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Abstract: Air pollution has become a global issue due to its widespread impact on the environment,
economy, civilization and human health. Owing to this, a lot of research and studies have been done
to tackle this issue. However, most of the existing methodologies have several issues such as high cost,
low deployment, maintenance capabilities and uni-or bi-variate concentration of air pollutants. In this
paper, a hybrid CNN-LSTM model is presented to forecast multivariate air pollutant concentration
for the Internet of Things (IoT) enabled smart city design. The amalgamation of CNN-LSTM acts
as an encoder-decoder which improves the overall accuracy and precision. The performance of the
proposed CNN-LSTM is compared with conventional and hybrid machine learning (ML) models on
the basis of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Mean Square
Error (MSE). The proposed model outperforms various state-of-the-art ML models by generating an
average MAE, MAPE and MSE of 54.80%, 52.78% and 60.02%. Furthermore, the predicted results
are cross-validated with the actual concentration of air pollutants and the proposed model achieves
a high degree of prediction accuracy to real-time air pollutants concentration. Moreover, a cross-
grid cooperative scheme is proposed to tackle the IoT monitoring station malfunction scenario and
make the pollutant monitoring more fault resistant and robust. The proposed scheme exploits the
correlation between neighbouring monitoring stations and air pollutant concentration. The model
generates an average MAPE and MSE of 10.90% and 12.02%, respectively.

Keywords: Internet of Things (IoT); air quality; ambient monitoring; artificial intelligence;
machine learning

1. Introduction

In the last two decades, the air quality has become progressively worse due to rapid
industrialization and urbanization. Most of these air pollutants eventuate in the ambient
due to various reasons such as automobile emission, industrial emission, fossil fuel burning
and wastage incarceration. These air pollutants penetrate the human body and cause
various chronic respiratory and heart-related diseases. According to the World Health
Organization (WHO), more than 90% of the world population lives in perilous air quality
areas. Each year nearly 4.2 million deaths occur from cardio and respiratory diseases due to
prolonged exposure to air pollutants [1]. According to another report by WHO, each year,
around 3.8 million die due to diseases attributed to indoor house pollution [2]. Furthermore,
air pollution is one of the root causes of climate change and restricts the social as well as
economic development of the country [3].

To address this issue, national environmental agencies monitor and track carbon
monoxide (CO), fine particulate matter (PM2.5), respirable particulate matter (PM10), sulfur
dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) in the environment to determine air
quality, often called as Air Quality Index (AQI). The CO, SO2, NO2 and O3 are measured
in part-per-million (ppm) while PM2.5 and PM10 is measured in micrograms per meter
cube (µg/m3). It is a standard metric to evaluate the quality of air, whether it is hazardous,
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unhealthy, moderate or good (as shown in Table 1). Many governments and environmen-
talists use these standard values to identify whether the air quality is good or bad and
poses a little or high risk to the population. The AQI can help citizens to take precautionary
measures in a timely manner.

Table 1. Summary of air pollutant standards and classification.

CO
(ppm)

PM2.5
(µg/m3)

PM10
(µg/m3)

SO2
(ppm)

NO2
(ppm)

O3
(ppm)

Good 2 15 30 0.02 0.03 0.03
Moderate 9 35 80 0.05 0.06 0.09
Unhealthy 15 75 150 0.15 0.2 0.15
Hazardous 50 500 600 1 2 0.5

Recently, researchers and scientists have proposed multiple solutions to monitor and
mitigate the impact of air pollution on both the ambient and humans. Several data-centric
and geological time scale-based studies have been done to provide extensive insights
and issues pertaining to air quality [4,5]. Moreover, various innovative ideas, such as the
integration of artificial intelligence (AI) and machine learning (ML), have been presented
for better accuracy and prediction. A neural network (NN) based framework has been
proposed to forecast PM10 for Seoul subway station [6]. A hybrid long short-term memory
(LSTM) base model is presented to improve the prediction accuracy of O3 [7]. Multi-
model architectures have been presented to monitor and predict PM10 and PM2.5 for urban
areas [8,9].

However, with the development of the Internet of Things (IoT), a new paradigm
has emerged that transformed the traditional human lifestyle into a high-tech lifestyle.
Nowadays, IoT devices assist humans in performing daily tasks due to their ease of
deployment, low cost and very low maintenance nature. Researchers have proposed
multiple IoT base ambient monitoring solutions employing Wireless Fidelity (WiFi), Zigbee,
Bluetooth and LoRaWAN [10–13]. These IoT devices are distributed over the region for
ambient monitoring. These devices gather ambient air pollution data and forward it to
the base station for information processing and distribution among citizens (as shown in
Figure 1). Furthermore, integrating IoT devices with AI & ML techniques can enable them
to incorporate the acquired data to predict the next hour or day’s AQI.

