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Abstract: Accidents in highway tunnels involving trucks carrying flammable cargoes can be dan-
gerous, needing immediate confrontation to detect and safely evacuate the trapped people to lead
them to the safety exits. Unfortunately, existing sensing technologies fail to detect and track trapped
persons or moving vehicles inside tunnels in such an environment. This paper presents a distributed
Bluetooth system architecture that uses detection equipment following a MIMO approach. The
proposed equipment uses two long-range Bluetooth and one BLE transponder to locate vehicles and
trapped people in motorway tunnels. Moreover, the detector’s parts and distributed architecture
are analytically described, along with interfacing with the authors’ resources management system
implementation. Furthermore, the authors also propose a speed detection process, based on classifier
training, using RSSI input and speed calculations from the tunnel inductive loops as output, instead
of the Friis equation with Kalman filtering steps. The proposed detector was experimentally placed
at the Votonosi tunnel of the EGNATIA motorway in Greece, and its detection functionality was
validated. Finally, the detector classification process accuracy is evaluated using feedback from the
existing tunnel inductive loop detectors. According to the evaluation process, classifiers based on
decision trees or random forests achieve the highest accuracy.

Keywords: Bluetooth and BLE detection systems; distributed systems; Bluetooth sniffing; IoT; speed
detection and classification; data mining

1. Introduction

Usually, catastrophic accidents happen inside tunnels. When an accident occurs inside
a tunnel, it can maximize its impact and casualties due to its constrained space of escalation.
Car crashes and truck overturnings are the most catastrophic types of incidents, followed
by extended fire due to carrying or spilling dangerous materials. Fire accident events are
the greatest threat to road tunnel systems, e.g., the 1999 Mont Blanc fire in France or the
2014 Yanhou fire in China [1].

In road congestion accidents, if heavy vehicles are involved, they may also exert
significant disastrous consequences [2]. In addition, recent analysis regarding fire acci-
dents in China highway tunnels has shown a yearly increment in incidents over the last
20 years [3]. These incidents, especially congestion and fire inside tunnels, infer major
human losses from trapped individuals. Furthermore, the thick smoke conditions render
humans unconscious, prevent finding a way out due to the lack of visibility, or produce
abnormal driving behavior inside road tunnels due to panic. Such stressful conditions
require targeted processes and systems [4].

Many factors influence the road tunnel set on the fire evacuation process. Apart from
some human aspects, such as sporadic cases of panic, anxiety, speed of decision making or
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general fitness [5], other characteristics can affect the whole procedure, such as the existence
of fire detection, fire alarm and ventilation systems [6], as well as risk assessment plans
and new implementations of systems embracing the tunnels’ emergency escape exits and
entrances [7].

Tunnel infrastructures are equipped with escape exit doors for evacuation purposes.
These doors are equipped with fluorescent emergency exit light indicators, centralized
SCADA-controlled LED strips extending to both exit directions, and directional speakers
(directed sounder—DS) with the ability to relay voice messages at the tunnel spouts. Such
installments are activated in case of tunnel accidents to help trapped individuals to locate
the emergency escape doors quickly by determining the source of the sound or light even
under low visibility conditions [2,8].

The existing commercial incident detection tools use CCTV cameras [9] and sensors
(measuring temperature, smoke, and liquid) [10,11] to detect individuals inside tunnels
in evolving catastrophic events. Such sensory equipment implements threshold-based
or fuzzy control logic, deep learning LSTM models [12], or motion detection tracking
algorithms that segment motion contours [13]. Furthermore, a hybrid system that processes
both sensory feedback and camera image processing capabilities was proposed at [14].

Other detection implementations attempt to read ADR signs on toll post cameras via
deep learning algorithms. Such detection systems can provide precise real-time feedback to
the involved authorities of vehicles carrying dangerous cargo [15,16]. In this case, the use of
computer vision detection techniques is an up-and-coming solution. Still, it cannot operate
properly in real time, especially for fire incidents that induce thick smoke, contributing to
low tunnel visibility.

Bluetooth and Bluetooth low energy (BLE) technologies have been developed to bring
new ways to detect individuals in closed areas. BLE was firstly introduced in 2009 in version
4.0 according to Bluetooth version 4.X [17]. Their differences rely on the modulation mode
and packet format. BLE is used by RSSI beacon devices and short-range data transfers.
BLE is now the dominant wireless connection protocol for IoT, due to its reliability and
low power consumption. Bluetooth 5.2, the next BLE generation, has also introduced new
techniques for indoor positioning detection. The new methods include angle of arrival
(AoA) and angle of departure (AoD) [18,19], used to mitigate the expansion of the UWB
technology that uses time difference of arrival (TDoA) and two way ranging (TWR) [20,21]
algorithms for indoor tracking purposes.

Both BLE and UWB tracking are new technologies and have several disadvantages
when they are used as a detection solution for tunnels. BLE technology is distance limited
to no more than 10–15 m, and its AoA and AoD algorithms require the deployment of many
devices to operate accurately. On the other hand, UWB technology can offer distances up
to 30–40 m. However, the use of this technology is limited to a small number of mobile
devices, and it is considered a rather expensive solution to be fully implemented.

