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Abstract: In this paper, the question of how to efficiently sample the field radiated by a circumference
arc source is addressed. Classical sampling strategies require the acquisition of a redundant number
of field measurements that can make the acquisition time prohibitive. For such reason, the paper aims
at finding the minimum number of basis functions representing the radiated field with good accuracy
and at providing an interpolation formula of the radiated field that exploits a non-redundant number
of field samples. To achieve the first task, the number of relevant singular values of the radiation
operator is computed by exploiting a weighted adjoint operator. In particular, the kernel of the related
eigenvalue problem is first evaluated asymptotically; then, a warping transformation and a proper
choice of the weight function are employed to recast such a kernel as a convolution and bandlimited
function of sinc type. Finally, the number of significant singular values of the radiation operator is
found by invoking the Slepian–Pollak results. The second task is achieved by exploiting a Shannon
sampling expansion of the reduced field. The analysis is developed for both the far and the near
fields radiated by a 2D scalar arc source observed on a circumference arc.

Keywords: field sampling; number of degrees of freedom (NDF); singular values decomposition
(SVD); conformal source

1. Introduction

The question of sampling the field radiated by a source or the one scattered by an
object is a classical research topic of the electromagnetics literature [1–9].

On one hand, a proper sampling of the radiated/scattered field allows representing
the field from the knowledge of its samples in a discrete and finite number of points. On the
other, it allows acquiring independent information to address the correspondent inverse
source/inverse scattering problem [10,11].

In this paper, the attention is limited to the sampling of the radiated field E which is
linked to the source current J by a linear operator T called radiation operator.

1.1. Literature Review

Classical sampling schemes of the radiated field for the case of planar [12], cylindri-
cal [13] and spherical scanning [14] were proposed. Despite this, such schemes do not take
into account explicitly the source shape; for such reason, they require collecting a number of
field measurements that may be significantly higher than the number of degrees of freedom
(NDF) of the radiated field [15,16]. The latter represents the number of independent param-
eters required to represent the radiated field with good accuracy and, at the same time, the
minimum number of field measurements required to reconstruct the source current stably.

The acquisition of a number of field samples larger than the number of degrees of
freedom affects badly the acquisition time and also the processing time to interpolate the
field samples or to retrieve the source current. For such a reason, it is of great interest to
devise a sampling scheme that exploits a non-redundant number of field measurements.
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To reduce the number of measurements, over the years different sampling schemes
have been proposed. A first strategy is based on an adaptive procedure that increases
the sampling rate only when the measured field oscillates faster [17]. In [18], an efficient
sampling scheme suitable for any source enclosed in an ellipsoid is devised by exploiting
reasoning on the local bandwidth of the reduced field. Such a sampling scheme can be
used also for the planar disk and spherical sources that can be seen as particular cases of
the ellipsoidal source.

Recently, a new method that exploits the point spread function (PSF) in the observation
domain has been proposed in [19]. Such a method relies on the idea that two adjacent
points are independent if the main lobes of the PSFs centered in such points do not overlap
and, hence, are distinguishable from each other.

Other methods recast the question of efficiently sampling the radiated field as a sensor
selection problem and choose the optimal sampling points in such a way that the radiation
operator and its discrete counterpart exhibit the same relevant singular values. Such a goal
can be achieved by exploiting a numerical procedure that optimizes a metric related to the
singular values [20–22] or, alternatively, by an analytical study and a proper discretization
of the radiation operator [23–25].

1.2. Goal of the Paper

Here, with reference to a 2D geometry consisting of a circumference arc source whose
radiated field is collected on a circumference observation arc, the minimum number of
measurements required to discretize the radiated field without loss of information is first
determined. From the mathematical point of view, this implies an evaluation of the NDF of
the source over the assigned observation domain. This task is performed by computing
analytically the number of relevant singular values of the radiation operator with the
asymptotic approach proposed in [25]. Next, an efficient interpolation formula of the
radiated field is found by exploiting a sampling representation of the left singular functions
of the radiation operator.

Let us remark that the optimal locations of the sampling points and an efficient
interpolation formula of the field radiated by a circumference arc source are provided also
in [19] by a numerical procedure. Here, instead, the optimal sampling points and the basis
functions used in the interpolation stage of the radiated field are analytically found. This
allows highlighting the key role played by the geometric parameters of the problem.

The paper is organized as follows. In Section 2, the geometry of the problem and
the explicit expression of the radiation operator in the case of an observation domain in
far-field and near-field is provided. In Section 3, an outline of our sampling strategy is
shown. In Section 4, the NDF and an efficient interpolation formulation of the far field are
derived. In Section 5, all the results of Section 4 are extended to the case of an observation
domain in near field. In Section 6, for sake of comparison, a sampling scheme based on a
uniform sampling step is considered and the number of measurements points saved by our
non-uniform sampling scheme with respect to the uniform case is estimated. In Section 7, a
numerical validation of our analytical results on the NDF and the field sampling is shown.
Conclusions follow in Section 8.

2. Geometry of the Problem

Consider the 2D scalar geometry depicted in Figure 1 where the y-axis represents
the direction of invariance. An electric current J(φ) = J(φ) iy is supported over an arc of
circumference of radius a spanning the interval SD = [−φmax, φmax].
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Figure 1. Geometry of the problem.

