
Citation: Deo, A.; Palade, V.

Switching Trackers for Effective

Sensor Fusion in Advanced Driver

Assistance Systems. Electronics 2022,

11, 3586. https://doi.org/10.3390/

electronics11213586

Academic Editor: Felipe Jiménez

Received: 29 September 2022

Accepted: 30 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Switching Trackers for Effective Sensor Fusion in Advanced
Driver Assistance Systems
Ankur Deo 1,2 and Vasile Palade 2,*

1 Department of Autonomous Driving, KPIT Technologies, Pune 411057, India
2 Centre for Computer Science and Mathematical Modelling, Coventry University, Priory Road,

Coventry CV1 5FB, UK
* Correspondence: ab5839@coventry.ac.uk

Abstract: Modern cars utilise Advanced Driver Assistance Systems (ADAS) in several ways. In ADAS,
the use of multiple sensors to gauge the environment surrounding the ego-vehicle offers numerous
advantages, as fusing information from more than one sensor helps to provide highly reliable and
error-free data. The fused data is typically then fed to a tracker algorithm, which helps to reduce noise
and compensate for situations when received sensor data is temporarily absent or spurious, or to
counter the offhand false positives and negatives. The performances of these constituent algorithms
vary vastly under different scenarios. In this paper, we focus on the variation in the performance of
tracker algorithms in sensor fusion due to the alteration in external conditions in different scenarios,
and on the methods for countering that variation. We introduce a sensor fusion architecture, where the
tracking algorithm is spontaneously switched to achieve the utmost performance under all scenarios.
By employing a Real-time Traffic Density Estimation (RTDE) technique, we may understand whether
the ego-vehicle is currently in dense or sparse traffic conditions. A highly dense traffic (or congested
traffic) condition would mean that external circumstances are non-linear; similarly, sparse traffic
conditions would mean that the probability of linear external conditions would be higher. We
also employ a Traffic Sign Recognition (TSR) algorithm, which is able to monitor for construction
zones, junctions, schools, and pedestrian crossings, thereby identifying areas which have a high
probability of spontaneous, on-road occurrences. Based on the results received from the RTDE and
TSR algorithms, we construct a logic which switches the tracker of the fusion architecture between an
Extended Kalman Filter (for linear external scenarios) and an Unscented Kalman Filter (for non-linear
scenarios). This ensures that the fusion model always uses the tracker that is best suited for its current
needs, thereby yielding consistent accuracy across multiple external scenarios, compared to the fusion
models that employ a fixed single tracker.

Keywords: ADAS; sensor fusion; tracking; real time traffic density estimation; traffic sign recognition;
Unscented Kalman filter; Extended Kalman filter

1. Introduction

An accurate and robust environment detection model is essential for autonomous
vehicle driving. To construct such a model, usually a myriad of sensors—such as LiDAR
(Light Detection and Ranging), ultrasonic sensors, RaDAR (Radio Detection and Ranging),
and cameras—are used [1]. Different sensors have their own pros and cons. For example,
a RaDAR sensor may detect the presence of an object as far as 100 metres away and
determine its speed relative to the ego-vehicle. However, while RaDAR excels at object
detection, object classification is a difficult task [2]. A camera sensor is well-suited where
object classification is important, such as when reading traffic sign and lane information
for the purpose of driving algorithms such as Traffic Sign Recognition and Lane Keep
Assist. A camera may also be used to complement the RaDAR for features such as Front
Collision Detection [1,2]. However, in the circumstances of low light and bad weather

Electronics 2022, 11, 3586. https://doi.org/10.3390/electronics11213586 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213586
https://doi.org/10.3390/electronics11213586
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0187-4573
https://orcid.org/0000-0002-6768-8394
https://doi.org/10.3390/electronics11213586
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213586?type=check_update&version=1

Electronics 2022, 11, 3586 2 of 25

(rainy, snowy, and foggy environments), a camera is typically limited in its performance. In
such cases, a LiDAR sensor proves beneficial as it is immune to ambient light and captures
a larger range [3]. However, a LiDAR cannot detect visual colours; therefore, while it may
detect objects and their distance from the ego-vehicle seamlessly under most circumstances,
object classification is better achieved with a camera [1,3]. Thus, all automotive sensors
possess certain associated advantages and disadvantages. Sensor fusion techniques, on the
other hand, leverage the output provided by multiple sensors; as a result, they are more
reliable and error-free, compared to the techniques that employ a single sensor to gauge
the environment [2,3].

Several studies on the topic of multi-object sensor fusion and tracking are available
in the public domain [2,4,5]. In a typical target-level sensor fusion architecture, all target
objects are independently tracked once the data from multiple sensors is associated or
fused [6]. This step, as shown in Figure 1, is required to obtain continuity and consistency
in the detected objects.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 27

Front Collision Detection [1,2]. However, in the circumstances of low light and bad
weather (rainy, snowy, and foggy environments), a camera is typically limited in its per-
formance. In such cases, a LiDAR sensor proves beneficial as it is immune to ambient light
and captures a larger range [3]. However, a LiDAR cannot detect visual colours; therefore,
while it may detect objects and their distance from the ego-vehicle seamlessly under most
circumstances, object classification is better achieved with a camera [1,3]. Thus, all auto-
motive sensors possess certain associated advantages and disadvantages. Sensor fusion
techniques, on the other hand, leverage the output provided by multiple sensors; as a re-
sult, they are more reliable and error-free, compared to the techniques that employ a sin-
gle sensor to gauge the environment [2,3].

Several studies on the topic of multi-object sensor fusion and tracking are available
in the public domain [2,4,5]. In a typical target-level sensor fusion architecture, all target
objects are independently tracked once the data from multiple sensors is associated or
fused [6]. This step, as shown in Figure 1, is required to obtain continuity and consistency
in the detected objects.

.

Figure 1. Target-level fusion architecture [5,7].

Overall, there are a variety of algorithms, present in today’s technological world, that
may be used for object detection, fusion, and tracking. While there are multiple fusion
architectures, for our work, we follow a target-level sensor fusion architecture (also
known as centralised fusion architecture) for ease of application and experimentation, as
described in the work presented by Deo et al. [5]. There are multiple works which provide
data regarding which tracking algorithms work best under specific external scenarios. For
example, for a reliable object detection and fusion algorithm, while the Extended Kalman
Filter works best for linear scenarios (where the change of the position of the detected
object relative to the ego-vehicle is slow, such as in the sparse traffic on highways and
long stretches of road), the Unscented Kalman Filter works best for highly dynamic sce-
narios (where there is a constant influx and outflux of detected road objects, and where
these objects are moving randomly and quite quickly relative to the ego-vehicle, such as
in urban junctions) [6]. In any vehicular journey, both scenarios are equally likely to oc-
cur—sometimes even in a short span of time. In fact, in standard vehicle-in-the-loop test
cycles, both scenarios form critical constituents [7]. It may thus be seen that a fusion archi-
tecture cannot favour one kind of scenario over the other and must be designed with a
variation of scenarios in mind. Hence, it is a necessity that a sensible sensor fusion archi-
tecture takes advantage of more than one tracking algorithm, by efficiently switching be-
tween multiple trackers on a real-time basis, to provide an accurate output under all sce-
narios. Considering this problem statement, in this paper, we build a logic which switches
between the Extended Kalman Filter and the Unscented Kalman Filter, based on the real-
world traffic density surrounding the ego-vehicle, and the ego-vehicle’s type of

Figure 1. Target-level fusion architecture [5,7].