The authors’ detector proposition combines both Bluetooth and BLE RSSI sniffing
capabilities [8,22], to provide real-time numerical information of people or vehicles inside
tunnels. Locating users in space in case of an emergency means estimating the number of
people involved in the situation, notifying them, and subsequently giving them instructions
on avoiding imminent risks that cannot be spotted due to the conditions.

This paper presents a suitable detector and the underlying system architecture called
BL-detector. Firstly, a proof-of-concept system case study and cross-comparison measure-
ment results of the BL-detector with another existing system called TMS-IL (TMS inductive
loop detection system) are described. The rest of the paper is organized as follows: Section 2
presents the BL-detector distributed system architecture. Section 3 describes the BL-detector
equipment and web interface to the RMS system [23]. Section 4 presents the authors’ propo-
sition toward speed detection, using classifiers, experimentation, and evaluation. Finally,
Section 5 concludes the paper.
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2. Distributed BL-Detector System Architecture

For the purpose of real-time detection of trapped individuals inside tunnels, a new
distributed detection system has been implemented called BL-detector system. The BL-
detector system includes end node devices that utilize Bluetooth technology.

The proposed BL-detector system is a highly scalable architecture that interconnects
the BL-detector end nodes equipment placed inside the motorway tunnels. Both PoE and
VPN, over the internet, are utilized through a dedicated organizational VPN service that
interconnects end node equipment via a load balancer device to the database backend.
The load balancer employs the ALBL load balancing algorithm to the real-time transfer of
Bluetooth data and finally forward to the backend MongoDB replica set [24].

The BL-detector high-level system architecture is illustrated in Figure 1 and includes
the following components:

BL-detector end node devices: The end node detectors include the detectors’ con-
troller and the digital outputs’ relay for connection with the smart exit subsystems,
such as the LED strips or the sound alarm actuators. The BL-detector end node devices
send detection data via the BL-detector load-balancing switch, using VPN private
connectivity over Ethernet or wirelessly. Each BL-detector device can connect to the
BL-detection system using the 4G, Ethernet, or Wi-Fi modules included in each device.
The load balancer automatically controls the communication process, carrying the
data to the fastest database replica service available.
Load balancer switch: The balancer switch equipment includes two major compo-
nents: (1) the connectivity detector and (2) the load-balancing engine. The connectivity
detector includes the manager logic for the VPN authentication, data encryption,
and private IP assignment of each end node device (dedicated VPN service). The
load-balancer is placed at the edge of the motorway organization network and has
internet connectivity. All BL-detector end nodes authenticate and participate in the
BL-detection system network.
The load balancer engine traverses the data write requests to the least load, minimum
recorded network delay MongoDB database service of the BL-detector system [24].
It periodically hands off node data to the appropriate database service. A clustered
replication MongoDB engine is used for updating the content among the clustered
database nodes. The load balancer is also responsible for maintaining time synchro-
nization for the database cluster and BL-detector devices using NTP (network time
protocol). The MongoDB database service is responsible for replicating BL-detectors
JSON input data to its replication nodes.
Data visualization interfaces: Data visualization is performed with the use of agents
that periodically query the MongoDB collection data [25,26], and transform them via
the Telegraf service to the Grafana service dashboard plots [27].
The data visualization application service contains the appropriate web interfaces
for each BL-detector end node that illustrate either real-time or selected time interval
measurements. The web interface uses the Grafana web panel and visualization
plugins [28], instantiating visualization dashboards of the BL-detectors real-time
data. The end node real-time visualization dashboard is illustrated in Figure 2. The
application service can also connect with other resource management applications,
such as the motorway resources management system [23]. The capabilities of the
BL-detector end node device follow.
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Figure 1. BL-detection system high-level architecture.

Figure 2. BL-detector real-time detection visualization web view.

3. BL-Detector End-Node Implementation

The authors’ proposed BL-detection end node device consists of a 4-core ARM CPU
of at least 2 GB of RAM and 16 GB SRAM or eMMC flash for OS system storage. It also
includes two Bluetooth class-1 dongles, and one BLE dongle. The device is placed above
the motorway emergency exits. The two class-1 Bluetooth devices are placed catercorner to
the detection controller, using 10 m USB shielded cables (each Bluetooth dongle 10 m apart
from the detector). This way, a MIMO antenna is formed that utilizes two synchronous
Bluetooth receivers 20 m apart, with a coverage range of 100 m each and a BLE receiver
in the middle (coverage range of 15 m), capable of receiving short distance signals close
to the tunnel exits. BL-Detector end-node prototype functionality and description of the
end-node detection process follows.

