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Angeliki Kritikakou

Received: 30 August 2022

Accepted: 14 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Low-Power Energy-Based Spike Detector ASIC for Implantable
Multichannel BMIs
Gerardo Saggese * and Antonio Giuseppe Maria Strollo

Department of Electrical Engineering and Information Technology, University of Naples Federico II,
80125 Naples, Italy
* Correspondence: gerardo.saggese@unina.it

Abstract: Advances in microtechnology have enabled an exponential increase in the number of
neurons that can be simultaneously recorded. To meet high-channel count and implantability
demands, emerging applications require new methods for local real-time processing to reduce the
data to transmit. Nonlinear energy operators are widely used to distinguish neural spikes from
background noise featuring a good tradeoff between hardware resources and accuracy. However,
they require an additional smoothing filter, which affects both area occupation and power dissipation.
In this paper, we investigate a spike detector, based on a series of two nonlinear energy operators,
and a simple and adaptive threshold, based on a three-point median operator. We show that our
proposal provides good accuracy compared to other energy-based detectors on a synthetic dataset
at different noise levels. Based on the proposed technique, a 1024-channel neural signal processor
was designed in a 28 nm TSMC CMOS process by using latch-based static random-access memory
(SRAM), demonstrating a total power consumption of 1.4 µW/ch and a silicon area occupation
of 230 µm2/ch. These features, together with a comparison with the state of the art, demonstrate
that our proposal constitutes an alternative for the development of next-generation multichannel
neural interfaces.

Keywords: BMI; action potentials; noise estimate; memory; VLSI; low power

1. Introduction

Brain-machine interfaces (BMIs) are nowadays considered one of the most effective
tools to study brain activity, using the recording and the analysis of action potentials,
described as a boost of instantaneous energy, or, briefly, spikes [1]. Breakthroughs in
recording technology have increased the number of recorded neurons and provided better
signal quality. Development of BMI-based devices, however, face several challenges: the
integration of the entire system in a small-physical size chip, the high-speed functionality
to support the real-time streaming of neural activities, the limited bandwidth offered by
the wireless channel, the need to transmit a huge amount of data, and the limited power
offered by battery or harvesting system [2]. On-implant signal processing becomes essential
to reduce the bandwidth to make it possible for wireless transmission, and, for that, spike
detection algorithms have received intensive attention from the field of neurophysiology,
due to their capabilities of reducing the massive amount of data recorded by neural devices.
In such a way, by sending only useful information, the communication bandwidth can be
reduced from tens of MB/s to a few kB/s [3]. Then, an off-chip post-processing elaboration
is exploited to verify and sort the extracted spikes without any power and performance
constraints [4].

A standard workflow of spike detection includes a filtering stage to reduce out-of-
band noise, a spike enhancement block, followed by thresholding for spike identification
and extraction. The threshold can be either constant or adaptive, to ensure an acceptable
compromise between false positives (noise wrongly detected as a spike) and false neg-
atives (a spike being discarded) [5]. The filtering stage typically involves a low pass or
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band pass filter to remove the residual noise after the analog-to-digital converter (ADC).
Several methods and operators have been proposed to increase the signal-to-noise ratio
(SNR), by enhancing the spikes with respect to the background noise. For instance, simple
detection methods like amplitude thresholding can offset the detection of neurons with
high amplitude spikes. This technique is attractive for real-time and low-power application
given the little or no processing; however, its accuracy is greatly reduced when the data
has a low SNR [6]. Other methods involve template matching and are particularly effective
when the waveform of the spike is known beforehand, but in a real scenario, where the
spike shapes are uncertain, their accuracy drastically drops [7,8]. More robust detection
methods are based on Discrete Wavelet Transform and its variants and are particularly
useful when the processing aims at both spike detection and sorting. Given their com-
plexity, transform-based approaches are prohibitive for a limited resources detector and
relegated to off-chip solutions [9]. A popular class of data compression techniques is
based on non-linear operators, like Non-linear Energy Operator (NEO), Amplitude Slope
Operator (ASO) and their variants, which are meant to be sensitive to the energy signal
variations. By describing a spike as a short-lived burst with high amplitude and frequency,
these operators increase the differentiation between spikes and noise, enhancing the SNR.
This characteristic, together with a great trade-off between computational cost and accu-
racy, makes them more amenable for real-time data reduction goals [10,11]. Additionally,
extracellularly recorded signals are inevitably corrupted by noise from several sources: the
recording hardware, electromagnetic interference, the superimposed activity of multiple
neurons and the spatially averaged activity of distant neurons. Importantly, the activity
of distant neurons appears as noise which is highly correlated with the signal of interest
(Local Field Potentials), described as a low-frequency oscillation. Further, the shape and
amplitude of the signals of interest are highly variable. Thus, the design of the threshold
constitutes another challenging task. It should adapt to different noise scenarios and to
different spike firing rates over time [3]. A common approach is to evaluate the background
noise by means of statistics like mean, root-mean square, median or more robust adap-
tive methods. Then, the threshold level is adjusted by a multiplicative constant which is
determined through empirical tests [12].

