer.

Wolves No 100 Number of wolves

By altering the values of A vector about the present location, it is possible to reach
various areas around the best search agent (wolf).

In the proposed throughput maximization scheduling policy, we supposed all users
are scattered into three groups at near distances from the small cell, so they do not have too
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much different Channel State Information (CSI). We randomly generated the fading channel
statues exponentially at each Transmission Time Interval (TTI) so the optimization agents
of search (wolves in this case) search in one dimension search space for the maximum value
of instantaneous data rate for every user. For maximizing the instantaneous data rate, we
carry out the optimization problem as:

max
K

∑
i=1

ri
k(t) (4)

ri
k(t) = B log

[
1 + CSIi

k(t)
]

(5)

ri
k(t) = B log

[
1 + (di

k
γ(t) ∗ p(g))

]
(6)

Subject to:
K

∑
i=1

ri
k = r (7)

where B is the subcarrier bandwidth, ri
k(t) is the ith user’s instant data rate, di

k is the ith
user’s distance, γ is the fading exponent, and p(g) is the fading channel status, and r is the
total data rate of the system.

We proposed a novel channel aware scheme called FTOS for the throughput maxi-
mization policy. This new scheduler maximizes the user’s throughput using the GWO
algorithm to achieve high throughput with a high level of fairness. We can integrate this
algorithm with any QoS-aware scheduler. We express its scheduling matric as:

mFTOS
i,k = max

K

∑
i=1

ri
k(t) (8)

3.5. The Proposed Scheduling Algorithms

The following equation expresses the scheduling metric for our proposed multi-QoS
downlink scheduler, called AFTOS:

mAFTOS
i,k = w1 ×mALWDF

i,k + w2 ×mFTOS
i,k (9)

The weights w1 and w2 are used for trading off between the strictness of a QoS
violation and the maximum throughput that may be achieved. Indeed, the weight param-
eters represent the effect of single policies on the overall policy. For instance, a higher
w1 shows that the delay-related scheduling policy will significantly influence the joint
policy. Similarly, a giant w2 shows that the throughput maximization policy has a more
significant influence on the joint policy. After several simulations, we found that the best
trade-off for scaling weights is (w1 = 0.4 and w2 = 0.6), where w1 + w2 = 1. To guarantee
the goals mentioned earlier were met, we verified our new AFTO scheduler in a single cell
scenario with varying user loads and network configurations using MATLAB. Figure 4
illustrates the proposed logic flow chart. The AFTOS algorithms’ pseudocode in Algorithm
1 describes the algorithm’s most critical parts (the cost function for FTOS optimization
problem, problem, GWO-related parameters, and AFTOS parameters).

3.6. Performance Evaluation Methods

We conducted the simulations using MATLAB (2021b, The MathWorks, Inc., Natick,
MA, USA) software with optimization toolbox. Five performance measures are examined to
compare suggested systems to MT, PF, and modified LWDF (MLWDF) scheduling schemes:
system spectrum efficiency, average throughput attained per user, Jain’s fairness index for
each scheduler, average latency per user, and packet loss ratio per user. For more accuracy,
we administered the same optimization cost function applied to GWO in the proposed
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scheduler to the Particle Swarm Optimization (PSO) to compare GWO performance with
the well-known PSO [46].
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Algorithm 1 AFTOS pseudocode algorithm

The cost function related parameters
K ← The total number of users in the system;
N ← The total number of subcarriers in the system;
Bandwidth ← each subcarrier has 15 kHz band;
Fading exponen ← from (1)–(3);
Set the distance for near users;
Set the distance for middle users;
Set the distance for far users;

Populate the fading status for each user on each subcarrier;
For loop

Populate the channel status for the scheduling event;
End for

calculate r as in Equation (6);
calculate the condition as in Equation (7);

End the cost function

GWO algorithm
Problem related parameters
nVar ← number of variables
lb ← The lower bound of input variables
ub ← The upper bound of input variables
maxIter = 1000;
GWO related parameters
a = 1; ← This value ranges from 0-to 2
t = 1; ← iteration counter
→
r 1 ← random vectors in the range [0,1]

wolvesNo = 100;
while loop
GWO main algorithm
End while loop

AFTOS parameters
w1 = 0.4; ← weighted for delay related
w2 = 1 − w1; ← weighted for throughput related
delay threshold = 50; ← the delay threshold to drop a packet
δi = 10−3; ← The probability of a packet being lost
Select the Nk RBs of user k based on Equation (9)

We calculated the spectrum efficiency performance statistic by dividing the overall
average throughput attained by allocated users throughout the simulation’s scheduling
events by the overall number.

By calculating each user’s total throughput in all scheduling events divided by the
number of scheduling periods per second for different schemes, we measured the average
throughput attained per user.

We quantified fairness performance using Jain’s fairness index, denoted by the variable
Jindex in Equation (10) [18], to evaluate how each scheduler fairly distributed the resources
between users, where xi is the number of resources assigned to the user i. When users get
the same resources, we gain the largest value 1, confirming the system’s fairness.