3.1. End-Node Prototype Implementation and Functionality

Each of the three Bluetooth and BLE devices scans for advertisement packets contin-
uously and receives the proximity values of the received signal strength indicator (RSSI)
from users’ smartphones or vehicles’ Bluetooth devices. Once the scanning process is in
progress, the RSSI values are remotely stored in the MongoDB clustered database using
the JSON format. Detection results are illustrated in real time by the application service
Grafana dashboards. Each Bluetooth detector (dongle) can scan one Bluetooth advertise-
ment channel each time. All the Bluetooth transponders are simultaneously instantiated
using three different threads as parts of a single service instance. Figure 3 depicts the end
node BL-detector device implementation [8] and parts, described below:
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1. The USB 4G dongle, which is responsible for the detector’s network connectivity (also
an Ethernet port is available for either connectivity or debugging purposes).

2. The class-1 long range Bluetooth dongles support Bluetooth 3, 4.2 and 5.X protocols
and are used to scan active Bluetooth devices. The dongles have high temperature
resistance up to 70 °C and for low temperatures, down to −10 °C.

3. BLE dongle adapter that includes a 2 dBi dipole antenna. It is a class-2 adapter
embedded in the microcontroller covering the area near the smart exit, with a second
USB dongle BLE adapter covering periodically the same area around the tunnel exit.

4. The Ethernet port, which is used for Ethernet communication and for power over
Ethernet (PoE) supply (if applicable).

5. The USB cable adapter or extender to adjust the USB dongle in a position with better
cellular signal reception.

6. The ABS 3D printed enclosure with the initials of the project printed on the cover.
7. The main power input via a USB type C cable, if PoE is not available (via the Ethernet

cable).
8. A small speaker, used for issuing sound alerts in case of an emergency and for

navigation purposes toward the tunnel exit in cases of limited visibility (fire, or smoke
inside the tunnel). It also includes two solid-state relay outputs connecting to the
tunnel exit led stripes.

9. A 16 × 2 Character LCD display, which is used for onsite BL-detector device status
information.

The previously presented end-node BL-detector prototype is a technology readiness
level 9 (TRL 9) end node device that was successfully tested and validated in its appliance
environment. The BL-detector equipment ensures conformity with the EU-wide require-
ments for operational types of equipment inside tunnels and the local government laws
and regulations for wireless transmissions, making it an industry-ready real-time detection
implementation.

Figure 3. BL-detector end node device prototype and detector enumerated hardware parts.
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For the Bluetooth detection process to be quick and accurate, three threaded processes
are instantiated, assigned to each of the Bluetooth dongles and one for the two BLE dongles
accordingly. Each Bluetooth dongle is assigned to a different advertisement channel per
scan interval. Moreover, another threaded dispatched instance per thread is used from
the asynchronous threaded pool to send the JSON data to the load balancer and the
MongoDB service.

Table 1. Total BL-detector mean scanning time and data recording time using a single MongoDB
instance and a load balancing switch that connects to a redundancy clustered MongoDB service .

Load Balancing Scan Time (ms) Data Insertion Time (ms) Total Cycle Time (ms)

Yes 180 212 462
No 180 255 495

Table 1 presents the results of total Bluetooth scan time, data insertion time, and
periodic total cycle time. Using this threaded service approach, the authors managed
to reduce the overall scanning process to 180–250 ms. Similarly, the data storing pro-
cess achieved a maximum of 250–350 ms for all dongle data insertions (maximum entire
scanning-recording cycle total time at 660 ms), without the use of the ALBL load balancer,
and maximum values of 580–600 ms with the use of the load balancer. The scanning inter-
val for each Bluetooth dongle is 60 ms, which for the class-1 dongles means that they can
scan a car driving at a high speed of 200 km/h at least 4–5 times and 7–8 times for a vehicle
driving at the speed limit of 130 km/h.

Based on this BL-detector scanning capability, the Friis formula can be used to estimate
vehicle distances from the BL-detector dongles and therefore calculate a speed estimation
value. Furthermore, since most cars or drivers include in their car an active Bluetooth
device, the system can infer speed estimations, or, in the case of tunnel emergencies, if
the involved people have their mobile phones, the Bluetooth device set on the system can
detect them as instances inside the tunnel or in close proximity to the tunnel’s exit and
offer helpful feedback for their release. The following subsection presents the authors’
proposition toward a speed estimator using their BL-detector device that provides better
accuracy for the speed of the moving vehicles than using the Friis formula.

3.2. End-Node Speed Estimation and Validation Process

The authors propose a new methodology for estimating speed of moving vehicles
in tunnels using a nondeterministic approach. This approach includes a classification
engine that uses pre-trained classifiers from RSSI field data and deriving speed category
estimations. The authors’ proposition is illustrated in Figure 4.

According to the authors, the speed estimation process is as follows: Instead of using a
formula (such as the Friis equation or the use of Friis equation with a pre-filtering Kalman
filter step [29]), a different approach is followed. For the distance estimation over time
using RSSI values, RSSI values are matched to speed classes (training process), using the
output of another system for the actual speed validation, the tunnels’ TMS-IL system. Most
contemporary tunnels include inductive loops at their entrances and in front of the tunnels’
escape exits.