Overall, there are a variety of algorithms, present in today’s technological world, that
may be used for object detection, fusion, and tracking. While there are multiple fusion
architectures, for our work, we follow a target-level sensor fusion architecture (also known
as centralised fusion architecture) for ease of application and experimentation, as described
in the work presented by Deo et al. [5]. There are multiple works which provide data
regarding which tracking algorithms work best under specific external scenarios. For
example, for a reliable object detection and fusion algorithm, while the Extended Kalman
Filter works best for linear scenarios (where the change of the position of the detected
object relative to the ego-vehicle is slow, such as in the sparse traffic on highways and long
stretches of road), the Unscented Kalman Filter works best for highly dynamic scenarios
(where there is a constant influx and outflux of detected road objects, and where these
objects are moving randomly and quite quickly relative to the ego-vehicle, such as in
urban junctions) [6]. In any vehicular journey, both scenarios are equally likely to occur—
sometimes even in a short span of time. In fact, in standard vehicle-in-the-loop test cycles,
both scenarios form critical constituents [7]. It may thus be seen that a fusion architecture
cannot favour one kind of scenario over the other and must be designed with a variation
of scenarios in mind. Hence, it is a necessity that a sensible sensor fusion architecture
takes advantage of more than one tracking algorithm, by efficiently switching between
multiple trackers on a real-time basis, to provide an accurate output under all scenarios.
Considering this problem statement, in this paper, we build a logic which switches between
the Extended Kalman Filter and the Unscented Kalman Filter, based on the real-world traffic
density surrounding the ego-vehicle, and the ego-vehicle’s type of environment (such as
construction zone, pedestrian crossing, junctions, etc.) according to the data derived by the
Real-time Traffic Density Estimation (RTDE) and Traffic Sign Recognition (TSR) algorithms.
We use the KITTI dataset for all experimental validations of the proposed method.

Electronics 2022, 11, 3586 3 of 25

In this paper, we first introduced the topic and the problem statement in Section 1.
In Section 2, background works and research in key related areas are presented. Then,
the sensor fusion architecture with the tracker switching technique using Real-time Traffic
Density Estimation (RTDE) and Traffic Sign Recognition (TSR) for obtaining optimum
performance is introduced and analysed in Section 3. The conclusion is presented in
Section 4.

2. Material and Methods

In this paper, we focus on the technique to switch between different tracking algo-
rithms in real-time to achieve optimum performance from the fusion architecture under
all scenarios. The fusion architecture is considered to consist of three sensors—camera,
RaDAR, and LiDAR. In order to switch between multiple tracking algorithms, we use a
logic employing the TSR and the RTDE. Accordingly, first, we discuss the background
research and details in the field of camera, RaDAR, and LiDAR object detection and data
fusion; we then move our focus to the EKF and the UKF as trackers. We focus on their
properties, advantages, and disadvantages. Later, we discuss the work performed in the
fields of the TSR and RTDE techniques.

2.1. Dataset

The KITTI dataset was used in this work for camera, LiDAR, and RaDAR sen-
sor data experimentation and analysis. This dataset is used for evaluating the perfor-
mances of the detection and tracking algorithms. The KITTI dataset, available at: http:
//www.cvlibs.net/datasets/kitti/ (as accessed on 22 August 2022), consists of data that is
temporally synchronised by default. Hence, the only care we are required to take regards
the ‘spatial synchronisation’ of sensor data. After the data is synchronised spatially by
using transformation matrices, a comparison of the output of the fusion block with the
KITTI’s ground-truth data suggests the accuracy of the algorithm under test. The KITTI
dataset also provides a variety of traffic data for testing under numerous circumstances.
The dataset is open source and the granular data may be converted to ‘rosbag’, thereby
simplifying the importation of the data in a Linux-supported ROS-based environment. The
dataset also provides support for importing data in the form of MATLAB utility functions;
this makes it easy for the simulation and validation of algorithms. Due to these advantages,
the KITTI dataset was chosen for this work over other available datasets.

2.2. Camera, RaDAR and LiDAR Sensor Fusion

Different object detection algorithms that are available possess their own strengths
and weaknesses. When any algorithm is to be executed on an embedded platform, it is
important to evaluate its time and space complexity to understand the performance [6,8].
While some algorithms excel in the speed of execution, others might lead to a more ac-
curate result. It is, therefore, of utmost importance to achieve a fine balance between the
speed of execution, the accuracy of detection, and the computational complexity of the
algorithm [8]. In this paper, for the purpose of gauging the performance of the tracker
algorithm under multiple scenarios, we have used some standard off-the-shelf LiDAR,
camera, and RaDAR detection algorithms, namely, YOLOv4 for camera object detection
as implemented by Kumar et al. [9], a RaDAR based object detection methodology as
worked upon by Manjunath et al. [10], and DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) for LiDAR object detection, which is similar to that developed
by Deng et al. [11]. As explained earlier in Section 1, we shall use the target-level sensor
fusion model, as worked upon by Deo et al. [5], for fusing the sensor data.

2.2.1. Camera Object Detection—YOLOv4

There are several popular techniques for object detection in images and videos, such as
the Single Shot Detector (SSD), the techniques based on convolutional neural networks (Fast
R-CNN, Faster R-CNN, etc.), Histogram of Gradients (HOG), You Only Look Once (YOLO),

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/

Electronics 2022, 11, 3586 4 of 25

and the region-based convolutional neural network-based methods. It must be noted,
however, that compared to other object detection algorithms, YOLO is a faster and simpler
algorithm, providing a high speed of execution and demanding less computational prowess.
This leads to a good performance of the object detection algorithm whilst minimising the
cost of the hardware upon which it is executed. As a result, we selected the YOLO based
algorithms for this work.

For camera object detection, we used the YOLOv4 algorithm, which is an improved
version of the previously well-optimised YOLOv3 [9]. The goal was to improve the exe-
cution speed alongside the optimised performance compared to YOLOv3, which ensures
that a single GPU should be sufficient for training an object detector with real-time high
accuracy and performance. The YOLOv4 algorithm for object detection provides the neces-
sary freedom of configuration; at the same time, it is computationally lighter than other
algorithms like YOLOv5, while still leading to acceptable results [12]. As a result, it con-
tinues to be the most widely used object detection algorithm [9]. In this paper, we use the
YOLOv4 algorithm as worked upon by Kumar et al. [9], which is described in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 27

2.2.1. Camera Object Detection—YOLOv4
There are several popular techniques for object detection in images and videos, such

as the Single Shot Detector (SSD), the techniques based on convolutional neural networks
(Fast R-CNN, Faster R-CNN, etc.), Histogram of Gradients (HOG), You Only Look Once
(YOLO), and the region-based convolutional neural network-based methods. It must be
noted, however, that compared to other object detection algorithms, YOLO is a faster and
simpler algorithm, providing a high speed of execution and demanding less computa-
tional prowess. This leads to a good performance of the object detection algorithm whilst
minimising the cost of the hardware upon which it is executed. As a result, we selected
the YOLO based algorithms for this work.

For camera object detection, we used the YOLOv4 algorithm, which is an improved
version of the previously well-optimised YOLOv3 [9]. The goal was to improve the exe-
cution speed alongside the optimised performance compared to YOLOv3, which ensures
that a single GPU should be sufficient for training an object detector with real-time high
accuracy and performance. The YOLOv4 algorithm for object detection provides the nec-
essary freedom of configuration; at the same time, it is computationally lighter than other
algorithms like YOLOv5, while still leading to acceptable results [12]. As a result, it con-
tinues to be the most widely used object detection algorithm [9]. In this paper, we use the
YOLOv4 algorithm as worked upon by Kumar et al. [9], which is described in Figure 2.

Figure 2. Architecture of YOLOv4 algorithm.

2.2.2. LiDAR Object Detection—DBSCAN
In the case of LiDAR, a DBSCAN algorithm is used to detect objects surrounding the

ego-vehicle. This algorithm iterates over all LiDAR-generated points in the frame. Typi-
cally, clustering LiDAR point-cloud data is extremely useful in several ADAS applications
which require real-time object detection and classification. Density-based clustering algo-
rithms work on a principle which groups the target objects based on their density—objects
are within high-density regions and separated by low-density regions, which usually con-
sist of noise or objects with which we are not particularly interested [13]. Such a charac-
teristic makes them a suitable candidate for LiDAR point cloud clustering. The DBSCAN
algorithm does not require a prior assignment for the number of clusters [13], which is a
typical scenario in dynamic environments like self-driving environments. In this algo-
rithm, the software constructs a set of points which are reachable by density from an ar-
bitrary point. This process is repeated for all points in the point cloud. It computes the
neighbourhood of a particular set point, and if this neighbourhood contains more than a
certain number of points, it is included in the target region [13,14]. All the neighbouring
points are made to pass through this process until the algorithm is no longer able to in-
crease the expanse of the cluster. If the considered point is not seen to be an interior one,
that is, if there is an absence of enough neighbouring points, it is classified as ‘noise’. This
mechanism makes the DBSCAN algorithm robust to outlier points [14,15]. In this paper,
we use the DBSCAN algorithm for LiDAR object detection as worked upon by Deng et al.
[11] and Yabroudi et al. [15]. The DBSCAN process for LiDAR object detection may be
seen in Figure 3.