The electric field E(r, θ) = E(r, θ) iy radiated by such source is observed on an arc of
circumference of radius ro > a that subtends an angular sector OD = [−θmax, θmax].

For the considered geometry, the radiation operator T is defined as

J ∈ L2(SD)→ E ∈ L2(OD) (1)

where L2(SD) and L2(OD) denotes the set of square integrable functions on SD and OD,
respectively. Apart some unessential factors, such operator can be explicitly written as

TJ = a
∫ φmax

−φmax
g(φ, θ) J(φ) dφ (2)

where the 2D Green function g(φ, θ) is given by

g(φ, θ) =


e−jβR(φ,θ)√

βR(φ,θ)
i f ro > a + λ

ejβa cos (θ−φ) i f ro >
4a2

λ

(3)

with
R(φ, θ) =

√
r2

o + a2 − 2a ro cos(φ− θ) (4)

Since the radiation operator T is linear and compact, its singular values decomposition
can be introduced. The latter is provided by the triple {un, vn, σn} where the right singular
functions {un} and the left singular functions {vn} represent a set of basis functions for the
density current J and the radiated field E, instead, {σn} stand for the singular values. As
well known, the right and the left singular functions are related by the following equations

Tun = σnvn T†vn = σnun (5)
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where T† stands for the adjoint operator. Hereafter, the adjoint operator is not defined
as usual since a weight function p(θ, φ) is introduced in its definition. In other words,
T† : vn ∈ L2(OD)→ un ∈ L2(SD) is defined as

T†vn(θ) = a
∫ θmax

−θmax
p(θ, φ) g∗(φ, θ) vn(θ)dθ (6)

with g∗ denoting the conjugate of the Green function.
It is worth noting that the use of a weighted adjoint affects only the shape of the

singular values behavior of T but not the critical index after which they abrupt decay. For
such reason, it can be used to estimate the most significant singular values of the radiation
operator.

3. Outline of the Sampling Strategy

In this section, the methodology followed in the paper is described and an outline of
such methodology is sketched in the block diagram of Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 21 
 

 

with 𝑔∗ denoting the conjugate of the Green function. 
It is worth noting that the use of a weighted adjoint affects only the shape of the 

singular values behavior of 𝑇 but not the critical index after which they abrupt decay. For 
such reason, it can be used to estimate the most significant singular values of the radiation 
operator. 

3. Outline of the Sampling Strategy 
In this section, the methodology followed in the paper is described and an outline of 

such methodology is sketched in the block diagram of Figure 2. 

 
Figure 2. Block diagram of the study. 

The first aim of the paper is to provide a closed form expression of the NDF of the 
radiated field. The NDF is estimated by evaluating the number of relevant singular values 
of the radiation operator. In particular, since the eigenvalues of the auxiliary operator 𝑇𝑇ற 
are the square of the singular values of 𝑇, the number of relevant singular values of the 
radiation operator will be evaluated by studying the eigenvalue problem 𝑇𝑇ற𝑣௡ = 𝜎௡ଶ𝑣௡. 
The latter can be explicitly written as 𝑎ଶ න  𝐾(𝜃௢, 𝜃) 𝑣௡(𝜃) 𝑑𝜃ఏ೘ೌೣିఏ೘ೌೣ = 𝜎௡ଶ 𝑣௡(𝜃௢) (7)

Figure 2. Block diagram of the study.



Electronics 2022, 11, 270 5 of 21

The first aim of the paper is to provide a closed form expression of the NDF of the
radiated field. The NDF is estimated by evaluating the number of relevant singular values
of the radiation operator. In particular, since the eigenvalues of the auxiliary operator TT†

are the square of the singular values of T, the number of relevant singular values of the
radiation operator will be evaluated by studying the eigenvalue problem TT†vn = σ2

nvn.
The latter can be explicitly written as

a2
∫ θmax

−θmax
K(θo, θ) vn(θ) dθ = σ2

n vn(θo) (7)

where the kernel K(θo, θ) is given by

K(θo, θ) =
∫ φmax

−φmax
p(φ, θ) g(φ, θo) g∗(φ, θ)dφ (8)

Here, such a kernel is estimated by exploiting an asymptotic approach. After, by
exploiting a change of variables and proper choice of the weight function, such a kernel is
recast like a sinc kernel of convolution type multiplied by a phase exponential. Finally, by
redefining the eigenfunctions, the eigenvalues problem TT†vn = σ2

nvn is rewritten in a new
form with a purely sinc kernel. This allows exploiting the Slepian–Pollak theory to estimate
the number of relevant eigenvalues of TT† which, as said before, provides an estimation of
NDF of the radiated field.

The second aim of the paper is to provide the optimal sampling where the field must
be collected and an interpolation formula of the radiated field that exploits a non-redundant
number of field samples. To achieve this goal, the Shannon sampling theorem is adopted to
derive a sampling representation of the reduced field in the warped variable. Then, starting
from it, an efficient interpolation formula of the radiated field is easily obtained.

The study is developed not only for an observation arc in far-field but also for a
near-field configuration.