Figure 1. Internet of Things base ambient pollution monitoring and forecasting system architecture.
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The motivation of this study is to develop a lightweight multivariate ambient monitor-
ing system that is self-reliant and independent in terms of accuracy and processing. The
main contribution of this paper is as follows:

1. A two-layer prediction model; CNN and LSTM, has been presented for air pollutants
concentration forecasting. The proposed model is utilised to predict the concentration
of air pollutants by the hour for 7 days. Furthermore, the prediction results are
cross-validated with real-time data.

2. In this paper, multivariate elements (CO, PM2.5, PM10, SO2, NO2 and O3) are taken
into account. However, most of the previous research takes either one or two air
pollutant elements into consideration.

3. The performance of the proposed CNN-LSTM model is compared with the various
state-of-the-art frameworks on the basis of Mean Absolute Error, Mean Absolute
Percentage Error and Mean Square Error.

4. IoT devices are prone to failure, crash or malfunction. A weight-fused cooperative
approach is proposed by integrating cross-grid neighbouring monitoring stations
with temporal malfunction monitoring station data to tackle this issue.

5. A comprehensive study and analysis are performed on 24 months of real-world time
series data to evaluate the performance of the proposed scheme.

The rest of the paper is organised as follows. Section 2 discusses the state-of-the-art
work related to ambient monitoring and prediction. In Section 3, the implementation
of the system, dataset and its preprocessing are discussed in detail. Section 4 presents
the proposed approach for normal as well as malfunctioned monitoring station scenarios.
Results and discussion are presented in Section 5. Finally, Section 6 presents an overall
conclusion of the proposed approaches with future direction.

2. Related Work

In recent years, a lot of significant contributions have been made in the area of IoT
base ambient monitoring systems. In this section, we present the state-of-the-art research
frameworks that have been proposed in this area.

In 2008, China initiated a joint control task force to control and tackle air pollution in
Beijing, Hebei and Tianjin Province [14]. This controlled ambient air quality produces some
good results and experiences for residents. In Ref. [15], the authors proposed a wireless sen-
sor network (WSN) based intelligent ambient temperature monitoring scheme called a solar
radiation-based air temperature error correction scheme (STCS). The proposed scheme used
Back Propagation integrated with a Genetic algorithm for performance optimization. The
authors of [16] proposed an RF-CNN-based AQI classification model. The proposed model
uses ambient images for training and testing and classifies the AQI of the monitoring area
as good, moderate and bad. In Ref. [17], an LSTM and Recurrent Neural Network (RNN)
based prediction model has been proposed for IoT-enabled areas to forecast PM2.5. The
proposed model achieves higher accuracy in forecasting PM2.5 in comparison with LSTM.

In Ref. [18], the authors proposed an intelligent CO2 monitoring system for the indoor
environment using WSN. The objective of this research is to provide a real-time ambient
monitoring system with minimal interferences and error rates. In Ref. [19], a fully connected
LSTM (LSTM-FC) base model is proposed to monitor and predict PM2.5 by exploiting
temporal weather and air quality data. The proposed model performs better in comparison
with the LSTM and Artificial Neural Network (ANN) in terms of Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE).

The authors of [20] discussed the strengths and weaknesses of statistical and ML
base methods for intelligent ambient monitoring. They suggested that the integration of
ML with the temporal data to monitor and predict air quality is best suited. In Ref. [21],
the authors proposed a deep learning-based ambient monitoring system to predict the
concentration of air pollutants in the dataset of Seoul, South Korea. The proposed model
outperforms other models with an MAE and MAPE of 11.43% and 1.64%, respectively.
In Ref. [22], a comparative study of 36 ML models has been done to predict the indoor
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temperature for smart buildings. The ExtraTree regressor outperformed the other model
with an RMSE of 0.058% and an accuracy of 97%, respectively. Authors of [23] proposed an
IoT base real-time context-aware indoor ambient monitoring system. The proposed model
uses Multiple linear regression (MLR) to calculate the concentration of PM2.5, PM10 and
CO2. Furthermore, they integrate k-nearest neighbours (kNN) to forecast indoor ventilation
and air pollutants. The proposed kNN-MLR was performed with an accuracy of 94% and a
precision of 91%, respectively.