Figure 2. Architecture of YOLOv4 algorithm.

2.2.2. LiDAR Object Detection—DBSCAN

In the case of LiDAR, a DBSCAN algorithm is used to detect objects surrounding the
ego-vehicle. This algorithm iterates over all LiDAR-generated points in the frame. Typically,
clustering LiDAR point-cloud data is extremely useful in several ADAS applications which
require real-time object detection and classification. Density-based clustering algorithms
work on a principle which groups the target objects based on their density—objects are
within high-density regions and separated by low-density regions, which usually consist of
noise or objects with which we are not particularly interested [13]. Such a characteristic
makes them a suitable candidate for LiDAR point cloud clustering. The DBSCAN algorithm
does not require a prior assignment for the number of clusters [13], which is a typical
scenario in dynamic environments like self-driving environments. In this algorithm, the
software constructs a set of points which are reachable by density from an arbitrary point.
This process is repeated for all points in the point cloud. It computes the neighbourhood
of a particular set point, and if this neighbourhood contains more than a certain number
of points, it is included in the target region [13,14]. All the neighbouring points are made
to pass through this process until the algorithm is no longer able to increase the expanse
of the cluster. If the considered point is not seen to be an interior one, that is, if there
is an absence of enough neighbouring points, it is classified as ‘noise’. This mechanism
makes the DBSCAN algorithm robust to outlier points [14,15]. In this paper, we use
the DBSCAN algorithm for LiDAR object detection as worked upon by Deng et al. [11]
and Yabroudi et al. [15]. The DBSCAN process for LiDAR object detection may be seen in
Figure 3.

Electronics 2022, 11, 3586 5 of 25Electronics 2022, 11, x FOR PEER REVIEW 5 of 27

Figure 3. DBSCAN-based LiDAR object detection.

In Figure 3, ‘Eps’ signifies the maximum distance between the points in a cluster, and
‘MinPts’ signifies the minimum size of points necessary to form a cluster.

2.2.3. RaDAR Object Detection
In typical automotive applications, multiple objects are present in the field of view of

the front RaDAR sensor, and the ultimate goal is to detect and track each relevant target
object. To address this task, Kellner et al. [16] developed a technique which states the es-
timation of the presence of target objects using a doppler RaDAR sensor. This technique,
however, may only be used for a single sensor. Khalil et al. [17] and Manjunath et al. [10]
shed light on a postprocessing architecture that is an evolved version of the algorithm
presented by Kellner et al. [16]. This model may be used to detect and track more than one
object in the field of view of RaDAR.

In this work, we follow a postprocessing architecture worked upon by Manjunath et
al. [10]. The general architecture used to address the task of RaDAR object detection is as
stated in Figure 4.

Figure 3. DBSCAN-based LiDAR object detection.

In Figure 3, ‘Eps’ signifies the maximum distance between the points in a cluster, and
‘MinPts’ signifies the minimum size of points necessary to form a cluster.

2.2.3. RaDAR Object Detection

In typical automotive applications, multiple objects are present in the field of view of
the front RaDAR sensor, and the ultimate goal is to detect and track each relevant target
object. To address this task, Kellner et al. [16] developed a technique which states the
estimation of the presence of target objects using a doppler RaDAR sensor. This technique,
however, may only be used for a single sensor. Khalil et al. [17] and Manjunath et al. [10]
shed light on a postprocessing architecture that is an evolved version of the algorithm
presented by Kellner et al. [16]. This model may be used to detect and track more than one
object in the field of view of RaDAR.

In this work, we follow a postprocessing architecture worked upon by Manjunath
et al. [10]. The general architecture used to address the task of RaDAR object detection is as
stated in Figure 4.

2.3. Trackers—EKF and UKF

Tracking is essential for obtaining the trajectory data of any detected object/objects
and for further estimating its/their state in the presence of noise or temporary loss of data.
In general, tracking algorithms consist of three main steps: data association, object position
prediction, and object track management [18]. Different approaches exist for updating the
state of detected object(s); however, the most preferred and easy-to-implement method
is the ‘Bayesian state estimation’ (for example: the Kalman filter and various versions
of it, such as the Unscented Kalman filter, the Extended Kalman filter, etc.) [18,19]. The
functionality of a Bayesian state estimator may be seen in Figure 5. The object management
step takes care of the appearance (object birth) and disappearance (object deletion from

Electronics 2022, 11, 3586 6 of 25

the object list) of the detected object/objects from the target list. The object prediction step
estimates the position of an object based on its current and past positions. Once the latest
position of an object is available, the data association block calculates the error between the
estimated position and the real position of the object. This error value is further used by
the tracker to better predict the state of object in the next step.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 27

Figure 4. Post-processing-based RaDAR object detection.

2.3. Trackers—EKF and UKF
Tracking is essential for obtaining the trajectory data of any detected object/objects

and for further estimating its/their state in the presence of noise or temporary loss of data.
In general, tracking algorithms consist of three main steps: data association, object posi-
tion prediction, and object track management [18]. Different approaches exist for updating
the state of detected object(s); however, the most preferred and easy-to-implement
method is the ‘Bayesian state estimation’ (for example: the Kalman filter and various ver-
sions of it, such as the Unscented Kalman filter, the Extended Kalman filter, etc.) [18,19].
The functionality of a Bayesian state estimator may be seen in Figure 5. The object man-
agement step takes care of the appearance (object birth) and disappearance (object dele-
tion from the object list) of the detected object/objects from the target list. The object pre-
diction step estimates the position of an object based on its current and past positions.
Once the latest position of an object is available, the data association block calculates the
error between the estimated position and the real position of the object. This error value
is further used by the tracker to better predict the state of object in the next step.

Figure 5. Architecture of multi-object tracking.

The basic premise of the Extended Kalman Filter (hereby referred to as the EKF) is as
follows: calculate the first-order nonlinear Taylor expansion around the estimated posi-
tion of the detected target object, and then transform the nonlinear system into a linear
equation [19,20]. The EKF is very commonly used in filter systems and the calculation is

Figure 4. Post-processing-based RaDAR object detection.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 27

Figure 4. Post-processing-based RaDAR object detection.

2.3. Trackers—EKF and UKF
Tracking is essential for obtaining the trajectory data of any detected object/objects

and for further estimating its/their state in the presence of noise or temporary loss of data.
In general, tracking algorithms consist of three main steps: data association, object posi-
tion prediction, and object track management [18]. Different approaches exist for updating
the state of detected object(s); however, the most preferred and easy-to-implement
method is the ‘Bayesian state estimation’ (for example: the Kalman filter and various ver-
sions of it, such as the Unscented Kalman filter, the Extended Kalman filter, etc.) [18,19].
The functionality of a Bayesian state estimator may be seen in Figure 5. The object man-
agement step takes care of the appearance (object birth) and disappearance (object dele-
tion from the object list) of the detected object/objects from the target list. The object pre-
diction step estimates the position of an object based on its current and past positions.
Once the latest position of an object is available, the data association block calculates the
error between the estimated position and the real position of the object. This error value
is further used by the tracker to better predict the state of object in the next step.

Figure 5. Architecture of multi-object tracking.

The basic premise of the Extended Kalman Filter (hereby referred to as the EKF) is as
follows: calculate the first-order nonlinear Taylor expansion around the estimated posi-
tion of the detected target object, and then transform the nonlinear system into a linear
equation [19,20]. The EKF is very commonly used in filter systems and the calculation is

Figure 5. Architecture of multi-object tracking.