In this paper, we extend our previous work [1], where we designed a hybrid version
of Absolute Differential Operator (ADO) and Amplitude Slope Operator (ASO), together
with a simple and fully adaptive threshold. A comparison with previous smoothed energy
methods at different noise levels is provided to demonstrate its accuracy and suitability as
a spike detector. The algorithms were initially developed in MATLAB using floating-point
arithmetic with a synthetic dataset, then translated to fixed-point representation. Finally,
by exploiting a latch-based SRAM, an ultra-low power very large-scale integration (VLSI)
architecture is also presented to exhibit its hardware efficiency and electrical requirements,
together with a comparison with the state of the art.

The remainder of this paper is organized as follows: Section 2 describes the metrics, the
datasets, and the description and hardware implementation of the spike detector. Section 3
describes the software and hardware results, whereas Section 4 is devoted to the discussion
and the comparison with the state of the art. Finally, in Section 5 we draw our conclusions.

2. Materials and Methods

The algorithm for adaptive spike detection was developed in two major phases. In
the first one the algorithm was conceived, tested, and optimized, using MATLAB with
floating point arithmetic, and compared to other energy-based detectors. In the second one,
the algorithm was translated to a fixed-point representation and migrated to ASIC target,
using hardware programming language.

A common approach to evaluate spike detection algorithms involves using a synthetic
dataset for which the ground truth is known beforehand. We used a golden synthetic
dataset provided by Quiroga et al. [13] to quantitatively evaluate our proposed algorithm
and to make a fair comparison with previously published algorithms.
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2.1. Detection Metrics

The metrics used to evaluate the spike detection performance were the true positive
ratio (TPR), false alarm rate (FAR) and accuracy (ACC), which are defined, respectively, in
Equations (1)–(3).

TPR =
TP

TP + FN
(1)

FAR =
FP

TP + FP
(2)

ACC =
TP

NS + FP
(3)

where TP indicates a true positive spike (a spike detected within its duration window),
whereas false positive (FP) corresponds to a wrong detection (i.e., a spike that is signaled
by the algorithm, while no spike was present). FN, instead, reflects the number of missed
spikes while NS is the total number of spikes distributed over time.

High TPR means high sensitivity: most of the spikes are detected, while low FAR
means high specificity: only a few of the detected spikes are incorrect. The accuracy
provides an overall measure that represents the trade-off between TPR and FAR. For
applications that further process the data after spike detection, e.g., spike sorting, high
sensitivity is desirable (at the expense, possibly, of FAR) because any incorrectly detected
spikes can be removed after subsequent classification.

2.2. Dataset

The simulated data for the evaluation and quantitative comparison were extracted
from a well-known spike sorting tool Wave_clus provided by Quian Quiroga et al. in [13].

The dataset had 4 groups of synthetic recordings (Easy1, Easy2, Difficult1, Difficult2)
submerged in background noise obtained by superimposing random spikes templates
at random times and amplitudes to mimic the activity of distant neurons. The noise
level ranged between 0.05 and 0.2 in relation to the normalized amplitude of the spikes.
Each recording had a duration of 60 s and a sampling frequency of 24 kHz. Spikes were
distributed with a mean firing rate of 20 Hz, whose arrivals followed a Poisson distribution.
A part of 1 s of the easy1 group, with a noise level of 0.1, is shown in Figure 1, together with
the arrival spike times. Please note that these datasets included different active neurons
that explain the overlap in arrival spike times.
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Figure 1. 1 s snapshot of synthetic data of easy1 group with the noise level of 0.1 with arrivals spike
stamp highlighted with red circle mark.
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2.3. Algorithm Design

Our proposal pipeline and data flow can be summarized in four steps, as depicted
in Figure 2: (i) Filtering, (ii) differentiation block, (iii) threshold estimate and (iv) the
timestamps of putative spikes.
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Figure 2. Workflow and dataflow of proposed spike detector.