The authors of [24] presented a power-independent WSN-based ambient monitoring
system for smart city design. The proposed system uses LoRaWAN to connect and commu-
nicate between sensors. However, it uses GPRS to forward the data to the cloud. In Ref. [25],
a low-power WSN-based real-time ambient monitoring system has been proposed using
LoRaWAN. The proposed system monitors PM2.5 and PM10 with 97% and 96% of accu-
racy respectively. Authors of [26] proposed an IoT base ambient monitoring system with
minimal energy consumption and leakage. The proposed methodology is implemented
in a laboratory-controlled environment. However, the authors fail to validate the results
with in-field acquired data and the long-term stability of the IoT network. In Ref. [27], a
hybrid ambient monitoring system is presented by integrating fixed as well as moving IoT
sensors to calculate and predict the air pollutant with a primary focus on PM2.5 and PM10.
They opted for the Gradient Boosting Regression (GBR) technique for the prediction of air
pollutants due to its adaptation to the change in the pattern. The proposed model performs
better in terms of RMSE in comparison with the Random Forest (RF) and Support Vector
Regression (SVR).

Evidently, most of the previous research lacks multivariate air pollutant monitoring
and prediction. They only monitor either one or two air pollutant elements. Traditional
ambient monitoring systems are complex, compute-intensive and require higher process-
ing [7–9,23,25] . Furthermore, they are incapable of a scenario if an ambient monitoring
station (MS) malfunctions, breakdown and power loss.

3. Dataset Preparation

In this section, the proposed methodology and implementation are discussed in
detail. First, we will converse about monitoring stations and the dataset. Later on, the
preprocessing of the dataset, which techniques have opted and how we clean and transform
it are comprehensively discussed.

3.1. IoT Monitoring Stations

This research is carried out in Seoul, South Korea, which is envisioned as a smart
city [28] and the biggest cosmopolitan city in the Republic of Korea. In 2021, Seoul ranked
26th among the most polluted cities in the world [29,30]. Henceforth, the Government
of Korea deployed IoT-based MS all over the city (as shown in Figure 2) to tackle this
issue. These MS are used to monitor ambient pollution continuously. The acquired data is
made public through the official online data repository for researchers, scientists and the
general public.

Seoul city is overall spatial segmented into 25 regions for ambient pollution monitoring
using IoT-MS, which are uniformly dispersed all over the city. The longitude range of
ambient MS is from 126.908296 to 127.068505, while the latitude range is from 37.452357 to
37.658774. The location of each MS is shown in Appendix A.
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Figure 2. Deployment of IoT monitoring stations in Seoul.

3.2. Dataset

In this study, we used a raw dataset acquired from an online data repository in Seoul,
Republic of Korea [31]. The acquired dataset spanned from 1 January 2017 to 31 December
2019, in which MS measured the air pollutant concentration on an hourly basis. The overall
dataset consists of almost 650,000 instances where each instance consists of Longitude,
Latitude, Station Name, Station Code, Station Address, Measurement Date, Time and
concentration of CO, PM2.5, PM10, SO2, NO2 and O3.

The mathematical model of the dataset is formulated through a generic matrix AQISEOUL

(as shown in Equation (1)).

AQISEOUL =


χ1

t1 χ1
t2 χ1

t3 · · · χ1
t22 χ1

t23 χ1
t24

χ1
t1 χ1

t2 χ1
t3 · · · χ1

t22 χ1
t23 χ1

t24

...
...

...
...

...
...

χn−1
t1 χn−1

t2 χn−1
t3 · · · χn−1

t22 χn−1
t23 χn−1

t24

χn
t1 χn

t2 χn
t3 · · · χn

t22 χn
t23 χn

t24

 (1)

In Equation (1), χ represents the input from the MS, n represents the total number of
MSs and t represents the time where t ∈ τ; 1 ≤ τ ≤ 24. All of this information is integrated
and an overall AQI of the city is determined.

Since the acquired dataset contains noise, missing values and outliers, hence we need
to preprocess the data to develop a robust air pollution forecasting model.