4. Optimal Sampling of the Far-Field

In this section, all the steps illustrated in Figure 2 are detailed to compute the NDF of
the far-field and to provide an interpolation formula that exploits a non-redundant number
of field samples.

4.1. Asymptotic Study of the Operator TT† in Far Zone

I. The kernel of the auxiliary operator TT† is particularized to the far-zone by substi-
tuting in (8) the far zone Green function. It follows that

K(θo, θ) =
∫ φmax

−φmax
p(φ, θ) e j β a Ψ(φ,θ,θo) dφ (9)

with
Ψ(φ, θo, θ) = cos(θo − φ)− cos(θ − φ) (10)

For θo = θ, the value of the kernel can be easily obtained by evaluating the integral∫ φmax
−φmax

p(φ, θ) dφ.
For θo 6= θ, the integral in (9) can be asymptotically evaluated if the condition βa� 1

is satisfied. The choice of the asymptotic technique is related to the presence/absence of
stationary points in the phase function Ψ(φ, θ, θo). In Appendix A, it is shown that if the
following condition holds

θmax + φmax ≤
π

2
(11)
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then no stationary points fall into the set [−φmax, φmax]. In such a case, the kernel in (9)
can be asymptotically evaluated by considering only the contribution by the endpoints
φ = φmax and φ = −φmax [26]. Accordingly, for each θo 6= θ it results that

K(θo, θ) ≈

p(φmax ,θ)
jβa Ψ′(φmax ,θo ,θ) ejβa Ψ(φmax ,θo ,θ) − p(−φmax ,θ)

jβa Ψ′(−φmax ,θo ,θ) ejβa Ψ(−φmax ,θo ,θ)
(12)

where Ψ′ denotes the partial derivative of Ψ with respect to φ, hence, Ψ′(φ, θo, θ) = sin(θo − φ)−
sin (θ− φ).

II. The kernel of TT† in the variables (θo, θ) is not convolution and this does not allow
to find easily its eigenvalues. To make TT† more similar to a convolution operator, it is first
recast as

K(θo, θ)

≈ 1
jβa ej βa

2 [Ψ(φmax ,θ0,θ)+Ψ(−φmax ,θo ,θ)]
(

p(φmax ,θ)
Ψ′(φmax ,θo ,θ) ej βa

2 [Ψ(φmax ,θo ,θ)−Ψ(−φmax ,θo ,θ)]

− p(−φmax ,θ)
Ψ′(−φmax ,θo ,θ) e−j βa

2 [Ψ(φmax ,θo ,θ)−Ψ(−φmax ,θo ,θ)]
) (13)

Then, the following variables

u(θ) =
cos(θ − φmax)− cos(θ + φmax)

2
(14)

w(θ) =
cos(θ − φmax) + cos(θ + φmax)

2
(15)

are introduced. Equations (14) and (15) allow rewriting the kernel of TT† as

K(uo, u) ≈ 1
jβa ej βa (w( uo)−w ( u ))

(
p(φmax ,u)

Ψ′(φmax ,uo ,u) ejβa ( uo−u ) − p(−φmax ,u)
Ψ′(−φmax ,uo ,u) e−jβa (uo−u)

) (16)

III. At this juncture, the kernel function has still an intricate structure. However, by
expanding Ψ′(φ, uo, u) with respect to the variable uo in a Taylor series stopped at the first
order, one obtains

Ψ′( φmax, uo, u) ≈ cos(θ(u)− φmax)(uo − u)
dθ

duo

∣∣∣∣
uo=u

(17)

Ψ′(−φmax, uo, u) ≈ cos(θ(u) + φmax)(uo − u)
dθ

dηo

∣∣∣∣
uo=u

(18)

Hence, taking into account of Equations (17) and (18), the kernel can be approximated as

K(uo, u) ≈ 1
jβa

1
dθ
du

ej βa (w(uo)−w(u))

uo−u(
p(φmax ,u)

cos(θ(u)−φmax)
ejβa (uo−u) − p(−φmax ,u)

cos(θ(u)+φmax)
e−jβa (uo−u)

) (19)

IV. Now, the weight function p(φ, u) must be chosen. The best choice for p(φ, u) is to
fix it in such a way that the eigenvalues of TT† are known in closed form. Such goal can be
reached by choosing

p(φ, u) = cos(θ(u)− φ) (20)

Then, the kernel can be recast as

K(uo, u) ≈ 2
1
dθ
du

ej βa (w (uo)−w (u)) sinc (βa (uo − u)) (21)
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where sinc uo = sin uo
uo

. Accordingly, in the variables (uo, u), the eigenvalue problem
TT†vn = σ2

nvn can be expressed as

2a2
∫ u(θmax)

u(−θmax)
ej βa (w(uo)−w(u)) sinc (βa (uo − u)) vn(u) du = σ2

n vn(uo) (22)

Let us note that the functions u(θ) and w(θ) introduced in (14) and (15) can be respec-
tively rewritten as u(θ) = sinφmax sin θ and w(θ) = cosφmax cos θ. Such variables, apart for
a scalar factor, are equal to the variables

u(θ) = sin θ w(θ) = cos θ (23)

commonly used in the study of far field problems. In the variables (uo, u), the eigenvalue
problem (23) becomes