The basic premise of the Extended Kalman Filter (hereby referred to as the EKF)
is as follows: calculate the first-order nonlinear Taylor expansion around the estimated
position of the detected target object, and then transform the nonlinear system into a linear
equation [19,20]. The EKF is very commonly used in filter systems and the calculation is
easy to be implemented. However, Taylor expansion belongs to linear processes; therefore,
the results of the EKF will be close to the true value only when the system status and
observation equations are close to linear and continuous [21]. In addition, the filtering
result is affected by status and measurement noise [20,21]. Furthermore, If the noise
covariance matrix is not estimated accurately enough, the cumulative error may lead to
the divergence of the filter to an extent where a significant variation of the results from
the ground truth data is seen [22]. As a result, the EKF leads to reliable results in ADAS
algorithms under linear scenarios only [21,22]. While the latest developments in the EKF
do tackle this problem to some extent, the EKF is still fundamentally built to perform best

Electronics 2022, 11, 3586 7 of 25

under linear scenarios [23,24]. Such scenarios include sparse traffic scenarios on highways,
where vehicles are moving with constant speed with limited variation of their speed and
with their position relative to the ego-vehicle.

On the other hand, the Unscented Kalman Filter (hereby referred to as the UKF), is
a method that applies the sampling strategy that is close to nonlinear distribution [23]. It
uses the linear Kalman filter framework based on the Unscented Transform (UT) and uses
a definite sampling strategy instead of a random sampling strategy [24]. The total number
of sampling points in the UKF, also defined as ‘Sigma-points’, is small and are dependent
upon the sampling strategy. The processing steps of the UKF include:

1. Initialise the status vector and status estimation error covariance;
2. Select the sampling points according to the status vector and error covariance, and

calculate the weighted value;
3. Calculate the mean and covariance propagation through the equation of status, and

update the sampling time by the selected sampling points;
4. Finish the measurement update through a nonlinear observation equation by the

selected sampling points;
5. Update the Kalman filter coefficients.

Compared with the EKF, the UKF is more reliably implemented for non-linear scenar-
ios and avoids calculating Hessian and Jacobian matrices [24]. With these benefits, the UKF
offers convenience for real-time processing platforms for driving ADAS algorithms under
non-linear scenarios. In general, the UKF-based tracking achieves successful tracking and
feature mapping in an augmented reality environment [25].

As mentioned in the work by St-Pierre et al. [26], the authors have proven that the
UKF’s performance is better (albeit with a higher computing-power requirement) than the
EKF when used as a fusion method in a positioning module of an integrated navigation
information system, which is predominantly a non-linear system. We may further extend
their conclusion and use the UKF as a tracker in ADAS algorithms for non-linear external
scenarios. From Chen et al. [6], we learn that if an object surrounding an ego-vehicle
takes abrupt turns (that is, demonstrates inherently nonlinear behaviour relative to the
ego-vehicle), the nonlinear movement cannot be well-handled by the EKF framework.
According to St-Pierre et al. [26], an UKF-based tracking algorithm may be used to optimise
the nonlinear moving paths of the objects with occlusion. The UKF estimates both the
location and velocity information of moving objects, and finally provides more accurate
location information compared to the EKF. However, as stated by Wan et al. [27] and
St-Pierre et al. [26], the UKF is computationally heavier than the EKF and, as a result, is
slower to execute on any hardware platform.

Thus, theoretically, for a highly linear scenario, such as on a highway with sparse
traffic, when vehicles are moving at lesser speed relative to each other, an EKF is bound to
provide better results; while in an urban scenario with many variations and non-linearities,
the UKF shall provide sound and reliable results [28,29]. Our experiments corroborate
with these observations. It must be noted that recent developments in predictive filters
can provide a more robust immunity against the noise present in systems like inertial
navigation systems [29] and several ADAS applications [30]. However, at the same time,
the principle that the UKF is more robust to non-linearities than the EKF remains true,
as it is proven by recent advancements in UKF-based applications and its fine-tuning for
autonomous vehicles, both conventional and otherwise [31,32]. In this work, we use the
EKF and the UKF to prove the proposed concept of tracker switching. These trackers
may be later replaced by any modified versions, such as the Modified Strong Tracking
Unscented Kalman Filter (MSTUKF) [32]. Such techniques have been developed to avoid
the loss of accuracy in estimation for scenarios involving the presence of spontaneous noise
in the system [33,34]. Another technique to improve the performance of the UKF is also
presented by Gao et al. [33], where the adaptive UKF is shown by combining the maximum
likelihood principle and the moving horizon estimation technique. Using such techniques
eliminates the limitations of the UKF caused by unknown real-time system noises [33,34].

Electronics 2022, 11, 3586 8 of 25

The metric used to evaluate the performance of various Kalman filters is the Overlap
Ratio (OR). The OR signifies the final overlap ratio in the percentage of the predicted and
real object detection boxes; that is, it is the ratio of the intersection area of the predicted and
real boxes to the union of area of the two boxes [21]. The maximum value, in the case of
a perfect overlap, is 100%, and the minimum value, in the case of no overlap, is 0%. This
value is used to reflect the closeness between the tracking result and the real object, also
known as the success rate, which may be expressed by the following Equation (1):

OR in % = {[Area (Detected ∩ Ground-truth)]/[Area(Detected ∪ Ground-truth)]} × 100 (1)

Thus, the EKF and the UKF both have their advantages and disadvantages. In our
research, we construct an architecture which leverages the advantages of both these trackers,
such that the right tracker is chosen by analysing the environment. For this analysis, we
use the Traffic Sign Recognition and the Real-time Traffic Density Estimation algorithms,
both of which are explained in the next sections.

2.4. Traffic Sign Recognition

According to Fan et al. [35], a typical traffic sign detection algorithm consists of several
applications in modern day ADAS. In the TSR algorithm, firstly, candidate regions are
detected using the colour features of the pixels in the detection step. Following this, the
cascaded feedforward neural networks with random weights (FNNRW) classifiers are used
for shape and content recognition [36]. The experimental results indicate that the average
running time of the whole system is less than 10 ms (which would imply the real-time
basis of the algorithm), with high accuracy. Our results later corroborate with this. The
work performed by Prakash et al. [36] also presents a technique wherein the accuracy of
the TSR algorithm may be as high as 99% by using optimum deep learning methodologies.
In our case, we shall use the off-the-shelf software base as worked upon by Fan et al. [35]
to present the concept. The algorithm is able to classify detected road signs; as a result,
it is possible to know whether the ego-vehicle is near any construction zones, pedestrian
crossing zones, school zones, traffic signals, or junctions. We shall use this data to our
advantage. Several examples of the emergency signs are shown in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 27

Figure 6. Examples of emergency traffic signs.

The TSR algorithm may be divided into two main parts—Detection and Classifica-
tion. The functionality of this algorithm is shown in Figure 7.

Figure 7. TSR algorithm [27].

2.5. Real-Time Traffic Density Estimation
From a traffic engineering perspective, density is an important macroscopic param-

eter of urban and highway traffic flow. Traffic density is defined as the number of vehicles
per unit length of roadway segment [37]. It may be calculated in two steps: vehicle recog-
nition and counting. Considerable efforts have been made to detect traffic density sur-
rounding the ego-vehicle, based on the available sensor data. Most traffic management
systems are based on a point detector such as the loop detector; therefore, it is still difficult
to accurately estimate the traffic density based on a roadway section [37,38]. However, in
recent years, with the increasing number of vehicles equipped with several sensor sys-
tems—such as cameras and RaDARs—this is changing to include new traffic environ-
ments that may easily collect traffic data by using various vehicle sensors. From this per-
spective, the use of sensor information offers new opportunities for traffic density estima-
tion [39,40].

Figure 6. Examples of emergency traffic signs.

The TSR algorithm may be divided into two main parts—Detection and Classification.
The functionality of this algorithm is shown in Figure 7.