Different classifiers can be trained using the BL-detector measurements over time as
input and the corresponding measurements from the inductive loops as output. That is, the
light GBM (LGBM) [30], the MLP [31], the random forest (RandomForest) [32], the decision
tree (DecisionTree) [33], and the extra trees (ExtraTrees) [34] classifiers. The total number
of data is 3927, using 20% for testing purposes and the calculation of the accuracy metric.
This is because the F-score metric cannot accurately represent the classification accuracy:
the recall part of the score leads to low score values (not all IL output measurements have
corresponding BL-detector RSSI values), and the precision is merely an indication of the
detector’s accuracy.
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Figure 4. Proposed speed estimation–classification process.

Prior to classifiers training, appropriate pre-processing data cleansing as well as data
impairments compensation must apply. This data pre-processing methodology includes
the following pre-processing steps (filtering process):

• Discard data with velocity less than 1 km/h. Explanation: It is only logical that
vehicles with a reported speed of less than 1 km/h are due to malfunctions of the
TMS-IL system.

• Discard data with velocity over than 220 km/h. Explanation: It is only logical that
vehicles with a reported speed of more than 220 km/h are due to malfunctions of the
TMS-IL system.

• Discard data with velocity over the 99.6% range from the Gaussian probability distribu-
tion. Explanation: The data provided by the TMS-ILs follow the Gaussian probability
distribution. As a result, the outliers lie beyond the 99.6% range.

• Discard MAC IDs scanned only from one BLE-detector. Explanation: If a MAC ID
that the detectors have scanned is a vehicle, there will be at least one scan from each
BL-detector. On the other hand, MAC IDs that are scanned only from one detector are
no vehicles passing through the tunnel and are not part of the train dataset.

• Discard MAC IDs for which the total time inside the tunnel is more than the minimum
speed times the Bl-detector effective coverage length (21 s). Explanation: The slowest
vehicle from the TMS-IL data has a speed of 20 km/h, which converts to 5.555 m/s. The
BL-detector’s effective coverage length is 500 m, but the coverage radius range of the
Bluetooth class-1 transponders is 50 m. There are two class-1 Bluetooth transponders
with 20 m distance between them, so the total range that the BL-detector can scan in
an open environment is 120 m. As a result, a vehicle with the slowest speed recorded
needs 21.621 s to pass through the active scanning area of the BL-detector.

The post-processing optimization step of the classifiers’ train parameters is achieved
through a grid search of their hyperparameters. Using F1 score metric, for the classifiers’
testing process on the 20% of the data of the collected dataset, the most accurate parameters
per classifier are detected. Table 2 shows the parameters per classifier put to the test during
the grid test, as well as the optimal test parameter outputs per classifier.
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Table 2. Grid test classifiers’ parameters and optimal parameters (in bold), in terms of F1 score.

Algorithm Hidden Layer Size Solver Alpha Value Learning Rate

MLP 100, 200, 400, 750, 900 lbfgs,sgd,adam 0.1, 0.01, 0.001, 0.0001 constant, invscaling,
adaptive

Algorithm Splitter Max depth Criterion -

DecisionTree best, random None, 5, 10, 15, 20, 25,
30, 35, 40, 45 gini, entropy -

Algorithm N_estimators Max depth Criterion -

ExtraTrees 100, 200, 400, 500, 600,
800

None, 5, 10, 15, 20, 25,
30, 35, 40, 45 gini, entropy -

Algorithm N_estimators Max depth Criterion -

RandomForest 100, 200, 400, 500, 600,
800

None, 5, 10, 15, 20, 25,
30, 35, 40, 45 gini, entropy -

Algorithm Boost Type Max depth N_leaves
N_estimators

learning rate

LGBM gbdt, dart, rf 10, 20, 30,40, 50 10, 20, 30, 40
100, 200, 400

0.1, 0.01, 0.001

For measuring per class accuracy, the authors introduced a new measure called accu-
racy per class (APC), as an augmented exponential precision calculation function per class,
defined as

APCi =
1

miTMS

m

∑
l=1

(
n + 1

n
· 1

1
n + 2k·(|X0il

−X1il
|) ) (1)

where i = 1 . . . n are the number of speed classes, X0i is the speed class as calculated by the
trained classifier and X1i is the speed class as calculated by the TMS-IL system, for each
vehicle l = 1 . . . m detected by the classifier in the class i. The value m is the total number
of vehicles detected for that class, and miTMS is the total number of vehicles detected by
the TMS-IL system for that specific class. k ≥ 1, k ∈ N∗, is a coefficient that exponentially
reduces accuracy in cases of APC > 1. This is, of course, due to the concentration of most
of the accurate classified values as well inaccurate ones belonging to a different class of
erroneous values. In the authors’ experimentation, the value k is the minimum value, so at
least one class has APC ≤ 1, usually k = [1, 3].