2a2 sin φmax
∫ u(θmax)

u(−θmax)
ejβa cos φmax (w(uo)−w(u)) sinc(βa sin φmax(uo − u)) vn(u)du = σ2

n vn(uo) (24)

V. To evaluate the eigenvalues of TT†, let us fix

ṽn(uo) = e−j βa cos φmax w(uo) vn(uo), (25)

Then, the eigenvalue problem (24) can be recast in the simple and nice form

2a2sinφmax

∫ u(θmax)

u(−θmax)
sinc (βa sin φmax (uo − u)) ṽn(u) du = σ2

n ṽn(uo) (26)

4.2. NDF Evaluation and Interpolation of the Far Field

VI. In the seminal work of Slepian and Pollak [27], the eigenvalues of Equation (26)
have been deeply investigated. In particular, it has been shown that they exhibit a step-like
behavior with the knee occurring at the index

N =

[
2

βa
π

sinφmaxu(θmax)

]
(27)

where [ · ] stands for the integer part. Such a number provides the number of relevant
singular values of the radiation operator; hence, it can be taken as an estimation of the NDF
of the far-field. Accordingly, N is also the minimum number of basis functions required to
represent the far field with good accuracy. It is worth remarking that, when condition (11)
is satisfied, the NDF of the far field radiated by a circumference arc source is exactly equal
to that of the far field radiated by a strip source sharing the same endpoints of the arc.

VII. Once the minimum number of field samples has been established, let us provide
an interpolation formula of the radiated field. To this end, it is worth nothing that the
set of basis functions {ṽn(uo)} are bandlimited functions with a bandwidth βa sinφmax.
Accordingly, for each n ∈ N ṽn(uo) can be expressed through the following truncated
sampling series [28]

ṽn(uo) ≈ ∑
m ∈ I

ṽn(m ∆u) sinc(βa sin φmax uo −mπ) (28)

where

• ∆u = π
βa sin φmax

;

• I is the set containing all those indexes m such that m ∆u ∈ [u(−θmax), u(θmax)].

The set of functions {ṽn(uo)} represent a basis for the reduced field Ẽ(uo) which is
defined as

Ẽ(uo) = e−j βa cos φmax w(uo) E(uo) (29)
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Accordingly, also the reduced field can be expressed through the truncated sam-
pling series

Ẽ(uo) ≈ ∑
m ∈ I

Ẽ(m ∆u) sinc(βa sin φmax uo −mπ) (30)

VIII. Taking in mind of (29) and (30), it results that the far field can be written as

E(uo) ≈ e j βa cos φmax w(uo) ∑
m ∈ I

Ẽ(m ∆u) sinc(βa sin φmaxuo −mπ) (31)

from which follows that

E(uo) ≈

e j βa cos φmax w(uo) ∑
m ∈ I

E(m ∆u) e−j βa cos φmax w(m∆u) sinc(βa sin φmaxuo −mπ)
(32)

The latter represents an interpolation formula of the far field based on the Shannon
sampling series of the reduced field. It is worth noting that the number of sampling points
falling into the interval [u(−θmax), u(θmax)] (or [−θmax, θmax]) can be easily computed by
the equation

NSH = 2
[

u(θmax)

∆u

]
+ 1 = 2

[
βa
π

sin φmaxsinθmax

]
+ 1 (33)

Such a number is called Shannon number and it is essentially equal to the NDF of the
far field. This means that the interpolation Formula (33) exploits a non-redundant number
of field samples. Moreover, from Equation (33), it is evident that the optimal sampling
points of the far field in the variable uo are given by

uom = m
π

βa sin φmax
(34)

Hence, in the variable θo the optimal sampling points satisfy the equation

θom = asin
(

mπ

βasinφmax

)
(35)

Accordingly, since the transformation uo = sin θo is nonlinear, the uniform sampling
in the variable uo is mapped into a non-uniform sampling in the variable θo.

5. Optimal Sampling of the near Field

In this section, all the steps shown in Figure 2 are repeated to evaluate the NDF and to
provide an efficient interpolation formula of the near field.

5.1. Asymptotic Study of the of the Operator TT† in Near Zone

I. To study the kernel of TT† in near zone, let us rewrite it in a more explicit form
by substituting the near zone Green function in (8). From this substitution, the following
integral comes out

K(θo, θ) =
∫ φmax

−φmax
p(φ, θ)

e−jβ [ R(φ,θo)−R(φ,θ) ]

β R1/2(φ, θo) R
1
2 (φ, θ)

dφ (36)

In order to evaluate such integral, let us fix

• A(φ, θo, θ) = R−
1
2 (φ, θo) R−

1
2 (φ, θ),

• Φ(φ, θo, θ) = [R(φ, θo)− R(φ, θ)]/a.
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Then, (36) can be rewritten as

K(θo, θ) =
1
β

∫ φmax

−φmax
p(φ, θ) A(φ, θo, θ) e−jβa Φ(φ,θo ,θ) dφ (37)

At θo = θ, the kernel of TT† can be evaluated by computing the integral
1
β

∫ φmax
−φmax

p(φ, θ) A(φ, θ, θ) dφ.
For θo 6= θ, if the hypothesis βa� 1 is fulfilled, the integral (37) can be asymptotically

evaluated. To establish if stationary phase points appear in the phase function, the equation
Φ′(φ, θo, θ) = 0 must be solved for φ. The latter can be explicitly written as

Φ′(φ, θ, θo) =
ro sin( θ − φ)

R(φ, θ)
− ro sin(θo − φ)

R(φ, θo)
= 0 (38)

Unfortunately, the previous equation cannot be analytically solved. For such reason,
here, the attention is limited to all those cases where the geometrical parameters are such
that no stationary points appear in the set [−φmax, φmax]. In particular, through a numerical
analysis, it has been shown that

• fixing the source angle φmax, the θ interval for which no stationary points appear on
the source increases with the ratio ro/a.