Although in BMI systems the recording front-end has an analogue high pass or
bandpass filter to remove broadband and LFP (i.e., Local Field Potential, low-frequency
noise coming from neurons far from the recording site), the noise could still leak into the
AP band of interest. Thus, an additional digital filter is required and for this purpose we
used a 2nd IIR bandpass Butterworth filter with a bandwidth between 0.3 Hz–3 kHz to
remove the residual background noise [3].

2.3.1. Differentiation Block: Nonlinear Energy Operators

As mentioned earlier, nonlinear energy operators are widely used in spike detector
algorithms as they are sensitive to the high amplitude and fast variation of the signal.
Furthermore, given their trade-off between computational cost and detection performance,
they are considered very suitable for real-time and low-power applications, such as BMI.
The most popular energy operator is the Non-linear Energy Operator (NEO). By denoting
as x(n) the filtered neural signal, the output of NEO is described by Equation (4), where a
resolution or tuning parameter kN is used to adjust the operator sensitiveness to a range of
frequencies [6].

NEO(n) = x(n)2 − x(n− kN)x(n + kN) (4)

Another energy operator that relays on the sharp and fast transients characterizing
the spikes is the Absolute Differential Operator (ADO). Equation (5) describes its behavior,
where a tuning parameter kS is introduced. The absolute value is used to fix the polarity of
the operator, which can change depending on the position of the spike occurrence (peak or
trough of the spike) as addressed in [14].

ADO(n) = |x(n)− x(n− kS)| (5)

By considering that a spike is described as a short-lived burst of energy characterized
by high-frequency content, Zhang et al. [11] designed and proposed a novel operator called
Amplitude Slope Operator (ASO) while a parametrized variant was proposed in [12]. The
tuned ASO is formulated in Equation (6).

ASO(n) = x(n)[x(n)− x(n− kA)] (6)

This operator amplifies the signal in the intervals showing a large amplitude and slope.
When comparing the expression of Equations (4)–(6), the NEO would require two

multiplication and one subtraction, ADO would exploit one subtraction and absolute
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operator, while ASO one multiplication and one subtraction. Additionally, the use of NEO
calls for 2kN memory registers against kS/kA registers for ADO/ASO.

Despite the operator used, a current practice is to smooth the energized signal with a
Hamming or Bartlett window to enhance the SNR, providing benefit to spike detection.
It has been demonstrated that the optimum window length can be related to the tuning
parameter and was found to be 4k + 1 [10] (where k is one of kN, kS or kA).

Unfortunately, as the channel count increases, this additional smoothing process
affects both area occupation and power consumption, with limited benefit to the detector
performance [10]. Inspired by that, and considering the power-limited application budget,
we decided to further investigate a spike enhancement technique proposed in our previous
work [1], which is composed of the cascade of two energy stages involving ADO and ASO.
Owing to the use of the cascade of two energy operators, which is different to previous
approaches [11,12,14], there is no need to use a smoothing window to improve detection
accuracy. This minimizes resource usage with benefits on power dissipation and area
occupation, as shown in the following sections. Figure 3 shows the effectiveness of the
proposed technique in enhancing the spikes with respect to the background noise.
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Figure 3. (a) The raw signal and (b) the enhanced signal after applying the proposed cascade of
energy operators. It can be observed how the spikes are enhanced with respect to background noise,
that is reduced. The red circle marks indicate the spikes position over the time.

Please note that tuning parameters kS and kA were evaluated experimentally by
maximizing the TPR values over all the datasets, and they were found to be, for the
proposed system, 4 and 2 for ADO and ASO, respectively.