Jindex =

(
∑K

i=1 xi

)2

K ∑K
i=1 x2

i
(10)

The average delay performance metric measures the delay times experienced by
served packets for every user, divided by the overall number of the served packet.

PLR is a performance indicator that measures the ratio of lost packets to total packets
to be delivered [13].



Electronics 2022, 11, 2895 15 of 23

To give readers a more clear idea about the algorithms we used for comparison, we
added more explanation about them in Table 3.

Table 3. List of compared algorithms.

The Scheduler Name and Description Its Decision Matrices

The Maximum Throughput (MT) method
increases overall throughput by allocating each
RB to the user with the best COI in the current
TTI. [14].

mMT
i,k = ri

k(t)
where ri

k(t) is the ith user’s instantaneous
data rate

The well-known (PF) system assigns an RB
based on users’ immediate channel states and
the average data rate across a sliding window.
By doing this, consumers’ long-term
throughput will be maximized, and fairness
will be established amongst users.

mPF
i,k = ri

k(t)/Ri(t− 1)
where ri

k(t) is the ith user’s instantaneous data
rate, and Ri(t− 1) is the user’s previous

throughput [15].

M-LWDF was created to facilitate real-time
data transfer from many real-time data users
within the system. This algorithm is
delay-sensitive and handles nRT traffic using
the PF policy.

mMLWDF
i,k = − log δi

τi
· DHOL,i × ri

k(t)/Ri(t− 1)
where the first part is the LWDF policy to deal

with RT traffic, and the other part is the PF
policy for nRT traffic [14].

For simplicity, Table 4 lists the symbols included in this article.

Table 4. Symbols included in this article.

Symbols Definitions

mLWDF
i,k Scheduling metric for LWDF

DHOL,i Delay in the head of line packet
δi The probability of a packet being lost
τi Delay threshold

mFTOS
i,k Scheduling metric for FTOS

ri
k(t) User instantaneous data rate
γ Fading exponent
d Distance from user to eNB

p(g) Fading channel status
mALWDF

i,k Scheduling metric for ALWDF
B Subcarrier bandwidth of the
k Number of users

CSIi
k(t) Channel State Information

Jindex Jain’s index
w1 Weight for RT policy
w2 Weight for nRT policy

xi
Quantity of resources assigned to user i

mAFTOS
i,k Scheduling metric for AFTOS
mMT

i,k Scheduling metric for MT
mPF

i,k Scheduling metric for PF
mMLWDF

i,k Scheduling metric for MLWDF

4. Simulation Results and Discussion

The simulations involve 1000 scheduling events and 15 MHz, so every subcarrier has
a 15-kHz bandwidth. Assume that the power spectral density of additive white Gaussian
noise (AWGN) equals one (normalized). The packet streams’ delay threshold is considered
being 50 ms. The window size for calculating the average data rate for users is 10 ms. Users
are dispersed throughout a 5, 10, and 15-m radius, suited for small urban cell environments.
We estimated the number of RBs to be eight (100 SC), while the number of users is 120.



Electronics 2022, 11, 2895 16 of 23

Table 5 summarizes the parameters used in the simulations and their default settings for
more clearance.

Table 5. Simulator environment.

Parameters Value

Total number of simulation events 1000
System overall bandwidth 15 MHz

Subcarrier bandwidth 15 KHz
Number of users 120

Users distributed from eNB 1–40, 41–80, 81–120
Distance for distributed users from eNB 5, 10, 15 m

Number of subcarriers 100
Number of RBs 8

Window size 10 ms
Packet delay threshold 50 ms

Average fading exponent ( γγγ ) 3
The probability of a packet being lost ( δδδiii ) 10−3

Figure 5 denotes the spectrum efficiency attained using MT, PF, MLWDF, PSO, and
the suggested algorithm (referred it as GWO in figures for simplicity and clearance) for
different scheduling schemes. As shown in Figure 5, the MT scheduler achieved the highest
spectrum efficiency because it allocates its resources to users with the best channel condition.
The proposed scheduler GWO and PSO have achieved similar results, outperforming the
PF and MLWDF. They have increased efficiency with an increase in the number of users,
unlike PF and MLWDF.
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Figure 5. Spectrum efficiency for each scheme.

In Figure 6, as we mentioned before, the users in the cell are scattered into three
different groups: the first group (1–40), which has the best channel state information
(CSI), the second group (41–80) has a good CSI, and the last group has the least CSI. For
comparison, we chose randomly one user from each group, users number 9, 66, and 91,
respectively, and compared them with different schedulers.
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distance users, and 81 to 120 are far-distance users.