• fixing the ratio ro/a, the θ interval for which no stationary points appear on the source
decreases with the source angle φmax.

This behavior can be observed in the tables of the Appendix B. From such tables, it
is evident that in near zone the condition for the lack of stationary points in Φ (φ, θo, θ) is
given by

θmax + φmax ≤ C
( ro

a

)
(39)

where C is a function depending on the ratio ro
a whose values are reported in Table 1.

Table 1. Values of C in terms of ro
a .

ro
a C( ro

a )

1.4 0.70 (40◦)
1.6 0.87 (50◦)
2 1.05 (60◦)
4 1.22 (70◦)
8 1.40 (80◦)
15 1.48 (85◦)

Accordingly, C
( ro

a
)

is a monotonic function and its diagram is shown in Figure 3.
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For all the configurations in which no stationary points appear in the phase function Φ,
the integral in (37) can be evaluated by considering only the contributions by the endpoints.
Then, it results that for each θo 6= θ

K(θo, θ) ≈ − 1
jβ2a

[
p(φmax, θ)

A(φmax ,θo ,θ)
Φ′(φmax ,θo ,θ) e−jβa Φ(φmax ,θo ,θ)

−p(−φmax, θ)
A(−φmax ,θo ,θ)
Φ′(−φmax ,θo ,θ) e−jβa Φ(−φmax ,θo ,θ)

] (40)

II. In order to recast the kernel in a form more similar to a known convolution kernel,
let us rewrite it as

K(θo, θ) ≈ − 1
jβ2a e−j βa

2 (Φ(φmax ,θ,θ0)+ Φ(−φmax ,θ,θ0))

( p(φmax ,θ) A(φmax ,θ,θo)
Φ′(φmax ,θ,θo)

ej βa
2 (Φ(−φmax ,θ,θ0)−Φ(+φmax ,θ,θ0))

− p(−φmax ,θ)A(−φmax ,θ,θo)
Φ′(−φmax ,θ,θo)

e−j βa
2 (Φ(−φmax ,θ,θ0)−Φ(φmax ,θ,θ0)))

(41)

Then, let us introduce the following functions

η(θ) =
R(−φmax, θ)− R(φmax, θ)

2a
(42)

γ(θ) =
R(−φmax, θ) + R(φmax, θ)

2a
(43)

which allow recasting the kernel as

K(ηo, η) ≈ − 1
jβ2a e−j βa (γ(ηo)−γ(η))

(
p(φmax ,η) A(φmax ,ηo ,η)

Φ′(φmax ,ηo ,η) ej βa (ηo−η)

− p(−φmax ,η)A(−φmax ,ηo ,η)
Φ′(−φmax ,ηo ,η) e−j βa (ηo−η)

) (44)

III. The kernel function (44) has still an intricate structure. However, if the numerator
and the denominator of amplitude term A

Φ′ are expanded with respect to the variable ηo in
a Taylor series truncated to the first order, the amplitude term can be simplified as below

A(φ,ηo ,η)
Φ′(φ,ηo ,η) ≈

R2(η,φ)
ro[ a ro sin2(θ(η)−φ)−R2(η,φ) cos(θ(η)−φ )]

1
(ηo−η) dθ

dηo

∣∣∣
ηo=η

(45)

IV. At this juncture, if the weight function p(η, φ) is chosen as

p(η, φ) =
ro
[

a ro sin2(θ(η)− φ)− R2(η, φ) cos(θ(η)− φ )
]

R2(η, φ)
(46)

the kernel can be recast as

K(ηo, η) ≈ − 2
β

1
dθ
dη

e−j βa (γ(ηo)−γ(η))sinc(βa(η − ηo) (47)

Accordingly, in the variable (η, ηo) the eigenvalues problem in (8) can be expressed as

− 2a2

β

∫ η(θmax)
η(−θmax)

1
dθ
dη

e−j βa (γ(ηo)−γ(η)) sinc(βa(η − ηo) vn(η)
dθ
dη dη = σ2

n vn(ηo) (48)

from which follows that

− 2a2

β

∫ η(θmax)

η(−θmax)
e−j βa (γ(ηo)−γ(η)) sinc(βa(η − ηo) vn(η) dη = σ2

n vn(ηo) (49)
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V. Now, by fixing
ṽn(ηo) = e j βa γ(ηo) vn(ηo), (50)

the eigenvalues problem (49) can be rewritten in the simple and nice form

− 2a2

β

∫ η(θmax)

η(−θmax)
sinc (βa (ηo − η)) ṽn(η) dη = σ2

n ṽn(ηo) (51)

5.2. NDF Estimation and Interpolation of the near Field

VI. The eigenvalues of (51) can be found by resorting again to [27]. Accordingly, it
is possible to state that the eigenvalues of (51) exhibit a step-like behavior with the knee
occurring at the index

N =

[
2

βa
π

η(θmax)

]
(52)

This number provides an estimation of the NDF of the near-field. Let us highlight that,
when no stationary points appear in the integral (38), the NDF of the far-field radiated by a
circumference arc source has the same mathematical expression of that of the near-field
radiated by a strip source (see Equation (25) in [21]).