Electronics 2022, 11, 3586 9 of 25

Electronics 2022, 11, x FOR PEER REVIEW 9 of 27

Figure 6. Examples of emergency traffic signs.

The TSR algorithm may be divided into two main parts—Detection and Classifica-
tion. The functionality of this algorithm is shown in Figure 7.

Figure 7. TSR algorithm [27].

2.5. Real-Time Traffic Density Estimation
From a traffic engineering perspective, density is an important macroscopic param-

eter of urban and highway traffic flow. Traffic density is defined as the number of vehicles
per unit length of roadway segment [37]. It may be calculated in two steps: vehicle recog-
nition and counting. Considerable efforts have been made to detect traffic density sur-
rounding the ego-vehicle, based on the available sensor data. Most traffic management
systems are based on a point detector such as the loop detector; therefore, it is still difficult
to accurately estimate the traffic density based on a roadway section [37,38]. However, in
recent years, with the increasing number of vehicles equipped with several sensor sys-
tems—such as cameras and RaDARs—this is changing to include new traffic environ-
ments that may easily collect traffic data by using various vehicle sensors. From this per-
spective, the use of sensor information offers new opportunities for traffic density estima-
tion [39,40].

Figure 7. TSR algorithm [27].

2.5. Real-Time Traffic Density Estimation

From a traffic engineering perspective, density is an important macroscopic parameter
of urban and highway traffic flow. Traffic density is defined as the number of vehicles per
unit length of roadway segment [37]. It may be calculated in two steps: vehicle recognition
and counting. Considerable efforts have been made to detect traffic density surrounding
the ego-vehicle, based on the available sensor data. Most traffic management systems are
based on a point detector such as the loop detector; therefore, it is still difficult to accurately
estimate the traffic density based on a roadway section [37,38]. However, in recent years,
with the increasing number of vehicles equipped with several sensor systems—such as
cameras and RaDARs—this is changing to include new traffic environments that may easily
collect traffic data by using various vehicle sensors. From this perspective, the use of sensor
information offers new opportunities for traffic density estimation [39,40].

Based on the work of Lee et al. [39], an estimation model was constructed based on the
data available from vehicle sensors like cameras and RaDAR. The first step here was to de-
velop a software module that could generate the error of distance measurement analogous
to real road driving. In the second step, this study conducted traffic simulation experiments
by combining the true distance value measured in the simulation, with the error value
calculated by the error-generating module of the first step. Finally, the evaluation procedure
was completed by comparing the estimation results of traffic density to the true density
value. The functionality of this algorithm may be seen in Figure 8.

With the development of various technologies for traffic condition monitoring, a num-
ber of studies have been conducted to estimate traffic density using advanced technologies.
It is proven that the use of on-vehicle devices of spacing measurement are highly reliable
for estimating traffic density [39,40]. Toward this effort, a method based on the vehicle-
to-vehicle distance, measured by probe vehicles equipped with ADAS, was developed by
Erdem et al. [40]. The key characteristic of this method was to estimate flow, density, and
speed from the ADAS vehicle sensors, and verify them with the probe vehicle data without
any assumptions regarding the traffic flow characteristics. In our research, however, we
shall be referring to the work performed by Lee et al. [39], and we will use the Real-time
Traffic Density Estimation algorithm developed by the authors to understand whether the
ego-vehicle is operating in a sparse or dense traffic environment.

Electronics 2022, 11, 3586 10 of 25

Electronics 2022, 11, x FOR PEER REVIEW 10 of 27

Based on the work of Lee et al. [39], an estimation model was constructed based on

the data available from vehicle sensors like cameras and RaDAR. The first step here was

to develop a software module that could generate the error of distance measurement anal-

ogous to real road driving. In the second step, this study conducted traffic simulation ex-

periments by combining the true distance value measured in the simulation, with the er-

ror value calculated by the error-generating module of the first step. Finally, the evalua-

tion procedure was completed by comparing the estimation results of traffic density to

the true density value. The functionality of this algorithm may be seen in Figure 8.

Figure 8. Traffic density estimation algorithm [40].

With the development of various technologies for traffic condition monitoring, a

number of studies have been conducted to estimate traffic density using advanced tech-

nologies. It is proven that the use of on-vehicle devices of spacing measurement are highly

reliable for estimating traffic density [39,40]. Toward this effort, a method based on the

vehicle-to-vehicle distance, measured by probe vehicles equipped with ADAS, was devel-

oped by Erdem et al. [40]. The key characteristic of this method was to estimate flow,

density, and speed from the ADAS vehicle sensors, and verify them with the probe vehicle

data without any assumptions regarding the traffic flow characteristics. In our research,

however, we shall be referring to the work performed by Lee et al. [39], and we will use

the Real-time Traffic Density Estimation algorithm developed by the authors to under-

stand whether the ego-vehicle is operating in a sparse or dense traffic environment.

3. Proposed Solution of Sensor Fusion with Tracker Switching

In our experiments, we analysed multiple sets of videos from the KITTI dataset in

highly dense and sparse traffic conditions. Dense traffic videos are those videos taken in

fully urban environments, typically at junctions, traffic jams, and traffic signals. These

videos have multiple scenarios consisting of traffic signals, pedestrians, cyclists, and nu-

merous vehicles in the near-field of the ego-vehicle. Sparse traffic scenarios consist of

highway and urban driving conditions, without any traffic jams and with a moderate

presence of surrounding road objects. The accuracy of the fusion architecture with fixed

Figure 8. Traffic density estimation algorithm [40].

3. Proposed Solution of Sensor Fusion with Tracker Switching

In our experiments, we analysed multiple sets of videos from the KITTI dataset in
highly dense and sparse traffic conditions. Dense traffic videos are those videos taken in
fully urban environments, typically at junctions, traffic jams, and traffic signals. These
videos have multiple scenarios consisting of traffic signals, pedestrians, cyclists, and nu-
merous vehicles in the near-field of the ego-vehicle. Sparse traffic scenarios consist of
highway and urban driving conditions, without any traffic jams and with a moderate
presence of surrounding road objects. The accuracy of the fusion architecture with fixed
tracker logic—first with the EKF and then with the UKF—is given in Table 1. The speed of
execution for the two architectures may be seen in Table 2.

Table 1. Accuracy of different fusion architecture with fixed tracker.

Video Scenario Extended Kalman Filter
OR (%)

Unscented Kalman Filter
OR (%)

100% Sparse traffic 66.8 57.12

100% Dense traffic 53.06 66.32

Table 2. Speed of different fusion architecture with fixed tracker.

Video Scenario Extended Kalman Filter
fps

Unscented Kalman Filter
fps

100% Sparse traffic 36.9 28.28

100% Dense traffic 22.5 20.13

All experiments are conducted on an intel i5-based Windows system with NVIDIA
GTX GeForce 1650 graphics card. If the hardware is changed or upgraded, the execution
time for the algorithms is also expected to change; however, the accuracy ratings are likely
to remain similar.

Electronics 2022, 11, 3586 11 of 25

3.1. Fusion Architecture with Single Fixed Tracker

Figure 9 shows the experimentation strategy that we have adapted to analyse the
efficacy of the real-time tracker switching algorithm as compared to the single tracker
fusion architecture.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 27

tracker logic—first with the EKF and then with the UKF—is given in Table 1. The speed
of execution for the two architectures may be seen in Table 2.

Table 1. Accuracy of different fusion architecture with fixed tracker.

Video Scenario
Extended Kalman Filter

OR (%)
Unscented Kalman Filter

OR (%)
100% Sparse traffic 66.8 57.12
100% Dense traffic 53.06 66.32

Table 2. Speed of different fusion architecture with fixed tracker.

Video Scenario Extended Kalman Filter
fps

Unscented Kalman Filter
fps

100% Sparse traffic 36.9 28.28
100% Dense traffic 22.5 20.13

All experiments are conducted on an intel i5-based Windows system with NVIDIA
GTX GeForce 1650 graphics card. If the hardware is changed or upgraded, the execution
time for the algorithms is also expected to change; however, the accuracy ratings are likely
to remain similar.