3.3. Preprocessing of Data

The output of the forecasting model can be significantly impacted and reduced with
the presence of noise, missing values, outliers, etc. in the dataset. Henceforth, to make the
proposed model more robust, several preprocessing techniques are employed.
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3.3.1. Anomalies Detection

The term “anomalies” refers to a small slice of the dataset which is abnormal or
dissimilar to the rest of the data. It can be noisy data owing to random mistakes, or it can be
irregular data items arising from odd or unexpected events that reflect aberrant behaviour.
A rapid change in the values or values less than or equal to 0 is generally considered an
anomaly in the dataset. These anomalies directly affect the learning of models as well as
the model output. Henceforth, before forwarding the dataset to the model, outliers are
identified along with the time series.

In this study, we only consider those air pollutants concentration values which are less
than 0 as anomalies or outliers (as shown in Figure 3). During the close investigation of the
dataset, it has been observed that the rapid change in air pollutant concentration occurred
during public holidays due to festive celebrations, excessive vehicular emissions, etc. Sub-
sequently, a total of 4992 anomalies/outliers are detected throughout the dataset. Most of
these anomalies are due to the malfunctioning or failure of the monitoring station (MSMal).
All these anomalies are removed to ensure consistency and uniformity in the dataset.

Figure 3. Anomalies in the CO and O3 dataset.

3.3.2. Data Normalization

Air pollutants are measured at different scales like CO, NO2, SO2 and O3 are calculated
in parts per million (ppm) while PM2.5 and PM10 are calculated in microgram per cubic
meter (µg/m3). Subsequently, the dataset is transformed between the range of 0 and 1
using Equation (2), to eliminate the dimensional difference impacts [32].

Xnorm =
x− Xmin

Xmax − Xmin
(2)

In Equation (2), Xnorm represents the data after normalization while Xmin and Xmax
represent the minimum and maximum values of each air pollutant value. In addition to
that, Min–Max normalization is opted to develop the air quality forecasting model with
better accuracy and improve the model convergence.

4. Methodology

IoT devices play a pivotal role in the design and implementation of smart cities. In
recent years, various IoT-enabled ambient monitoring techniques have been presented.
Integrating IoT devices with AI & ML frameworks can improve the overall system accuracy
and prediction. However, these IoT devices are vulnerable to battery drainage, crash or
malfunction. In this section, we explain the proposed methodology and discuss the IoT
station malfunction or crash scenario in detail.
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4.1. Proposed Methodology

In this paper, a hybrid two-layer neural network model, called the CNN-LSTM model,
is presented. The proposed model has two main modules. The first is CNN which is opted
to perform complex mathematical computation on the input time series, identifying useful
information and feature extraction, while the second module is LSTM which is used to
identify temporal dependencies in the time series and use extracted features as an input to
forecast the ambient air pollution.

LSTM learn the long-term dependencies through feedback connections and memory
cells. Each LSTM comprises the memory cell and primary gates such as input (It), output
(Ot) and forget ( ft) gate, respectively. This unique composition allows the model to keep
useful information and forget the inapt information. It preprocesses and monitors the new
information stored in the memory cell at any time (Ct). Moreover, ft decides whether the
past information is to be kept stored or needs to be updated. The overall working of LSTM
can be defined as follow:

It = σ(Uiχ
t
n + Wiht−1 + bi) (3)

ft = σ(Ugχt
n + Wght−1 + bg) (4)

c∗t = tanh(Ucχt
n + Wcht−1 + bc) (5)

Ct = gt � Ct−1 + It � c∗t (6)

Ot = σ(Uoχt
n + Woht−1 + bo) (7)

In the proposed CNN-LSTM methodology, CNN is used as an encoder for feature
extraction while LSTM act as a decoder to identify long and short-term correlation between
input. The overall structure of the proposed methodology is illustrated in Figure 4.

Figure 4. CNN-LSTM architecture.

4.1.1. Encoder

In the proposed methodology, CNN act as an encoder with 64 and 32 feature maps
per CNN layer and a kernel of size 3. The first CNN layer act as a filter to extract useful
information from the input before generating the feature map. The second CNN layer
repeats the same process, which improves the overall convolved feature map. The max-
pooling layer simplifies the feature maps and generates a 1-Dimensional matrix.

In addition to that, the dropout and flatten layers are added to the encoder. The aim of
adding the dropout layer is to prevent the model from overfitting while the flatten layer is
added in the encoder to generate a long vector which can be used in the decoder (LSTM) as
an input.