VII. At this juncture an interpolation formula of the near-field is provided. Since the
set of basis functions {ṽn(ηo)} are bandlimited functions with a bandwidth βa, for each
n ∈ N ṽn(ηo) can be expressed through the following truncated sampling series

ṽn(ηo) ≈ ∑
m ∈ I

ṽn(m ∆η) sinc(βa ηo −mπ) (53)

where

• ∆η = π
βa ;

• I is the set containing all those index m such that m ∆η ∈ [η(−θmax), η(θmax)].

The set of functions {ṽn(ηo)} represent a basis for the reduced field

Ẽ(ηo) = e j βa γ(ηo) E(ηo) (54)

Accordingly, it can be expressed by the following truncated sampling expansion

Ẽ(ηo) ≈ ∑
m ∈ I

Ẽ(m ∆η) sinc(βa ηo −mπ) (55)

VIII. At this juncture, taking into account of (54) and (55), the near field can be
approximated as below

E(ηo) ≈ e−j βa γ(ηo) ∑
m ∈ I

Ẽ(m ∆η) sinc( βa ηo −mπ ) (56)

Since Ẽ(m ∆η) = e j βa γ(m ∆η) E(m ∆η), Equation (56) can be rewritten as

E(ηo) ≈ e−j βa γ(ηo) ∑
m ∈ I

E(m ∆η) e j βa γ(m∆η) sinc(βa ηo −mπ) (57)

the previous equation provides an interpolation formula of the near field based on a
Shannon sampling series of the reduced field. The number of field samples used by (57) is
equal to the Shannon number which is given by

NSH = 2
[

η(θmax)

∆η

]
+ 1 = 2

[
βa
π

η(θmax)

]
+ 1 (58)
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accordingly, also in the case of observation domain in near field, the Shannon number is
exactly equal to the NDF. From Equation (57), it can be noted that the optimal locations of
the sampling points in the variable ηo are given by

ηom = m
π

βa
(59)

hence, in the variable θo the optimal sampling points of the near-field can be found by
solving numerically the equation√

r2
o + a2 − 2a ro cos(−φmax − θo)−

√
r2

o + a2 − 2a ro cos(φmax − θo) = m
2π

β
(60)

naturally, since the transformation ηo = η(θo) is nonlinear, the uniform sampling in the
variable ηo is mapped into a non-uniform sampling in the variable θo. In particular, the
optimal field samples are denser for small values of |θo| whereas their step is larger when
|θo| approaches to θmax.

6. Comparison between Non-Uniform and Uniform Sampling

In the previous section, a non-uniform sampling scheme for the far field and the near
field has been shown. Here, for sake of comparison, a more standard sampling scheme
based on a uniform sampling is recalled from the literature. It is well known that the field
radiated by a source enclosed in a circle of radius a can be expressed in a series of Fourier
harmonics or periodic Dirichlet functions. In particular, if the observation domain is a
full circumference (θ ∈ [−2π, 2π]), the number of terms of such series can be truncated to
Nupper = 2[βa] + 1 where [βa] stands for the integer part of βa [29]. Instead, if the radiated
field is observed on a limited angular interval [−θmax, θmax], a number of terms

Nupper = 2
[

βa
π

θmax

]
+ 1 (61)

is sufficient to represent the radiated field with good accuracy [10].
Accordingly, if the observation domain is a limited arc extending on the angular sector

[−θmax, θmax], the field radiated by a source enclosed in a circle of radius a can be expressed
as below

E(θo) ≈
No

∑
m=No

E(θm) DMo (θo − θom) (62)

where

• No =
[

βa
π θmax

]
• DNo (θo) =

1
2No+1

sin( π
θmax (No+

1
2 ) θo )

sin( π
θmax

1
2 θo )

is the Dirichlet function

• {θom} are the sampling points uniformly spaced over the observation arc, hence,
θom = −θmax + m∆θ with ∆θ = 2θmax

Nupper
and m ∈

{
1, 2, . . . , Nupper

}
.