2.3.2. Threshold

The threshold in any spike detector method is related to estimation of the background
noise level. The estimate should show both resilience to outliers represented by neural
spikes and adaptiveness to the noise variation. Although there are many robust estimates
in the literature, such as root mean square, or even more complex methods, like median
operator (MAD) [13], most of them are not suitable for an implantable and real-time appli-
cation and are constrained to be used off-chip, due to their complexity posing significant
problems in hardware implementation. Inspired by that, we propose a simple method that
can be summarized as follows:

The mean of the absolute value of three batches of M consecutive bandpass filtered signal
samples is cyclically evaluated.
A simple three-point moving median operator is used to estimate the noise level, to discard
the contribution of outliers,
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The estimated noise level is then multiplied by a constant factor C to adjust the
detector sensitivity.

The approach is formulated in Equation (7):

Th = Cσ; where : σ = median3

{
1
M

M−1

∑
i=0
|xi(n)|

}
(7)

Note that using statistics of the underlying signal might lead to very high threshold
values, especially in cases of high firing rates and large spike amplitude. Figure 4a shows
that our estimate remains close to the “real” noise level over different firing rates, resulting
in a robust noise estimate, while requiring fewer hardware resources, as is shown in
Section 3. Figure 4b shows the mean relative error in estimating the noise level over
different window lengths M. An accurate evaluation of noise level would require a high
number of samples (in the order of thousands); however, a window length in the order of
100 is enough to limit the relative error in the order of 10%. We used M = 64 as a reasonable
trade-off between accuracy and hardware complexity.
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2.4. Hardware Implementation

The algorithm described in Section 2.3 was described in VHDL language to be imple-
mented as VLSI architecture and adopted for a multichannel application. We assumed 10
bits width for the raw data coming from the analog-to-digital converter (ADC) [12]. The
block diagram in Figure 5 shows the proposed architecture. The 2nd IIR bandpass filter
was implemented according to direct form I, as depicted in Figure 5a, with coefficients
represented by 10 bits. The filter coefficients were properly scaled to prevent overflow.
Figure 5b shows the block that implements the energy operators, composed of memory
elements and a simple adder/multiplier. Figure 5c shows the detection block, consisting of
a multiplier to adjust the noise level and a comparator to extract the putative spikes. The
noise estimator hardware block is depicted in Figure 5d. The mean block was based on a
multiplier-accumulator (MAC) and a finite state machine to generate control signals. A
15-bits register was used for the accumulation while the division by M = 64 was obtained by
discarding the six less-significant bits of the accumulator. The three-point median operator
was obtained by using three comparators and a multiplexer driven by a simple selection
logic to compute the output value. The selection logic follows the truth table depicted in
Figure 5e.
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Figure 5. Hardware block scheme of the proposed spike detector. (a) IIR 2nd filter based on the direct
form I with 10-bit width coefficients. The numerator coefficients were scaled to prevent overflow.
The fixed-point filter maintains its stability. (b) Series of energy operator ADO and ASO while
(c) the detection block, together with the multiplication of the noise estimate with the scale factor C.
(d) Noise estimator based on absolute mean and three-point median operator whose outputs were
chosen according to (e) the truth table.

As a side note, the architecture was designed to process either a single channel or more
channels by sharing the same control logic units. For a multichannel solution we added
a time division multiplexer block that helped to serialize all the recording matrix which
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was assumed to be 32 × 32 as in [12]. Furthermore, we considered 24 kHz for the single
channel architecture, whereas a 10 kHz per channel was assumed for the multichannel
system, to perform a fair comparison with previous work. The down sample of the clock
frequency did not affect the detection results, with the only exception being that of the filter
coefficients, which was in agreement with what was suggested in [12].

3. Results

The following section presents both software and hardware results, divided respec-
tively into two subsections.

The software evaluation contains the comparison of our proposed detector with two
smoothed energy-based detectors addressed as Smoothed NEO (SNEO) and Smoothed
ASO (SASO) with kN and kA equal to 4. A Hamming window of length 17 was used to
smooth the output in both SNEO and SASO.