4.1.2. Decoder

The internal representation of the vector sequence is forwarded as an input to the
LSTM. The LSTM is defined as a hidden layer of 100 units. Consequently, the whole
sequence with each of the 100 units is generated as an output for each ambient air pollutant.
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The generated output will serve as the foundation for the prediction of AQI. Moreover, a
fully connected (FC) layer is opted to comprehend the time series and make a prediction
in the output. This was achieved by encapsulating the interpretation and output layers
in a Temporal Distributed wrapper (TDW), which has been used for each decoder time
step. This enables the LSTM to specify the context essential for each step in the output
sequence, while the TDW dense layers interpret each time step uniquely while reusing
identical weights.

4.2. IoT Monitoring Station Malfunction

IoT devices are vulnerable to battery drainage, failure or malfunction. This mal-
function can occur due to many reasons such as equipment failure, integration problems,
connectivity or device load. However, this failure can cause disruption of information from
an MS to the system and directly affect the overall performance.

Henceforth, we presented an adaptive fault-tolerant framework to tackle this issue.
The system, after regular intervals of time t checks the system for anomalies and failures.
Once the system detects malfunction or anomalies from MS, it changes its status from
MSNorm to MSMal . The system computes MSMal geological position and creates a distance
table (D) of the MSNorm. We used IoT localisation [33] to identify the exact location (α) of
the MS so that spatial interpolation can be applied. Furthermore, the longitude (℘) and
latitude (ψ) information of MSNorm are utilised to calculate the distance between MSNorm
and MSMal using Equation (10).

∆ψ = ψ1 − ψ2 (8)

∆℘ = ℘1 − ℘2 (9)

d = 2R arcsin

√
sin2(

∆ψ

2
) + cos(ψ1) · cos(ψ2) · sin2(

∆℘

2
) (10)

The one with the shortest distance to the MSMal became the candidate for MSElect as
shown in Figure 5. A distance threshold δ is selected so that only the closest neighbouring
MSNorm can compete for the MSElect. This selection process of MSElect is done dynamically
through context-aware sensing. Furthermore, a weightage Wx is assigned to each MSElect
based on distance proximity. The proposed framework integrates the historical air pollu-
tants concentration (χhist) of MSMal with the current air pollutants concentration (χcurr) of
MSElect. The adaptive framework process is listed in Algorithm 1.

Figure 5. Monitoring Station Election Process.
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Algorithm 1 Fault-tolerant Monitoring Station Framework

Require: E = {MS1, MS2, . . . MSn}; χ: Input from MS; MS(℘, ψ): Longitude and Latitude
of Monitoring Station

Ensure: RMSE, MAPE, MAE
while TRUE do

if (MSNorm → MSMal) then
for each MSNorm ε E do

α← process() . Compute MS location
D ← {α, MSMal(ψ,℘)} . using Equation (10)
send (D, α, MSMal)

end for

if (MS|MSNorm εE d ≤ δ) then
MSElect ← MSNorm . Neighbouring MS selection

end if

K ← MSMal(χhist)⊕∑x Wx MSElect(χcurr)
P←CNN-LSTM model(K)

end if
end while

This amalgamation of χhist and χcurr provides us insights into the correlations between
the distance of multiple MS and its air pollutants concentrations. It gives a neighbourhood
context-awareness which improves the overall prediction. Furthermore, this cross-grid
area overlapping scheme can increase the system’s robustness and overall reliability.

4.3. Performance Evaluation Metrics

To make model results more intuitive and reliable, we performed a comparative
analysis by employing MAE, MAPE and MSE with state-of-the-art frameworks such as
Decision Tree (DT), Random Forest (RF), Support Vector Regression (SVR), Multilayer
Perception (MLP), Long short-term Memory (LSTM) and Stacked Long short-term Memory
(SLSTM). The MAE, MAPE and MSE are used to calculate the prediction error, and the
lower the value means, the higher the prediction accuracy.The aforementioned performance
metrics are calculated using Equations (11)–(13).

MAE (X,P) = 1
n

n

∑
i=1

(
Xi − Pi

)
(11)

MAPE (X,P) = 1
n

n

∑
i=1

∣∣∣Xi−Pi
Xi

∣∣∣ (12)

MSE (X,P) = 1
n

n

∑
i=1

(∣∣Xi − Pi
∣∣)2 (13)

where X represent the real values while P represent the predicted values of ambient pollutants.

5. Results and Discussion

This section is organised into two parts. In the first part, the results and predictions
of the proposed model; CNN-LSTM, are presented. The results are compared with other
state-of-the-art frameworks, whilst in the second part, we implement the monitoring
station malfunction scenario and prediction results are compared with the actual real-time
acquired results.