Now, it is possible to quantify the percentual reduction of field samples P of the
present non-uniform sampling scheme when it is compared with the uniform sampling
strategies. The latter is given by

P =

(
1− NSH

Nupper

)
· 100% (63)
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Accordingly, it results that the percentual reduction of field samples for the far-field and
the near field can be approximated as below

P ≈
{

[1− sinφmax sinc(θmax)] · 100% for far− field(
1− η(θmax)

θmax

)
· 100% for near− field

. (64)

7. Numerical Validation

In this section, the NDF evaluation and the interpolation formula of the radiated
field provided in Sections 4 and 5 are validated by a numerical analysis. Moreover, the
non-uniform sampling strategies developed for the far field and the near field are compared
with the uniform sampling strategies described in Section 6. In such comparison, the misfit
between the exact field and its approximation provided by the interpolation is measured
by the relative error

e =
||E− Eint||
||E|| (65)

with ||· || denoting the Euclidean norm. In all the cases, the exact field E will be that
provided by Equation (2) while the interpolated field Eint will be provided by (32), (57) or
(62), according to the type of considered sampling (either non-uniform or uniform).

The numerical validation of the analytical results is provided in two subsections: the
first concerning the far field sampling, the second one regarding the near-field sampling.

7.1. Far-Field Sampling Validation

In this section, a numerical check of the analytical results for the far field is provided. A cir-
cumference arc source of radius a = 20λ spanning the interval [−φmax, φmax] = [− 35◦, 35◦]
is considered. The density current of the source is chosen as

J(φ) = e−jβa cos (θ∗−φ) (66)

where θ∗ = 15◦. As is well known, such current radiates an electric field focusing at θ = θ∗. The
far field is observed on a circumference arc spanning the interval [−θmax, θmax] = [−50◦, 50◦].

In Figure 4, the actual singular values of the radiation operator T are compared with
the ones obtained by considering the weighted adjoint.
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As it is clear from Figure 4, the use of a weighted adjoint changes the behavior of the
singular values but not the index at which they decay abruptly. The latter is predicted
by (27) which, in the considered test case, returns N = 35 in perfect agreement with the
diagrams in Figure 4. In Figure 5, the optimal sampling points of the far-field in the variable
θ are shown. They are non-uniformly arranged along the observation domain. In particular,
the sampling step is minimum around the direction θ = 0◦, whereas it increases by moving
towards the directions θ = ±θmax.
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In Figure 5, the exact far-field computed by means of the equation E(θ) = TJ(φ) is
compared with the field returned by the interpolation Formula (32).

As can be seen from Figure 6, despite the interpolation Formula (32) exploits a number
of samples that is as low as possible (only NSH = 35 non-uniform field samples are used for
the interpolation), the interpolated field agrees very well with the exact field and e = 0.028.
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In order to highlight the better performance of the non-uniform sampling with respect
to the uniform one, in Figure 7 also the far field obtained by the interpolation of uniform
samples is sketched. In particular, the blue line shows the field interpolated starting from
NSH = 35 uniform field samples while the green dashed one shows the one obtained from
Nupper = 71 samples.
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As can be seen from Figure 7, NSH = 35 uniform field samples are not sufficient to
approximate the exact far field and e =0.814. On the contrary, Nupper = 71 uniform field
samples allow to approximate well the exact far field with a relative error e = 0.029. From
this numerical test, it is evident that only the non-uniform sampling scheme allows to
achieve a good accuracy by employing a number of field samples equal to the NDF. The
uniform sampling scheme can achieve the same accuracy as the non-uniform strategy, but
it requires a larger number of field samples. In the considered example, the use of the
non-uniform sampling strategy allows a reduction of the field measurements P = 51%.

7.2. Near-Field Sampling Validation

In this section, some numerical experiments related to the analytical results for the
near-field are sketched. A circumference arc source with a = 20λ and φmax = 25◦ is
considered. The source current is chosen as in (66) with θ∗ = 10◦. The radiated field
is observed on a circumference arc with ro = 40λ and θmax = 35◦. With reference to
such a configuration, in Figure 8 the actual singular values of the radiation operator T are
compared with those obtained by considering the weighted adjoint.
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introducing the weighted adjoint. The diagrams refer to the configuration a = 20λ, φmax = 25◦,
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As can be seen from Figure 8, the number of relevant singular values is the same for
both the diagrams and equal to 28. The latter is well estimated by Equation (52).

In Figure 9, the non-uniform arrangement in the variable θ of the optimal sampling
points of the near field is sketched.
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Figure 9. Optimal position of the far-field samples in the variable θ. The diagram refers to the
configuration a = 20λ, φmax = 25◦, θmax = 35◦.

In Figure 10, the exact far-field computed by the equation E(θ) = TJ(φ) and the
interpolated field of (57) are sketched.

As illustrated in Figure 10, despite the interpolation Formula (57) exploits a number
of field samples essentially equal to the NDF (only NSH = 29 non-uniform field samples
are used for the interpolation), the interpolated field approximates very well the exact
field and the relative error e is equal to 0.026. The better performances of the non-uniform
sampling can be noted by observing the interpolation of the near field obtained from
uniform samples which is sketched in Figure 11. In particular, in Figure 11 it is shown in
blue the field interpolated starting from NSH = 29 uniform field samples while in black
that obtained from Nupper = 51 uniform samples.
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Figure 10. Comparison between the far-field computed by the radiation model in (3) and the far-
field returned by the interpolation Formula (57). The diagram refers to the configuration a = 20λ,
φmax = 25◦, ro = 40λ, θmax = 35◦.
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Figure 11. Comparison between the exact near field, the near field obtained by the interpolation of
NSH = 29 uniform samples and the near field obtained by the interpolation of Nupper = 51 uniform
samples. The diagram refers to the configuration a = 20λ, φmax = 25◦, ro = 40λ, θmax = 35◦.