The accuracy per class (APC) is a weighted metric using an exponential formula to
deliver balanced weights to vehicles that are misclassified. The purpose of the metric is
to add an in-between-classes distance, so the vehicles that are wrongfully distributed can
add a weighted bit of precision. Speed classes that are close to each other can provide
information regarding the accuracy of the model. It is calculated by the mean APCi for each
class for the vehicles detected from the BL-detector and categorized to the specific class.
The mean APCi calculates the APC of the system separately for all classes and vehicles
detected by the BL-detector. There are cases where the total APC value is greater than 1.
This means that most of the vehicles detected as well as a significant number of vehicles
should not belong to this class. In those cases, the APC value can be set equal to zero, or
APC = APC

2·(n+1) , where n ≥ 3 is the total number of classes used. If APC ≤ 1 still, then
APC = 0 for that class.

Regarding Figure 4, an automated pipeline is constructed specifically for the pre-
and post-processing steps. Receiving as input the RSSI measurements and the TMS-IL
data, which are collected in real time (almost every 500 ms), in the pre-processing step,
meaning the data-filtering process, each RSSI datum is assigned to its proper speed class
according to the corresponding TMS-IL categorization. Subsequently, concerning the post-
processing step, which is mentioned as the training process in Figure 4, once the input
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data are filtered, the training of each classifier is performed periodically at the time when a
dataset will contain data of one month, resulting in a process that is completed in a few
milliseconds (for each monthly dataset, per classifier). This automated two-step processing
pipeline is compulsory to be repeated every month only until we gather a certain and
representative data collection per speed class. A criterion for halting data filtration and
classifiers’ retraining, for example, could be the stabilization of the APC accuracy.

Moreover, the automated pipeline process is as follows: RSSI data are collected in real
time when Bluetooth transponders are detected. Regarding Figure 4, the real-time data
acquired pass through a fully automated pipeline consisting of a pre-processing filtering
step and a post-processing training step to achieve speed predictions, similar to [35]. Each
Bluetooth detector can acquire more than one RSSI value of each detected Bluetooth MAC.
The number of RSSI values/Bluetooth/MAC depends on the users’/vehicles’ moving
speed. The BLE devices, which detect vehicles only close to the tunnel exits, require no post-
processing or estimation, apart from the appliance of the Friis equation and a pre-processing
data cleansing step including impairments compensation. This pre-processing step interval
is 500 ms up to 1 min. It is close to the interval for the application service to reload and
renew its dashboards. During this time, each detector node retrieves RSSI data as well as
TMS-IL output speed data from the MongoDB service, whereas each RSSI datum is assigned
to its proper speed class, according to the corresponding TMS-IL categorization. The same
pre-processing step applies for the Bluetooth class-1 device, followed by a classifier speed
prediction. Subsequently, the post-processing training interval for the estimators training
is periodically instantiated in each node every month, resulting in a process which is
completed in a few milliseconds (for each monthly dataset, per classifier). During the
testing phase, the APC values per class are calculated. The newly trained classifier is used
if a max(APC) ≥ 0.7 is achieved. If not, it is discarded, and a new training process is
scheduled that uses the aggregated data of the two intervals for its next post-processing
step. This automated two-step processing pipeline is compulsory to be repeated every
month only until we gather a certain and representative data collection per speed class. A
criterion for halting data filtration and classifiers’ retraining could be the stabilization of the
APC accuracy. In the next section, the authors’ experimentation that includes BL-detector
system validation and evaluation of their speed estimation process proposition is presented.

4. Experimental Scenarios and Results

The purpose of this experimentation is to validate BL-detector functionality as well as
to evaluate the authors’ prediction velocity model. This is accomplished by using the TMS-
IL values as the actual speed output and the Friis Equation (2) speed values for velocity
cross-comparison with the trained classifiers estimations. The BLE-detector provides us
with data regarding the RSSI (received signal strength indicator) values, the MAC IDs of
the Bluetooth devices, and Bluetooth discovery timestamps.

In addition, TMS-IL provides information regarding the current velocity of every
vehicle, the type of vehicle based on the induction time length, and the timestamp of the
scan. The APC metric is used and calculated both for the Friis speed estimation as well as
the classifiers estimations, according to the proposed process in Section 3.2.

4.1. BL-Detector Detection Validation

This experimental scenario compares the measurements taken from the EGNATIA
TMS system inductive loop detectors and our BL-detector device. To compute the velocity
of the vehicles, the Friss Equation (2) is used.

v =
d
t
=

10(n(Pt−Pd))

t
(2)

At first, calibrations of the BL-detector Bluetooth scanners and experimentation to
discover the optimal value for the formula n coefficient are performed by cross comparing
the results with those taken from the TMS-IL system to attain the best possible tunnel n
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coefficient (n = 1.2 for tunnel environment). Consequently, for every RSSI value, a distance
estimation from each Bluetooth detector is calculated. To calculate the vehicle’s velocity
due to the proximity (20 m) of the two Bluetooth class-1 detectors, we use the following
Equation (3):

v =
ds
dt

(3)

where the differences in distance ds and time dt are the differences among two consecutive
scans of the same Bluetooth dongle as distinguished by its MAC ID. Every MAC ID is
represented using two data series of velocities, one for each Bluetooth class-1 scanner
accordingly. Then, the calculation process of the mean speed is performed for each scanner
separately. After that, the mean speed of both scanners is calculated so that each Bluetooth
MAC ID detected corresponds to one mean velocity value.