5.1. CNN-LSTM Prediction Model

The proposed model; CNN-LSTM, is evaluated for each pollutant element to check
model efficacy and reliability. In experimentation, we forecast 7 days (from 25 December
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2019 to 31 December 2019) of ambient air pollutants concentration on an hourly basis.
Consequently, the predicted values of each ambient pollutant are compared with the real-
time values to compute the error and experiment results (as illustrated in Figure 6). It
is preeminent to state that the experimental results support our hypothesis to opt for
the hybrid model, LSTM as a core network to resolve the long-term dependencies while
using CNN to extract features and patterns for training and learning. The results support
that the proposed CNN-LSTM model is very suitable for complex multivariate ambient
pollutant scenarios.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Comparison result of Real and Predicted air pollutant concentration of (a) CO, (b) PM2.5,
(c) PM10, (d) SO2, (e) NO2 and (f) O3.

In particular, in the comparison experiment (as illustrated in Figure 6), it is clear that
the accuracy of the proposed model is better adapted to the complex air quality data. The
proposed CNN-LSTM model predicted the concentration of the pollutants with better
fitting to the real-time concentrations by leveraging historical information. The proposed
model is able to identify and predict, with a high degree of precision, the sudden rise in
the concentration level of PM2.5 and PM10 (as shown in the Figure 6b,c). However, in
the case of SO2 and NO2, the model generates a trivial prediction latency (as shown in
Figure 6d,e). This prediction latency occurred due to very smaller values like 1/1000th and
1/10, 000th, perpetual fluctuation and no temporal pattern. While in the case of CO and
O3, the model predicts the air pollutant concentration with great precision and generates a
very low prediction latency (as shown in Figure 6a,f).

Many research scholars have proposed the Stacked LSTM [7] or Nested LSTM model [17,19]
to achieve better accuracy and prediction for ambient monitoring systems. However,
SLSTM and NLSTM increase the overall computational cost and processing overhead. One
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of the major contributions of this paper is to propose a lightweight CNN-LSTM model for
multivariate ambient pollution monitoring while achieving better accuracy and prediction.

The prediction results of each ambient pollutant are computed for state-of-the-art
frameworks and detailed analysis. In comparison with the other state-of-the-art models
(as shown in Figure 7), the proposed methodology has the best prediction performance.
The proposed model outperforms all the compared state-of-the-art frameworks in terms
of error and provides a better fitting to the real-time values with higher accuracy. There
are several factors for this outcome. First, the CNN divides the complex air quality data
into various components and extracts the best parameters. This efficient extraction of
parameters improves the prediction performance of the LSTM, which improves the overall
accuracy of the proposed model.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison Analysis of Proposed Framework prediction results with State-of-the-art
Frameworks for (a) CO, (b) PM2.5, (c) PM10, (d) SO2, (e) NO2 and (f) O3.

It is visible that the values of MAE, MSE and MAPE of the proposed model are
significantly smaller in contrast with other compared frameworks. The proposed CNN-
LSTM model generates MAE, MSE and MAPE of 0.63, 1.16 and 7.79 for SO2 which is
an average of 57.33%, 65.23% and 74.96% lower than the state-of-the-art frameworks.
Moreover, the values of MAE, MSE and MAPE generated by the proposed model are less
than those of the other frameworks on an average of 54.80%, 52.78% and 60.02%.

In the case of PM2.5, the proposed CNN-LSTM model outperforms the LSTM and
SLSTM by reducing 27.10% and 29.87% of MAE, 44.39% and 46.99% of MSE and 38.50% and
36.85% of MAPE values, respectively. Meanwhile, in the case of PM10, the model generates
7.54 MAE, 12.02 MSE and 27.61 MAPE which is almost 50% less than LSTM and SLSTM
subsequently. An error table of MAE, MAPE and MSE for which pollutants is shown in the
Appendix B.
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The results validate the need for data preprocessing and efficient feature extraction
procedures to create uniformity in the acquired dataset. Figure 7 illustrates that using CNN
as an encoder or data preprocessor improves the overall prediction accuracy. Furthermore,
the proposed CNN-LSTM model is able to predict the concentration of ambient pollutants
very close to real-time concentration with a low prediction latency, which is used as a
benchmark for AQI prediction.

Although the proposed model predicted air pollutants concentration with good accu-
racy, the results of this study can be further improved. Due to the limitations of air pollutant
information regarding the border region MS and meteorological factors near the MS.