The figure shows that the MT algorithm provides maximum throughput by selecting
the user with the best channel condition and transmitting it across this channel. As a result,
it achieves maximum throughput for the first set of users and outperforms the alternative
scheduling strategies. Additionally, the suggested algorithm GWO does not attain the peak
throughput for the first group of users, but it achieves high throughput contrasted with
PSO, PF, and MLWDF algorithms by 12.54%, 35.56%, and 50.90%, respectively. As shown
in Figure 6, MT allocated all throughput to users in group one and made the rest of the
users starve with zero throughput value. The figure shows that, in the second group, GWO
outperforms PSO, PF, and M-LWDF by 8.37%, 142.93%, and 143.67%, respectively. For the
last group, GWO exceeded PSO, PF, and MLWDF by 13.88%, 170.61%, and 171.48%, respec-
tively. As PF and MLWDF depend on the CQI, even the second group users experienced
very low throughput compared with the first user group. This reflects the other schedulers’
shortcoming, as mentioned in the Introduction section, and thus we compared users 10 and
50 from the first and second groups. The user in the first group outperformed the second
one by 155.33% and 149.35% for PF and MLWDF, respectively.

From Figure 6, we note the values achieved by GWO and PSO for each user fluctuate
because of the meta-heuristic algorithm’s nature. Sometimes it reaches the near-global
maximum value, and sometimes is limited to a local one when an individual comparison
between users is conducted. However, when taking the total average of the throughput as
in the earlier figure for spectrum efficiency, we find the total is similar for GWO and PSO.

Figure 7 shows how much each scheduler has distributed throughput fairly between
users in the cell. As illustrated, MT is the worst because of starving 60% of the cell users.
GWO and PSO perform almost equally, as shown in the figure, but GWO outperforms PF
and MLWDF by 60.33% and 57.415%, respectively, in the dense system (120 users).

The average packet delay grows significantly as the number of users increases. MT,
PF, and MLWDF are depicted in Figure 8. GWO and PSO keep the delay low for users in
the cell. As stated in Table 2, the goal service latency is 50 ms. Thus, Figure 8 demonstrates
that the suggested scheduling techniques meet the QoS criteria.
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Figure 9 illustrates the ratio of the lost packets to the total number of packets for each
user. MT achieved the best performance in the first group of users with zero packets lost.
MLWDF and PF slightly exceeded GWO and PSO. However, in the second and last groups,
GWO and PSO had an excellent performance when compared with MT, PF, and MLWDF.
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Experiments have shown that the proposed scheduler AFTOS has achieved excellent
spectrum efficiency, average throughput, and fairness. In addition, it offers a minimal
packet latency and an acceptable packet loss ratio.

Figure 10 shows the convergence curves of GWO and PSO in different runs to reflect
how many iterations each algorithm needs to reach a solution. From the curves, we can also
know the value of the best solution in each algorithm. We note from Figure 10a,b that GWO
reaches the best solution before PSO, and its success reaches a sub-optimal value better than
PSO. We also note from Figure 10c,d that the GWO reaches the best solution before PSO,
and its success reaches a sub-optimal value better than PSO. In contrast to Figure 10a,b, we
find that PSO outperforms GWO while reaching a better solution. However, GWO is still
faster than PSO and reaches the best solution in fewer iterations. From Figure 10e,f, we
can also see that GWO has outperformed PSO in reaching a better solution. Nevertheless,
PSO reaches the best solution in fewer iterations than GWO. More details and comparisons
between GWO and other metaheuristic algorithms can be found on [20,47–49].

From the results, we conclude that both GWO and PSO effectively achieve the desired
results in this problem, and they are very similar in how each of them works, so we can use
either to achieve the results mentioned. However, we cannot be 100% certain that any other
optimization will lead to the same results because the no-free-lunch (NFL) theorem [50]
states that no one optimization is suitable for solving any problem.
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5. Conclusions

Scheduling algorithms have a significant role in influencing the system efficiency and
user QoS satisfaction of telecommunication networks. Thus, many studies need building
systems that can fit the criteria of networks for the next generation. This study suggested
three new strategies: FTOS, ALWDF, and AFTOS. FTOS is a channel-aware scheduler
with superior performance compared to the well-known PF. It can also integrate with
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any other QoS scheme. ALWDF is a QoS aware scheduler to minimize the HOL packet
delay and the probability of the packet to be lost. By jointly adding FTOS and ALWDF, we
developed our next-generation scheduler AFTOS. The aim is to achieve multiple required
goals for next-generation wireless communications. The focus of this research is to increase
all users’ cell throughputs effectively to show the system efficiency. We minimized the
packet delay with an acceptable lost packet ratio, also required for QoS criteria. We
developed this design for a 4G small cell that proposes a solution for extending the network
environment. The proposed expression and application of optimization algorithms can be
used for any orthogonal multiple access (OMA) technology, such as orthogonal frequency
division multiple access (OFDMA), and can be easily extended to non-orthogonal multiple
access (NOMA) technologies. For future endeavors, the optimization procedure could be
expanded to consider other factors, such as power consumption and assigning resources
to satisfy the user’s actual needs. Another potential enhancement would be to adapt the
suggested method to LTE-Advanced or other 5G standards.
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