To validate the results, every MAC ID’s timestamp and speed value is cross-compared
with the timestamps and recorded velocity values from the EGNATIA TMS-IL system. The
results are presented in Table 3, showing the number of vehicles detected by one of the two
BL-detector class-1 transponders, over 10 classes of speed, compared to the measurements
taken from the corresponding close to the detector TMS-IL. The presented measurements
are taken for one month (March 2021). The data speed measurements calculated by the
BL-detector node (Equation (2)) are compared to the calculated speed from TMS-IL system,
using as key reference the timestamp of the TMS-IL measurements and an offset value
of ±10 s.

Table 3. Number of detected vehicles per class.

Class (km/h): 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130 130–140

TMS-IL 54 44 47 66 62 56 58 32 24 9

BL-detector 43 41 46 60 49 32 24 30 23 7

According to this experimentation, all BL-detector detected speeds per class are close
or below the TMS-IL detected values, even with a less accurate formula such as Equation (2).
This is a validation that the BL-detector can detect the vehicle speeds with minimum errors
since there are no classes that the detector discovers more vehicles than the TMS-IL system.
The fact that it detects fewer vehicles in some classes is irrelevant to the speed estimation.
It is affected by the lack of Bluetooth devices at these vehicles to be discovered by the
BL-detector.

4.2. Evaluation of the BL-Detector Speed Classification Process

This experimentation scenario investigates different classifiers used by the proposed
classification process with the Friis formula. The output given from the TMS-IL system is
used as the ground truth.

To create a model that predicts the velocity of incoming vehicles from the RSSI values,
the authors linked vehicles from TMS-IL detector to MAC IDs using the timestamp of the
scans. Because the TMS-IL detectors are in the middle of the tunnel, the difference in time
of the scans must be less than or equal to 10 s, and they can be no other scan of different
MAC IDs from the BLE-detectors for another 21 s. Considering these values, the authors
trained their classifiers using input and output taken from the Votonosi tunnel BL-detector
for three months (June 2021–August 2021). To continue, including the data taken from
September 2021, the authors evaluated their model and compared the classifiers’ output
with both the Friis equation output and the TMS-IL output, in terms of number of vehicles
detected per class, as well as APC accuracy per class.

The evaluation of the proposed classification process was initialized by maintaining
3, 4, 6, and 8 classes. Therefore, the per-class detected and countenanced vehicles was
calculated for each of those classes and the APC accuracy per class. The following classi-
fiers were used toward the classification process: the light GBM [30], MLP [31], random



Electronics 2022, 11, 265 11 of 18

forest [32], decision tree [33], extra trees [34] classifiers and the Friis Equation (2). The
results of the number of vehicles for classes 3, 4, 6, and 8 and the results of accuracy in
terms of APC are presented in the following subsections.

Experimentation Using 3-Classes

In this experimental case, the authors used three classes of speed, experimenting
with different classifiers. Figure 5 illustrates the number of vehicles classification for
each classifier to each class, while Table 4 presents the APC values achieved per class
per classifier.

5. Vehicles Count per Trained Classifier and Friis Formula over TMS-IL System Count

For the 3-classes classification case (low, medium, high speeds), the results in Figure 5
show that all classifiers follow the TMS-IL detection, and all, except decision tree, de-
tect more vehicles than the TMS-IL for medium speeds and fewer vehicles for low and
high speeds. The decision tree behaves inversely, detecting more vehicles at the medium
speed class.

Figure 5. The 3-classes vehicle count per class over TMS-IL count per class.

Comparing the Friis equation with classifiers, the APC results in Table 4 show that the
MLP classifier and Friis equation present similar performance results for a small number
of classes and outperform all other classifiers. Comparing Friis and MLP, MLP performs
better for a medium speed, while the Friis formula outperforms MLP for both low and high
speeds. Observing Table 4, it is apparent that all classifiers have APC values above 70%, set
as the acceptance criteria from the authors’ classifications process, except the random forest
and LGBM classifiers. The decision tree and extra trees classifiers also maintain above
70% classification accuracy results in terms of APC, which means that these algorithms,
along with Friis and MLP, can be selected as detection classifiers according to the authors’
classification process.
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Table 4. The 3-classes—classifiers ranking. Total APC per class and Friis equation total APC.

APC/Alg.—km/h: 20–66 67–102 103–160

Friis Eq. 0.90 0.97 0.91

MLP 0.80 0.97 0.98

ExtraTrees 0.70 0.96 0.89

DecisionTree 0.75 0.64 0.82

LGBM 0.24 0.91 0.77

RandomForest 0.17 0.94 0.61

5.1. Experimentation Using 4-Classes

In this experimental case, four classes of speed were selected, experimenting with
different classifiers. Figure 6 illustrates the number of classified vehicles per classifier to
each class, while Table 5 presents the APC values achieved per class per classifier.

Figure 6. The 4-classes vehicle count per class over TMS-IL count per class.