In the hardware subsection, we first compared the hardware requirement of our noise
estimate with the simple technique based on computing the mean of the absolute values
(MAD), to demonstrate the light resource footprint offered. Then, we compared single-
channel versions of smoothed energy operators with our work to address its suitability for
implantable BMIs. Finally, to put everything in perspective, we implemented two versions
of a 1024 channel detector. The first one, named proposedFF, implemented memory blocks
with flip-flops, whereas in the second one, proposedLL, we implemented memory elements
with latch-based SRAM [15] to reduce power and area consumptions as much as possible.
The investigation was performed by synthesizing the VHDL modules targeting a TSMC 28
nm complementary metal-oxide semiconductor (CMOS) technology.

The multiplicative factors C were experimentally chosen by taking into account accu-
racy and they were found to be 5, 7, and 17 for SNEO, SASO, and our proposal, respectively.

3.1. Software Evaluation

As mentioned before, sixteen synthetic tracks were used for performance testing,
divided into four groups, each containing four different noise levels. By considering the
same noise estimate for all the spike detectors, the accuracy curves over the four groups,
previously described, are shown in Figure 6, while the sensitivity (TPR) and FAR are
reported in Table 1.
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Table 1. Sensitivity and False Alarm Rate of studied spike detectors on a synthetic dataset.

Dataset Noise Level
SNEO SASO Proposed

TPR FPR TPR FPR TPR FPR

Easy1
0.05 0.98 0.13 1 0.06 0.98 0.01
0.1 1 0.13 0.98 0.06 0.98 0.01
0.15 0.95 0.14 0.92 0.07 0.97 0.01
0.2 0.86 0.16 0.85 0.09 0.91 0.01

Easy2
0.05 0.99 0.14 0.93 0.06 0.95 0.01
0.1 0.94 0.15 0.89 0.08 0.93 0.02
0.15 0.93 0.16 0.90 0.08 0.92 0.02
0.2 0.85 0.17 0.84 0.09 0.86 0.01

Difficult1
0.05 1 0.15 0.95 0.07 0.99 0.01
0.1 0.96 0.14 0.90 0.07 0.97 0.01
0.15 0.93 0.15 0.89 0.09 0.97 0.02
0.2 0.86 0.17 0.88 0.08 0.96 0.01

Difficult2
0.05 0.98 0.15 0.90 0.09 0.87 0.02
0.1 0.94 0.14 0.87 0.08 0.87 0.01
0.15 0.93 0.15 0.86 0.08 0.88 0.02
0.2 0.85 0.17 0.76 0.09 0.84 0.02

Averaged 0.93 0.15 0.89 0.08 0.93 0.01

It can be noticed that our proposal, on average, provided better accuracy values than
SNEO and SASO, while these remained close over different groups. Although our approach
offered an accuracy drop when using a more challenging dataset like Difficult2, it was still
acceptable if one considers the reduction of resources by not using an additional smoothing
process. An insight into the algorithms’ behavior can be noticed by looking at the TPR and
FAR results. Here, once again, for the first three groups (Easy1, Easy2, and Difficult1) all the
considered detectors offered a high level of sensitivity, on average more than 90%, with the
SNEO providing a higher number of false positives compared to the others approaches.
On the other hand, for the most challenging dataset, Difficult2, the SNEO still offered the
highest level of sensitivity, as well as the highest FAR values as shown in Figure 7. This is
challenging for a limited transmission bandwidth and multichannel solution. Nevertheless,
by considering the average results, our solution provided the same sensitivity value of
SNEO, while providing the lowest FAR level, also compared to the SASO approach. This
makes our algorithm a valid candidate and alternative to NEO and ASO-based methods,
when it comes to finding a good trade-off between detections and electrical performance,
as addressed in the following section.
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It is worth mentioning that a possible solution to increase the sensitivity of a spike
detector is to lower the scale factor, hence lowering the threshold level. By doing this, one
can enhance the TPR values but increase the FAR value too. This option must be carefully
pursued as it strictly depends on transmission bandwidth constraints.