3.1. Fusion Architecture with Single Fixed Tracker
Figure 9 shows the experimentation strategy that we have adapted to analyse the

efficacy of the real-time tracker switching algorithm as compared to the single tracker fu-
sion architecture.

Figure 9. Steps followed for critical analysis of the fusion architecture with tracker switching. Figure 9. Steps followed for critical analysis of the fusion architecture with tracker switching.

To commence, we calculate the accuracy and execution time of the fusion architecture
with the fixed EKF and UKF tracker under fully dense and fully sparse traffic scenarios.
The videos in this case are chosen from scenarios in traffic jams at junctions (thereby leading
to 100% dense traffic scenario) and on highways with a smaller number of road occupants
surrounding the ego-vehicle (thereby leading to 100% sparse traffic scenario). This step
shall give us a good picture of the peak performance of the fusion architectures equipped
with either the UKF or the EKF.

All accuracy values in this case are derived by comparing the output of our algorithm
with the ground truth data provided in the KITTI dataset. Equation (1), as stated in
Section 2.3, is used to calculate the OR value. The ground truth data for detections may
be found at: http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark (as
accessed on 7 September 2022). The execution time is calculated in terms of frame rate
(frames per second, or fps). The higher the frame rate, the quicker the execution time,
and vice-versa. Ideally, high OR and fps values are expected for a high-performance
real-time algorithm.

It may be seen that the execution speed of the EKF is the best of the two in all scenarios,
whereas the accuracy of the UKF is the best in dense traffic scenarios. In sparse traffic
scenarios, however, the EKF provides the most reliable readings. Thus, while the EKF
is more effective in sparse traffic conditions, and demonstrates the highest accuracy and
speed of execution, in dense traffic scenarios, the UKF provides the highest accuracy with a
slight drop in execution speed.

Following this, we assess the performance of the fusion architecture with a fixed
tracker under varying traffic densities. The videos chosen for this are drawn from the

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark

Electronics 2022, 11, 3586 12 of 25

KITTI dataset, where the traffic situation gradually changes from highly sparse to dense,
thereby exposing the fusion architecture to both highly dense and sparse traffic scenarios.
The results for running these videos with the fixed tracker architecture only are shown in
Table 3.

Table 3. Accuracy and execution time of fixed tracker fusion architecture.

Videos with Varying Scenarios
EKF UKF

OR (%) fps OR (%) fps

Video 1–100% sparse 66.8 36.9 57.12 28.28

Video 2–80% sparse/20% dense 63.5 35.35 61.22 27.22

Video 3–60% sparse/40% dense 61.22 31.03 61.96 26.36

Video 4–40% sparse/60% dense 60.74 27.4 63.36 25.3

Video 5–20% sparse/80% dense 55.03 23.03 65.88 22.38

Video 6–100% dense 53.06 22.5 66.32 20.13

Average 58.71 27.862 63.748 24.278

Variance 22.22835 9.584589

In Table 3, the average accuracy, fps, and variance in accuracy are important and
noteworthy parameters. It may be seen that as the videos move from completely sparse
to completely dense scenarios, the performance of the UKF increases and that of the EKF
deteriorates correspondingly. Any ADAS algorithm, however, is expected to perform
consistently [2]. While the accuracy and execution speed are important parameters, the
extent to which an algorithm diverges from its mean accuracy (which is variance) is also an
important parameter, as it describes the consistency of the fusion architecture [41].

Considering the average accuracy, variance, and fps as reference, we now introduce
the Traffic Sign Recognition and the Real-time Traffic Density Estimation algorithm before
integrating them with our fusion architecture.

3.2. Traffic Sign Recognition

Different countries use different sets of traffic signs. Accordingly, it is necessary to
train the algorithm on appropriate regional signs. For our work, we deploy the traffic
sign detection algorithm trained on Japanese road signs. We use the algorithm created by
Wahyono et al. [42] and integrate that code base in our software architecture. It must be
noted that road signs differ by geography, and every country/region requires traffic signs
specific to the area. In our work, while we have chosen the Japanese road signs for training
purposes, the basic symbols (road crossing, zebra crossing, traffic signal ahead, etc.) remain
consistent globally. However, for a more geography-specific application, the TSR algorithm
must be trained on a country-specific dataset.

In their work, Wahyono et al. [42] present a survey of various Traffic Sign Recognition
models. Typically, the localisation is conducted with the colour information of the traffic
sign using colour-based thresholding. Since the RGB colour space is very fragile regarding
changes in lighting, the Hue Saturation Value (HSV) colour space is used instead. The
HSV space models human vision better than the RGB and allows some variation in the
lighting. However, using a fixed threshold is not reliable due to its dependency on lighting
conditions and camera overexposure [43]. Therefore, in this work, the Maximally Stable
Extremal Region (MSER) [44] method is employed for localising the candidate region. The
MSER method localises the stable region in which the pixel values in the region possess
low variance distribution.

Figures 10 and 11 show the output of the TSR algorithm implemented on the KITTI
dataset videos. The detected traffic signs are displayed on the top by the algorithm and the

Electronics 2022, 11, 3586 13 of 25

same may be read by our architecture to understand the road conditions surrounding the
ego-vehicle.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 27

3.2. Traffic Sign Recognition
Different countries use different sets of traffic signs. Accordingly, it is necessary to

train the algorithm on appropriate regional signs. For our work, we deploy the traffic sign
detection algorithm trained on Japanese road signs. We use the algorithm created by
Wahyono et al. [42] and integrate that code base in our software architecture. It must be
noted that road signs differ by geography, and every country/region requires traffic signs
specific to the area. In our work, while we have chosen the Japanese road signs for training
purposes, the basic symbols (road crossing, zebra crossing, traffic signal ahead, etc.) re-
main consistent globally. However, for a more geography-specific application, the TSR
algorithm must be trained on a country-specific dataset.

In their work, Wahyono et al. [42] present a survey of various Traffic Sign Recogni-
tion models. Typically, the localisation is conducted with the colour information of the
traffic sign using colour-based thresholding. Since the RGB colour space is very fragile
regarding changes in lighting, the Hue Saturation Value (HSV) colour space is used in-
stead. The HSV space models human vision better than the RGB and allows some varia-
tion in the lighting. However, using a fixed threshold is not reliable due to its dependency
on lighting conditions and camera overexposure [43]. Therefore, in this work, the Maxi-
mally Stable Extremal Region (MSER) [44] method is employed for localising the candi-
date region. The MSER method localises the stable region in which the pixel values in the
region possess low variance distribution.

Figures 10 and 11 show the output of the TSR algorithm implemented on the KITTI
dataset videos. The detected traffic signs are displayed on the top by the algorithm and
the same may be read by our architecture to understand the road conditions surrounding
the ego-vehicle.

Figure 10. TSR algorithm running on KITTI dataset—example 1. Figure 10. TSR algorithm running on KITTI dataset—example 1.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 27

Figure 11. TSR algorithm running on KITTI dataset—example 2.

It may be seen that alongside the speed limits and emergency traffic signs stated in
Figure 2, the state of the traffic junction signals is also detected. In our work, we shall not
distinguish between the state of the traffic signal. If any emergency sign or traffic signal is
detected on the projected road of the ego-vehicle, the scenario shall be declared an emer-
gency scenario.

Abiding by the framed experimentation process, Table 4 shows the performance pa-
rameters of the Traffic Sign Detection algorithm. The accuracy here is calculated in terms
of mAP (Mean Average Precision). By calculating the true positives, false positives, and
false negatives values, the mAP values are calculated. Ideally, a higher mAP suggests a
high-performance algorithm with the least deviation in output as compared to the ground
truth data. Table 4 summarises the performance of the TSR algorithm.

Table 4. Performance of the TSR algorithm over various KITTI dataset videos.

Video Scenarios mAP (in %) Time of Execution (in ms)
Video 1 94.7887 5.65
Video 2 95.0902 5.98
Video 3 93.381 5.39
Video 4 93.7782 4.819
Average 94.2595 5.459

In this case, it must be noted that the time of execution for the TSR algorithm will be
added as an overhead to the fusion logic. As a result, a lesser time of execution is preferred
alongside a high mAP score.