As can be seen from Figure 11, the interpolation of the near field obtained with only
NSH = 29 uniform field samples is not very accurate and the relative error is equal to 0.294.
On the contrary, the interpolation obtained with Nupper = 71 approximates well the near
field with a relative error e = 0.034. Accordingly, also for the near field the non-uniform
sampling scheme allows to achieve the same accuracy with a lower number of field samples.
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In the considered example, the use of the non-uniform sampling strategy allows to reach
P = 43%.

8. Conclusions

In this paper, an optimal sampling strategy of the field radiated by a 2D current
supported over a circumference arc source has been developed. In particular, through an
analytical study of the relevant singular values of the radiation operator, the minimum
number of sampling points required to sample the radiated field without loss of information
has been first found. Then, starting from a sampling representation of the reduced field, an
interpolation formula of the radiated field that exploits a non-redundant number of field
samples has been provided. The developed sampling strategy allows us to reach the same
accuracy in the field interpolation of the uniform sampling scheme with a lower number
of field measurements. This is very important in practical cases since a reduction of the
number of field measurements allows reducing the acquisition time in near-field testing
techniques which is dominated by the mechanical positioning of the field probe. The only
limitation of the developed sampling method is the fulfillment of condition (11) for the
far-field and condition (39) for the near-field.

Future developments concern the extension of the proposed sampling strategy to the
cases of other conformal sources with a different shape and more realistic scenarios involv-
ing 3D geometries. Moreover, another possible extension regards the case of phaseless
measurements [30–32].
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Appendix A

In this appendix the mathematical condition (11) ensuring the absence of stationary
points in the phase function Ψ(φ, θo, θ) = cos(θo − φ)− cos(θ − φ) is derived. A possible
stationary point φs is solution of the equation Ψ(φs, θo, θ) = 0, that is

sin(θo − φs)− sin(θ − φs) = 0 (A1)

By resorting to sum-to-product identity for trigonometric functions (A1) recasts as

2sin
(

θo − θ

2

)
cos
(

φs −
θo + θ

2

)
= 0 (A2)

which, excluding the case θo = θ, is generally verified when

φs =
θo + θ + π

2
+ mπ, m = 0± 1,±2, . . . (A3)

Thus, the interval [−φmax, φmax] is devoid of all the stationary points when they fall
outside this interval, namely when

|φs| > φmax (A4)
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From (A3) one can note that once m is fixed, since θ and θ0 are at most equal to π/2,
the values of φs fall into the interval [mπ, (m + 1)π]. Limiting the analysis to the interval
[−π,π], condition (A4) translates into the condition

θ + θ0 + π

2
> φmax ∪

θ + θ0 − π

2
< −φmax , (A5)

where m = 0 in the left condition obtained for positive values of φs and m = −1 in the
right condition for negative values of φs. The left condition rewrites as

θ + θ0 > 2φmax − π , (A6)

and, to be always verified, the smallest possible value of θ + θ0 should be larger than
2φmax − π, that is

− 2θmax > 2φmax − π (A7)

Analogously, the right condition is always satisfied when the larger possible value of
θ + θ0 (that is 2θmax) is less than π− 2φmax. Hence, both the conditions lead to the final
condition.

θmax + φmax <
π

2
(A8)

Appendix B

In this appendix, with reference to three different values of φmax, the limit angle θmax
under which no stationary points appear in the phase function Φ (φ, θo, θ) is found by a
numerical analysis. In particular, the cases φmax = {0.35 (20◦), 0.52 (30◦), 0.7 (40◦)} are
respectively considered in Tables A1–A3.

Table A1. Maximum value of θmax such that no stationary points appear in Φ (φ, θo, θ) when
φmax = 0.35 (20◦).

ro/a Maximum Value of θmax Such
That no Stationary Points Appear in Φ (φ, θ, θo)

1.4 0.35 (20◦)
1.6 0.52 (30◦)
2 0.70 (40◦)
4 0.87 (50◦)
8 1.05 (60◦)
15 1.13 (65◦)

Table A2. Maximum value of θmax such that no stationary points appear in Φ (φ, θo, θ) when
φmax = 0.52 (30◦).

ro/a Maximum Value of θmax Such
That no Stationary Points Appear in Φ (φ, θ, θo)

1.4 0.17 (10◦)
1.6 0.35 (20◦)
2 0.52 (30◦)
4 0.70 (40◦)
8 0.87 (50◦)
15 0.96 (55◦)
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Table A3. Maximum value of θmax such that no stationary points appear in Φ (φ, θo, θ) when
φmax = 0.7 (40◦).

ro/a Maximum Value of θmax Such
That no Stationary Points Appear in Φ (φ, θ, θo)

1.6 0.17 (10◦)

2 0.35 (20◦)

4 0.52 (30◦)

8 0.70 (40◦)

15 π/4 (45◦)

The results in the Tables A1–A3 have been obtained by numerically solving the sta-
tionary condition (39) with respect to φ for each value of ro/a and for each couple (θo, θ).
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