3.2. Hardware Evaluation

As said before, a robust statistical method to extract a good estimate of the background
noise was based on the median operator that, because of its computational costs, was
limited to an offline approach. Although there are many sorting approaches to imple-
menting the median operator, we used the histogram method which was found to be less
computationally prohibitive than other methods [16]. This method works by constructing
a cumulative histogram of input data by keeping a count of occurrences of each possible
input value. The hardware block diagram is shown in Figure 8a. Each value of the input
data corresponded to a bin which was incremented when a new input value was received.
However, for a cumulative histogram, the increment was done on the corresponding bin
and all the subsequent bins. A ROM was used to enable the increment of the corresponding
bin. The bin structure is shown in Figure 8b. It consisted of a register to keep a count of
the input value occurrence, a multiplexer controlled by output ROM, and a comparator.
The median value was extracted as soon as a bin reached the median index, by means of
a priority encoder. In this case, given an even length (M = 64) we used two indices and
obtained the median as the result of the mean of two middle values. Given the 10 bits
input sample, whose absolute value allows a reduction of one bit, there were 512 bins to
keep the count of each input value. After M cycle clock, the median was extracted and still
represented with 9 bits. All the hardware implementations were synthetized in TSMC 28
nm CMOS technology by means of Cadence Genus, from which we obtained the occupied
area and power consumption. The power dissipation was evaluated by simulating the
synthetized circuit with path delays annotated in standard delay format (SDF) file, whereas
the switching activity was described by toggle count format (TCF). The area was also
obtained by means of post-physical synthesis analysis. The synthesis results of median and
our noise estimate are reported in Table 2.
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Table 2. Post-physical synthesis consumptions of noise approaches candidates: MAD and our
three-point median based method.

Consumptions Median Our Noise Estimate

Power (nW) 1513 30
Area (µm2) 19,628 362

As expected, the median operator constituted a complex and power-hungrier solution
compared to our noise estimate. In fact, it would require a silicon occupation and a power
consumption more than 50× larger than our approach. This demonstrated that the median
operator is limited to application comprising few channels and with more relaxed silicon
area/power constraints. Nowadays, where thousands of channels must be processed, this
method is hardly useful for real-time and low power applications. The previous proposed
spike detectors were also implemented as a single channel version together with our circuit.
The electrical performances (area and power) are listed in Table 3.

Table 3. Electrical consumptions of single channel spike detectors: SNEO, SASO and our work.

Consumptions SNEO SASO Our Work

Power (nW) 538 438 143
Area (µm2) 7868 7370 1618

One can observe the cascade of energy operators provided a silicon area and power
reduction of 5× and 3× compared to its counterparts, where the smoothing block was
observed to occupy more than 30% of the silicon area. Finally, to assess the amenability
of our proposal for implantable neural interface, we implemented and synthetized two
1024 channels versions of the architecture. The first one, named proposedFF, implemented
memory blocks with flip-flops, whereas in the second one, proposedLL, we implemented
memory elements with latch-based SRAM [15].

Area and power consumption of the two implementations are reported in Table 4. The
proposedFF dissipated in total 3.2 mW, of which more than 90% was due to dynamic power,
(mostly related to switching activity of the registers); the silicon area occupation was of
0.39 mm2, mainly occupied by the memory blocks. The second architecture, proposedLL,
provided a power reduction of 46% and an area saving of 60% compared to the previous
solution. As expected, the use of latch-based SRAM helped to reduce both the area and the
power consumptions (owing to the use of clock gating technique).

Table 4. Post-physical synthesis consumptions of 1024-channels version: a flip-flop-based memory
implementation (proposedFF) and a RAM latch-based proposal (proposedLL).