For the 4-classes classification case, the obtained results depicted in Figure 6 show that
the Friis equation can detect all the vehicles for low and high-speed classes. Nevertheless,
it erroneously detects most of the vehicles to the low-speed class, which in turn diminishes
the Friis APC as shown in Table 5. The Friis equation cannot discriminate among classes
of medium speeds, but it can accurately detect low- and high-speed classes. From all the
other classifiers, none can achieve more than 70% APC values (see Table 5), which means
that more training data are required to provide accurate results. The decision tree classifier
maintains a low 17% decrease in its APC value, while the random forest classifier presents
a 37% increase in its APC value. However, 20% less than the decision tree value and 10%
less than the MLP value is achieved.
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Table 5. The 4-classes—Classifiers ranking. Total APC per class and Friis equation total APC.

APC/Alg.—km/h: 20–54 55–89 90–124 125–160

DecisionTree 0.86 0.41 0.59 0.55

MLP 0.33 0.72 0.72 0.30

Friis Eq. 0.75 0.29 0.68 0.34

ExtraTrees 0.31 0.46 0.64 0.12

RandomForest 0.16 0.41 0.71 0.09

LGBM 0.18 0.40 0.60 0.01

5.2. Experimentation Using 6-Classes

In this experimental case, six classes of speed were determined, experimenting with
different classifiers. Figure 7 illustrates the number of classified vehicles per classifier to
each class, while Table 6 presents the APC values achieved per class per classifier.

Figure 7. The 6-classes vehicle count per class over TMS-IL count per class.

Table 6. The 6-classes—Classifiers ranking. Total APC per class and Friis equation total APC.

APC/Alg.—km/h: 20–42 43–66 67–89 90–112 113–136 137–160
DecisionTree 0.57 0.30 0.86 0.90 0.33 0.28
RandomForest 0.19 0.28 0.80 0.94 0.42 0.09
LGBM 0.09 0.49 0.56 0.96 0.44 0.04
Friis Eq. 0 0.77 0.11 0.52 0.33 0.28
MLP 0.14 0.11 0.37 0.77 0.09 0.09
ExtraTrees 0.23 0.20 0.56 0.01 0.29 0.09

For the 6-classes classification case, the derived results are shown in Figure 7 pinpoint-
ing that Friis misclassifies most of the vehicles to the low-speed classes and extra trees for
the class [90–113] km/h, followed by the MLP classifier. Both classifiers present worse
results than the Friis equation in terms of total APC as shown in Table 6. The Friis equation
successfully detects all the vehicles from classes [20–43] km/h and [137–160] km/h. How-
ever, due to the fact that it cannot easily discriminate vehicles to other classes and infers
that most of the vehicles are of the 1st class, it has an APC = 0 for that class (see Table 6).
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Decision tree, random forest, and light GBM manage to maintain APC values above
40%, with decision tree having the maximum mean APC value of 54.41%, followed by
random forest. It is also important to notice that for classes of [67–112] km/h, where most of
the vehicles reside according to TMS-IL, decision tree and random forest provide increased
APC results with accuracies above 80%. The same applies to the MLP classifier for class
[90–112] km/h. Increasing the number of observations per class in the training dataset will
increase the classification accuracy.

5.3. Experimentation Using Eight Classes

In this experimental case, the authors used eight classes of speed, experimenting with
different classifiers. Figure 8 illustrates the number of classified vehicles for each classifier
to each class, while Table 7 presents the APC values achieved per class per classifier.

Figure 8. The 8-classes vehicle count per class over TMS-IL count per class.

For the 8-classes classification case, Friis and MLP present the worst total APC values (see
Table 7), close to 25%. Friis has most of its values at classes [20–35] and [38–55] km/h, as shown
in Figure 8. Similarly, as shown in Table 7, random forest and extra trees present similar
accuracy values of less than 40%. Light GBM and decision tree maintain the maximum
APC values, with the decision tree outperforming light GBM by 15%. MLP and extra trees
do not provide good accuracy results, and in most classes, Friis outperforms them. In
addition, Friis presents above 70% accuracy results for the high-speed class and detects all
vehicles for the low-speed class. Nevertheless, the misclassification of most of the speed
results to the lowest class remains, thus having an APC = 0.

Table 7. The 8-classes—Classifiers ranking. Total APC per class and Friis equation total APC.

APC/Alg.—km/h: 20–37 38–54 55–71 72–89 90–107 108–124 125–141 142–160

DecisionTree 0.21 0.88 0.75 0.61 0.58 0.64 0.2 0.06

LGBM 0.05 0.31 0.57 0.7 0.90 0.35 0.28 0.19

RandomForest 0.1 0.27 0.15 0.93 0.65 0.22 0.23 0.37

ExtraTrees 0.16 0.27 0.22 0.06 0.64 0.32 0.19 0.35

Friis Eq. 0 0.15 0.51 0.29 0.03 0.02 0.28 0.30

MLP 0.02 0.36 0.02 0.67 0.06 0.09 0.68 0.04
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5.4. Results Summary

Examining the above scenario cases, it is obvious that the Friis equation can be used
for low-speed classes (up to 20 km/h). It can also achieve similar high APC values for
high-speed classes (above 120 km/h). Since this is the case, prior to classification or for
the BLE device of the BL-detector, the Friis equation can be used to detect stranded people
inside tunnels in cases of emergency (smoke or fire). Table 8 summarizes the mean accuracy
recults taken from all classifiers for 3, 4, 6 and 8 classes accordingly.