5.2. IoT Monitoring Station Malfunction

The inherent nature of IoT devices makes them vulnerable to malfunction or failure,
which can affect the overall performance and information disruption. Henceforth, an
adaptive fault-tolerant framework is proposed to address this issue. The proposed model
uses the historical information on malfunction MS and leverages cross-grid neighbourhood
MS information to predict ambient pollutants of that coverage area.

We evaluated the proposed algorithm for each pollutant element to check its robustness
and reliability. For experimentation, we implemented the IoT-MS malfunction scenario at
the Jung-gu station (as shown in Figure 8) and forecast 2 days (30 & 31 December 2019)
of ambient pollution on an hourly basis. The results are compared with the real pollutant
values of that area to observe the behaviour and overall performance scheme. We plot the
output of the proposed scheme with the real values.

Figure 8. Malfunction Monitoring Station and Election of Monitoring Station for Cooperative
monitoring.

Figure 9 shows that the proposed scheme predicted the pollutant with better accuracy
and precision due to its adaptive neighbourhood context-aware nature. This intrinsic nature
provides robustness and improves the overall confidence in the system. Furthermore, it
gives us a better understanding of the correlation between ambient pollutants and distance
among MS.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparison result of Real and Predicted air pollutant concentration of (a) CO, (b) PM2.5,
(c) PM10, (d) SO2, (e) NO2 and (f) O3.

The proposed model predicts the concentration of air pollutants such as PM2.5, PM10
and O3, with high accuracy and generates a very low prediction latency (as shown in
Figure 9b,c,f). However, in the case of SO2 and NO2, the model generates perpetual
fluctuation and trivial prediction latency (as shown in Figure 9d,e). We employed MSE and
MAPE to compute the error generated by the system and get a better understanding of the
model behaviour. The results of each ambient pollutant element are summarised in Table 2.
The proposed scheme generates a MAPE of 11.5% for NO2 whereas 7.99% and 7.62% for
CO and PM10 respectively.The results show that the model predicted the ambient pollutant
concentration with better fitting to the real data.

Table 2. Prediction results in cooperative monitoring framework.

CO PM2.5 PM10 SO2 NO2 O3

MAPE (%) 7.99 8.64 7.62 9.35 11.5 20.35
MSE (%) 11.35 15.86 11.43 18.78 5.35 10.47

The results show that only those MS that are closer to malfunctioning MS should be
selected for cooperative ambient pollutant prediction. Those MS which are at a distance
from the malfunctioned MS can have very little effect since their ambient pollutant results
are influenced by their neighbourhood. By electing far stationed MS can reduce the overall
performance of the model. Henceforth, to tackle this issue, we introduced a distance
threshold and assign weightage on a distance basis.
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6. Conclusions

Air pollution has a significant impact on human health, daily life activities and the
environment. Recently, a lot of research and studies have been done to monitor and mitigate
the effect of deteriorating air quality. In this paper, a hybrid CNN-LSTM model is proposed
to predict multivariate air pollutants for IoT-enabled environments.

In experimentation, a smart city (Seoul, Republic of Korea) dataset is acquired via
various monitoring stations from January 2017 to December 2019. The proposed model
provides a high degree of fitting to the real-time concentration of the ambient pollutants.
The proposed CNN-LSTM model generate an average MAE, MAPE and MSE of 7.47%,
14.60% and 19.53%, respectively. The proposed model also outperforms various state-of-the-
art models and illustrates visible excellence in terms of multivariate pollutant concentration
prediction with an average of 54.80%, 52.78% and 60.02% in terms of MAE, MAPE and
MSE. Moreover, the CNN-LSTM framework generates less error and prediction latency as
compared to other state-of-the-art models.

In addition to that, an adaptive fault-tolerant framework is presented to make the
air pollution monitoring system more robust and trustworthy. The adaptive framework
exploits the interdependencies between multiple monitoring stations and pollutant concen-
tration in those regions. Consequently, the model generates an average MAPE and MSE of
10.90% and 12.02%, respectively.