Consumptions proposedFF proposedLL

Power (mW) 3.2 1.49
Area (mm2) 0.39 0.24

4. Discussion

The previous section shows that our floating-point implementation showed interesting
detection performance, providing higher sensitivity and lower FAR, demonstrating also
good adaptivity and robustness over different noise levels and datasets. In addition,
we also studied the impact of the fixed-point representation, based on the hardware
implementation (complexity, power), and compared our results together with either a
popular offline spike detector, reported in [13], or a deep learning approach, based on one
dimensional convolutional neural networks (1D-CNNs), proposed in [17]. The offline sorter
relies on a simple thresholding, where the noise level is evaluated by applying the absolute
median operator over all the track duration. On the other hand, the convolutional model
contains four convolutional layers and two pooling layers, followed by a fully connected
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neural network and a softmax classifier. Figure 9 shows the average accuracy over the four
groups, for conciseness, of floating-point and fixed-point implementations, together with
the offline and convolutional models. The comparison between the two representations
revealed that the degradation in performance, due to the fixed-point implementation, was
relatively minor, within 1–3% reduction in accuracy. The offline sorter method provided a
mere 2% increase, on average, compared to our implementations, whereas the 1D-CNN
model offered the highest accuracy level, reaching more than 99%. As mentioned, a key
objective in the hardware implementation of a spike detection algorithm is to minimize its
power requirements. For an implantable application (e.g., BMI) the reason is twofold: firstly,
the energy budget is severely limited and secondly, any power consumed is ultimately
dissipated as heat that can lead to damage of neural tissue. On the other hand, it is also
desirable to reduce complexity to allow for high integration density. The proposedLL satisfies
these requirements, with a silicon occupation of 230 µm2 per channel, while dissipating 1.43
µW/ch (well within the tissue-safe requirements [18]). Although there are several examples
of hardware implementation of spike detectors in literature, there is always a challenge in
gathering a reasonable and exhaustive comparison, due to the diverse hardware approaches
(e.g., ASIC implementation, reconfigurable logic or embedded processor). together with
the difficulty of replicating them. Thus, for a qualitative comparison, we selected a few
representative works, the electrical performances of which are summarized in Table 5.
The spike detector proposed in [19] is based on an approximation of the conventional
non-linear energy operator, energy-of-derivative ED), which basically measures the square
of the signal derivative. They implemented an analogue spike detector, which shows high
sensitivity value over a wide change of firing rates. A more complex solution is, instead,
provided by Yang et al. in [20] based on a modified smoothed version of NEO, together with
a principal component analysis algorithm, to extract high quality information on the spikes
(positive and negative detected spike peaks). On the other hand, a much simpler algorithm
was designed by Zhang et al. [3]. They used the ADO as enhancement operator and an
adaptive threshold based on the estimate of the firing-rate of the spikes. In our previous
work [10], we designed a 1024 channel architecture, based on ASO and an IIR filter, for the
smoothing process, implemented with latch-based SRAM. The proposed LL architecture of
this paper occupies a mere 10% of the silicon area that would use our previous smoothed
ASO-based detector, while dissipating half the power. In conclusion, although our work
does not embed a sorter system, it provides a good compromise between detection and
hardware resources, which makes it a suitable candidate for real-time implementation.
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Table 5. Comparison with the state of the art.

Dwivedi et al. 1

[19]
Yang et al.

[20] 1
Zhang et al.

[3]
Saggese et al.

[10] 2 proposedLL 3

N. of channels 1 32 128 1024 1024
Domain Analog Digital FPGA Digital Digital

Technology 180 nm 130 nm - 28 nm 28 nm
Frequency (kHz) - 160 7 ≈1 × 104 ≈1 × 104

Core Voltage (V) 0.8 1.2 - 0.8 0.8
Power Density (µW/ch) 5.1 0.75 0.29 3.6 1.45
Area Density (mm2/ch) 0.018 0.023 - 0.0022 0.00024
Spike Detector Feature ED NEO ADO ASO ADO-ASO

1 post-layout results. 2 ASO based algorithm where latch-based SRAM is used only in enhancement block for ASO
and smoothing filter. Post-physical results. 3 By serializing all the 32 × 32 recording matrix, the main frequency
increases by a factor about of 1000.

5. Conclusions

In this paper we investigated a spike detector, based on a series of two nonlinear
energy operators, and a simple and adaptive threshold, based on a three-point median
operator. The proposed threshold technique demonstrated itself to be effective in evaluating
noise level, even in the presence of large spikes rate, while remaining simple and, hence,
amenable for hardware implementation. The analysis with the synthetic dataset revealed
that our proposed detector is accurate, while being simpler than previous implementations,
reaching more than 90% of sensitivity with a very low false alarm rate. The proposed
algorithm was implemented in a compact digital CMOS integrated circuit, in a multichannel
architecture able to process 1024 channels. The 1024-channel architecture, using latch-based
SRAM, was found to occupy a total silicon area of 0.24 mm2 with a dissipated power of
1.49 mW. The present design operates at a low supply voltage of 0.8 V and occupies a small
silicon area per channel. Overall, the proposed spike detector presents a high detection
performance, a moderate power consumption and is area-efficient and is, hence, well suited
for multichannel implantable neural data acquisition systems.
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