Table 8. Summary table of classifiers’ accuracy ranking, based on APC, for different speed classes
(3, 4, 6, 8).

No Classes:
3 Classes 4 Classes 6 Classes 8 Classes

Selected Classifiers

DecisionTree 74.08% 60.91% 54.41% 49.97%

LGBM 64.36% 33.43% 43.49% 42.45%

RandomForest 34.68% 48.71% 45.68% 36.84%

ExtraTrees 85.46% 38.85% 23.23% 27.97%

MLP 92.41% 52.20% 26.79% 24.26%

Friis Eq. 93.32% 34.54% 33.89% 25.22%

The authors confirm their classification process by showing that in all cases (see
Table 8), a classifier can outperform the Friis equation and provide better accuracy if the
classifiers are successfully trained through a data-filtering supervised process, as proposed.
They also pinpoint that doubling the data for the training process up to six classes of speed
will increase the classifier’s accuracy above 70% for classes above 40 km/h and less than
120 km/h.

According to Table 8, the decision tree classifier presents the best accuracy, maintaining
above 50% accuracy in all cases, with minimum variations per class, followed by light GBM
and random forest. So in most cases, a tree-based classifier can provide robust classification
results, even with low data. The Friis equation is still the preferred option for extremely
low datasets or classes with limited data (speeds below 20 km/h or above 160 km/h). The
authors set future data acquisition, especially for speeds below 20 km/h, which accurately
represent people’s mobility inside tunnels.

Finally, detected variability of the APC among classes is because the amount of data
for the medium-speed classes is larger compared to low- or high-speed classes (to support
this claim, EU regulations forbid low- and high-speed vehicle movements inside tunnels).
As a result, the classifiers cannot acquire sufficient data to be trained correctly, due to the
lack of RSSI and TMS-IL measurements. The authors set the better evaluation and training
of their proposed classifiers for low- and high-speed classes as future work.

6. Conclusions

This paper presents a scaleable and distributed crowd-sensing Bluetooth system, called
BL-detector, and proposes a speed estimation process for vehicles using trained classifiers.
The proposed system functionality is based on a prototype BL-detector node with multiple
Bluetooth long-range and BLE short-range transceivers. The proposed system achieves
(a) the MIMO characteristics and AoA/AoD functionality of Bluetooth 5.2 and (b) long-
range coverage area, ten times bigger than the coverage area of a BLE device. Furthermore,
the system has been implemented to sense people and vehicles moving inside the motorway
tunnels exits.

The proposed system can also trigger alerts since it is placed above the tunnel exits
and interfaces with the motorway resources management system, which includes outputs
connecting with audio and visual actuators, such as loud spouts and LED stripes in
proximity to the tunnel exits.
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Moreover, it can detect people in proximity and calculate the speed of passing ve-
hicles. Finally, focusing on speed accuracy, the authors noticed that the Friis equation
for speed estimations fail to provide accurate results, introducing variations due to the
tunnel environment. For this reason, the authors proposed a new speed calculation process
that utilizes the most accurate trained classifier, under supervised learning from another
motorway system called TMS-IL, installed at the tunnel openings and used for detecting
speed movements using classes of speed.

The evaluation process using classifiers has shown that the decision tree and random
forest classifiers manage to present significant detection results of above 35% and 50%
accuracy, accordingly. For several classes (above 8) and low, the Friis accuracy is less
than 25%. Below 20 km/h and above 120 km/h, where the data are limited, the Friis
formula can detect speed with a maximum accuracy of less than 35%. At the same time,
all other classifiers fail to detect more than 20%. Furthermore, algorithms such as decision
tree, random forest, and light GBM outperformed the Friis formula by achieving mean
accuracies up to 77% in classes where vehicle data are primarily concentrated. The authors
also noticed that the limited accuracy of their classification process was due to the shortage
of data (3 months of data) and pinpointed that their accuracy will further increase another
7–12% when their trained dataset doubles in terms of observations. Therefore, the authors
confirmed the functionality of their proposed system and their classification process’ ca-
pability of providing accurate results; they set the evaluation of their system with a new
trained dataset and the deployment of more BL-detector end nodes as future work.
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Abbreviations
The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy

ADR
European Agreement concerning the
International Carriage of Dangerous Goods by Road

UWB Ultra WideBand
AoA Angle of Arrival
AoD Angle of Departure
TDoA Time Difference of Arrival
TWR Two Way Ranging
TMS-IL SCADA Traffic Management System-Inductive Loops
RMS Authors’ implementation of EGNATIA motorway Resources Management System
VPN Virtual Private Network
PoE Power over Ethernet
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LTE Long-Term Evolution
MLP Multi-Layer Perceptron Classifier
LGBM Light Gradient Boosting Classifier
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