In the future, we will further investigate the impact of participatory sensing or mo-
bile MS on air pollutant prediction. By using the predicted air pollutant concentration
values, we will devise a mechanism to identify the perilous air quality areas and use that
information for air pollution control.
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Abbreviations
The following table describes the significance of various abbreviations and acronyms used throughout
the paper:

CO Carbon monoixide
PM2.5 Fine Particulate Matter
PM10 Respirable Particulate Matter
SO2 Sulfur dioxide
NO2 Nitrogen dioxide
O3 Ozone
NN Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
ANN Artificial Neural Network
RNN Recurrent Neural Network
DT Decision Tree
RF Random Forest
SVR Support Vector Regression
MLP Multilayer Perception
SLSTM Stacked Long Short-Term Memory
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CNN-LSTM Convolutional Neural Network integrated with Long Short-Term Memory
MS Monitoring Station
IoT Internet of Things
TDW Temporal Distributed Wrapper
MSNorm Normal Monitoring Station
MSMal Malfunctioned Monitoring Station
MSElect Elected Monitoring Station
MAE Mean Absolute Error
MSE Mean Square Error
MAPE Mean Absolute Percentage Error

Appendix A. Geographical Locations of IoT Monitoring Stations

Sr. Station Name Longitude Latitude

1 Jongno-gu 37.572016 127.005008
2 Jung-gu 37.564263 126.974676
3 Yongsan-gu 37.540033 127.00485
4 Eunpyeong-gu 37.609823 126.934848
5 Seodaemun-gu 37.593742 126.949679
6 Mapo-gu 37.55558 126.905597
7 Seongdong-gu 37.541864 127.049659
8 Gwangjin-gu 37.54718 127.092493
9 Dongdaemun-gu 37.575743 127.028885
10 Jungnang-gu 37.584848 127.094023
11 Seongbuk-gu 37.606719 127.027279
12 Gangbuk-gu 37.64793 127.011952
13 Dobong-gu 37.654192 127.029088
14 Nowon-gu 37.658774 127.068505
15 Yangcheon-gu 37.525939 126.856603
16 Gangseo-gu 37.54464 126.835151
17 Guro-gu 37.498498 126.889692
18 Geumcheon-gu 37.452357 126.908296
19 Yeongdeungpo-gu 37.525007 126.89737
20 Dongjak-gu 37.480917 126.971481
21 Gwanak-gu 37.487355 126.927102
22 Seocho-gu 37.504547 126.994458
23 Gangnam-gu 37.517528 127.04747
24 Songpa-gu 37.502686 127.092509
25 Gangdong-gu 37.544962 127.136792

Appendix B. Comparison Analysis of Prediction Results with
State-of-the-Art Frameworks

Appendix B.1. Prediction Result for CO

Model MAE MAPE MSE

DT 118.71 18.25 227.94
RF 102.65 14.14 178.25

SVR 79.72 11.68 164.08
MLP 87.94 17.92 142.54

LSTM 93.18 16.63 161.02
SLSTM 80.6 10.29 137.73

CNN-LSTM 22.11 3.52 81.37
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Appendix B.2. Prediction Result for PM2.5

Model MAE MAPE MSE

DT 14.55 47.49 24.62
RF 10.34 37.76 19.22

SVR 9.42 33.93 17.74
MLP 9.22 33.54 17.43

LSTM 9.37 34.83 17.75
SLSTM 9.74 33.92 18.62

CNN-LSTM 6.83 21.42 9.87

Appendix B.3. Prediction Result for PM10

Model MAE MAPE MSE

DT 22.63 69.03 34.79
RF 16.78 61.3 27.67

SVR 15.97 53.91 25.61
MLP 15.5 54.3 25.81

LSTM 14.17 52.2 24.68
SLSTM 15.83 56.55 24.29

CNN-LSTM 7.54 27.61 12.02

Appendix B.4. Prediction Result for SO2

Model MAE MAPE MSE

DT 1.94 29.37 4.21
RF 1.64 26.92 3.26

SVR 1.71 37.55 3.21
MLP 1.42 27.39 2.49

LSTM 1.27 32.41 3.8
SLSTM 1.16 36.15 3.6

CNN-LSTM 0.63 7.79 1.16

Appendix B.5. Prediction Result for NO2

Model MAE MAPE MSE

DT 7.81 53.18 10.87
RF 5.39 44.02 7.76

SVR 4.14 39.26 6.43
MLP 4.52 41.04 6.58

LSTM 7.32 59.26 8.72
SLSTM 6.51 50.18 8.11

CNN-LSTM 2.6 16.02 3.75

Appendix B.6. Prediction Result for O3

Model MAE MAPE MSE

DT 16.09 31.18 22.42
RF 11.87 22.87 16.03

SVR 10.62 22.12 17.57
MLP 10.79 20.73 15.28

LSTM 10.39 21.32 15.57
SLSTM 10.16 23.16 15.11

CNN-LSTM 5.15 11.25 9.01
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