3.3. Real-Time Traffic Estimation
For real-time traffic density estimation, we use the work of Lee et al. [39]. In their

work, the authors explored the possibility of using vehicle sensors to estimate traffic den-
sity; they also analysed the reliability change of the density estimation according to the
change in sensing range of the ADAS and radar systems. Compared to the existing re-
search [35], their study dealt with sensor-based measurement errors and reflected these

Figure 11. TSR algorithm running on KITTI dataset—example 2.

It may be seen that alongside the speed limits and emergency traffic signs stated in
Figure 2, the state of the traffic junction signals is also detected. In our work, we shall
not distinguish between the state of the traffic signal. If any emergency sign or traffic
signal is detected on the projected road of the ego-vehicle, the scenario shall be declared an
emergency scenario.

Electronics 2022, 11, 3586 14 of 25

Abiding by the framed experimentation process, Table 4 shows the performance
parameters of the Traffic Sign Detection algorithm. The accuracy here is calculated in terms
of mAP (Mean Average Precision). By calculating the true positives, false positives, and
false negatives values, the mAP values are calculated. Ideally, a higher mAP suggests a
high-performance algorithm with the least deviation in output as compared to the ground
truth data. Table 4 summarises the performance of the TSR algorithm.

Table 4. Performance of the TSR algorithm over various KITTI dataset videos.

Video Scenarios mAP (in %) Time of Execution (in ms)

Video 1 94.7887 5.65

Video 2 95.0902 5.98

Video 3 93.381 5.39

Video 4 93.7782 4.819

Average 94.2595 5.459

In this case, it must be noted that the time of execution for the TSR algorithm will be
added as an overhead to the fusion logic. As a result, a lesser time of execution is preferred
alongside a high mAP score.

3.3. Real-Time Traffic Estimation

For real-time traffic density estimation, we use the work of Lee et al. [39]. In their work,
the authors explored the possibility of using vehicle sensors to estimate traffic density; they
also analysed the reliability change of the density estimation according to the change in
sensing range of the ADAS and radar systems. Compared to the existing research [35],
their study dealt with sensor-based measurement errors and reflected these errors in
the traffic density estimation process. The performance evaluation of the experiment
results was based on Mean Absolute Percentage Error (MAPE) statistics for the various
test cases. Through the experiment simulation results and their analysis, this study led
to the conclusion that using a front RaDAR and camera sensor to estimate traffic density
surrounding the ego-vehicle was more effective than using only the camera sensor, as
RaDAR gives access to the relative speed and the distance of target objects as well.

The inter-vehicle distance in this case is defined as the distance from the front bumper
of the ego-vehicle to the rear bumper of the target vehicle. Therefore, the distance headway
is calculated by adding the inter-vehicle distance to the length of the sensor-equipped vehi-
cle. Although it is possible to measure the distance to the target vehicle in the surrounding
lane, this study assumes that it is possible to measure only the vehicle in front of the same
lane, considering the accuracy of the distance measurement. The RaDAR-based distance
measurement is stable compared to the image-based measurement from a traffic density
perspective. Considering these points, this study uses RaDAR-based distance data as a
reference value in order to verify the reliability of ADAS camera-based distance data, and
this study defines the difference between the RaDAR-based distance and camera-based
distances as an error of image-based distance. Based on this definition, this study anal-
ysed how the error of image-based distance changes as the measurement distance gets
longer [45]. It is particularly important to accurately reflect fluctuations in distance mea-
surement error into simulation because it may affect the reliability of the density estimation
in simulation environments where there are various distances between vehicles depending
on traffic conditions. Although there are various traffic density estimation methods, it is
effective to use the relationship between the traffic density and the distance headway.

It must be noted that this algorithm requires the fusion of the camera and RaDAR
sensor data. Accordingly, the object list generated by the camera and RaDAR sensors is fed
to this software block. At the output, depending on whether the density of traffic is high or
low (by setting a threshold value), we may conclude whether the ego-vehicle is currently

Electronics 2022, 11, 3586 15 of 25

in dense traffic or sparse traffic. This is printed on the output images on the top left corner
as seen in the Figures below. Figures 12–15 show the output of the RTDE algorithm.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 27

errors in the traffic density estimation process. The performance evaluation of the experi-
ment results was based on Mean Absolute Percentage Error (MAPE) statistics for the var-
ious test cases. Through the experiment simulation results and their analysis, this study
led to the conclusion that using a front RaDAR and camera sensor to estimate traffic den-
sity surrounding the ego-vehicle was more effective than using only the camera sensor, as
RaDAR gives access to the relative speed and the distance of target objects as well.

The inter-vehicle distance in this case is defined as the distance from the front bumper
of the ego-vehicle to the rear bumper of the target vehicle. Therefore, the distance head-
way is calculated by adding the inter-vehicle distance to the length of the sensor-equipped
vehicle. Although it is possible to measure the distance to the target vehicle in the sur-
rounding lane, this study assumes that it is possible to measure only the vehicle in front
of the same lane, considering the accuracy of the distance measurement. The RaDAR-
based distance measurement is stable compared to the image-based measurement from a
traffic density perspective. Considering these points, this study uses RaDAR-based dis-
tance data as a reference value in order to verify the reliability of ADAS camera-based
distance data, and this study defines the difference between the RaDAR-based distance
and camera-based distances as an error of image-based distance. Based on this definition,
this study analysed how the error of image-based distance changes as the measurement
distance gets longer [45]. It is particularly important to accurately reflect fluctuations in
distance measurement error into simulation because it may affect the reliability of the
density estimation in simulation environments where there are various distances between
vehicles depending on traffic conditions. Although there are various traffic density esti-
mation methods, it is effective to use the relationship between the traffic density and the
distance headway.

It must be noted that this algorithm requires the fusion of the camera and RaDAR
sensor data. Accordingly, the object list generated by the camera and RaDAR sensors is
fed to this software block. At the output, depending on whether the density of traffic is
high or low (by setting a threshold value), we may conclude whether the ego-vehicle is
currently in dense traffic or sparse traffic. This is printed on the output images on the top
left corner as seen in the Figures below. Figures 12–15 show the output of the RTDE algo-
rithm.

Figure 12. RTDE example output 1—SPARSE scenario. Figure 12. RTDE example output 1—SPARSE scenario.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 27

Figure 13. RTDE example output 2—DENSE scenario.

Figure 14. RTDE example output 3—DENSE scenario.

Figure 13. RTDE example output 2—DENSE scenario.

To demonstrate the working efficacy of this algorithm, we reconstruct virtualized
traffic on MATLAB on a segment of simulated highway. This simulation will help us
to know the accuracy and execution speed parameters of the RTDE. An example of the
scenario recreated in MATLAB may be seen in Figure 16.

Electronics 2022, 11, 3586 16 of 25

Electronics 2022, 11, x FOR PEER REVIEW 16 of 27

Figure 13. RTDE example output 2—DENSE scenario.

Figure 14. RTDE example output 3—DENSE scenario. Figure 14. RTDE example output 3—DENSE scenario.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 27

Figure 15. RTDE example output 4—SPARSE scenario.

To demonstrate the working efficacy of this algorithm, we reconstruct virtualized
traffic on MATLAB on a segment of simulated highway. This simulation will help us to
know the accuracy and execution speed parameters of the RTDE. An example of the sce-
nario recreated in MATLAB may be seen in Figure 16.

Figure 16. Simulation of the highway scenario in MATLAB to calculate the efficacy of the RTDE.

The sensor data used for these experiments derives from the Next Generation Simu-
lation (NGSIM) program. This sensor data value is loaded in the scenario by using the
MATLAB Scenario Generator Tool. The roadway on which the data is measured is a
stretch of highway with moderate curvature and four lanes. Once the traffic density is
estimated, the value is compared with the ground truth values. In this algorithm, there is
still a small error which arises when the objects are not always correctly detected by the
fusion architecture (when there is a false positive or negative). As a result, there is a small
error associated with the true traffic density predicted by the algorithm. However, in our
current work, since the error is negligible, we may consider that we always receive true
traffic density status.

Figure 15. RTDE example output 4—SPARSE scenario.

The sensor data used for these experiments derives from the Next Generation Sim-
ulation (NGSIM) program. This sensor data value is loaded in the scenario by using the
MATLAB Scenario Generator Tool. The roadway on which the data is measured is a stretch
of highway with moderate curvature and four lanes. Once the traffic density is estimated,
the value is compared with the ground truth values. In this algorithm, there is still a
small error which arises when the objects are not always correctly detected by the fusion
architecture (when there is a false positive or negative). As a result, there is a small error
associated with the true traffic density predicted by the algorithm. However, in our current
work, since the error is negligible, we may consider that we always receive true traffic
density status.

Electronics 2022, 11, 3586 17 of 25

Electronics 2022, 11, x FOR PEER REVIEW 17 of 27

Figure 15. RTDE example output 4—SPARSE scenario.

To demonstrate the working efficacy of this algorithm, we reconstruct virtualized
traffic on MATLAB on a segment of simulated highway. This simulation will help us to
know the accuracy and execution speed parameters of the RTDE. An example of the sce-
nario recreated in MATLAB may be seen in Figure 16.

Figure 16. Simulation of the highway scenario in MATLAB to calculate the efficacy of the RTDE.

The sensor data used for these experiments derives from the Next Generation Simu-
lation (NGSIM) program. This sensor data value is loaded in the scenario by using the
MATLAB Scenario Generator Tool. The roadway on which the data is measured is a
stretch of highway with moderate curvature and four lanes. Once the traffic density is
estimated, the value is compared with the ground truth values. In this algorithm, there is
still a small error which arises when the objects are not always correctly detected by the
fusion architecture (when there is a false positive or negative). As a result, there is a small
error associated with the true traffic density predicted by the algorithm. However, in our
current work, since the error is negligible, we may consider that we always receive true
traffic density status.

Figure 16. Simulation of the highway scenario in MATLAB to calculate the efficacy of the RTDE.

From Tables 4 and 5, the time overhead added by Traffic Sign Recognition and traffic
density estimation algorithms is 5.459 ms (for TSR) and 5.221 ms (for RTDE). Thus, a total
of 10.68 ms overhead is added to the fusion architecture for every frame. It must be noted
that this time overhead may be reduced by optimising the software and using a powerful,
hardware-supporting parallel computer. The important factor here is to observe that the
accuracy ratings for both algorithms is high (>90%). This ensures that no error is added by
these algorithms to the sensor fusion architecture.

Table 5. Performance of the RTDE algorithm.

Video Scenarios Accuracy (in %) Time of Execution (in ms)

Video 1 98.9097 5.23

Video 2 99.461 5.112

Video 3 99.5568 5.365

Video 4 99.002 5.178

Average 99.23 5.221

3.4. Fusion with Tracker Switching

As we have seen before, both the UKF and the EKF have their own advantages and
disadvantages. In this architecture, we leverage the pros of both trackers by adding a small
overhead of the TSR and the RTDE, as mentioned in Sections 2.2 and 2.3. The functionality
of our architecture may be understood from the information in Figure 17.

In this architecture, it is important to note that the TSR and the RTDE are initiated
simultaneously alongside the sensor object detection algorithms. This is also important as
the camera and RaDAR algorithms are required to drive the TSR and the RTDE.

If the TSR algorithm detects an emergency traffic sign, it shall provide a TRUE output.
Similarly, if the RTDE algorithm detects a highly dense traffic, the TRUE output is seen. If
either of the TSR or RTDE provide a TRUE output, the UKF tracker is selected to operate
on the fusion architecture. If both algorithms provide a FALSE output, the EKF tracker is
selected. This functionality is shown in Table 6.

Electronics 2022, 11, 3586 18 of 25
Electronics 2022, 11, x FOR PEER REVIEW 19 of 27

Figure 17. Architecture of proposed fusion logic with tracker switching.

Figure 17. Architecture of proposed fusion logic with tracker switching.

Electronics 2022, 11, 3586 19 of 25

Table 6. Tracker selection based on the output of TSR and RTDE.

Dense Traffic Emergency Traffic Sign Emergency
Scenario Tracker Selected

FALSE FALSE NO EKF

TRUE TRUE YES UKF

TRUE FALSE YES UKF

TRUE TRUE YES UKF

To analyse this architecture, we run the same videos used in Section 2. The OR and
fps values are calculated using the same principles as stated in Section 2. The efficacy
parameters are as shown in Table 7.

Table 7. Performance of fusion logic with switched trackers.

Videos with Varying Scenarios
Switched Tracker Architecture

OR (%) fps

Video 1–100% sparse 66.8 29.21

Video 2–80% sparse/20% dense 63.41 27.03

Video 3–60% sparse/40% dense 62.02 25.16

Video 4–40% sparse/60% dense 62.94 23.36

Video 5–20% sparse/80% dense 64.25 20.55

Video 6–100% dense 65.23 19.28

Average 63.57 23.076

Variance 2.46

Figures 18–20 show several outputs of the same video captured at an instance where
the tracker switches from the UKF to the EKF, as the scenario gradually changes from dense
traffic to sparse. The video is obtained as the ego-vehicle begins from a junction and all the
surrounding vehicles gradually space out. As a result, for the first few seconds, we see that the
ego-vehicle is in densely congested traffic, and gradually enters a sparse traffic environment.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 27

Figure 18. Image taken at t = 12.33 s. Traffic state: Dense. Tracker—UKF.

Figure 19. Image taken at t = 13.03 s. Traffic state: Dense. Tracker—UKF.

Figure 18. Image taken at t = 12.33 s. Traffic state: Dense. Tracker—UKF.

Electronics 2022, 11, 3586 20 of 25

Electronics 2022, 11, x FOR PEER REVIEW 21 of 27

Figure 18. Image taken at t = 12.33 s. Traffic state: Dense. Tracker—UKF.

Figure 19. Image taken at t = 13.03 s. Traffic state: Dense. Tracker—UKF. Figure 19. Image taken at t = 13.03 s. Traffic state: Dense. Tracker—UKF.

Electronics 2022, 11, x FOR PEER REVIEW 22 of 27

Figure 20. Image taken at t = 13.89 s. Traffic state: Sparse. Tracker: EKF.

It may be seen in Figures 18–20 that the fusion architecture switches the tracker algo-
rithm in real time. As a result, optimum performance is observed as the best possible
tracker is selected, due to the switching logic. Table 8 shows the comparison of the OR
and fps values of the switching tracker architecture against the fusion architecture with
the fixed EKF and the UKF.

Table 8. Comparison of all 3 architectures—switched tracker-based fusion, EKF- and UKF-based
fusion.

Videos with Varying Scenarios
EKF UKF Switching Tracker

Architecture
OR (%) fps OR (%) fps OR (%) fps

Video 1–100% sparse 66.8 36.9 57.12 28.28 66.8 29.21
Video 2–80% sparse/20% dense 63.5 35.35 61.22 27.22 63.41 27.03
Video 3–60% sparse/40% dense 61.22 31.03 61.96 26.36 62.02 25.16
Video 4–40% sparse/60% dense 60.74 27.4 63.36 25.3 62.94 23.36
Video 5–20% sparse/80% dense 55.03 23.03 65.88 22.38 64.25 20.55

Video 6–100% dense 53.06 22.5 66.32 20.13 65.23 19.28
Average 58.71 27.862 63.748 24.278 63.57 23.076
Variance 22.22 9.58 2.46

We may draw three important conclusions from Table 8, as given below:
Firstly, the average accuracy obtained by using the switching tracker fusion architec-

ture is comparable to that of the UKF-based fusion. This value is considerably higher than
the fusion architecture that is based on the EKF.

Secondly, the execution speed of the switching tracker fusion architecture is margin-
ally less than that of the UKF-based architecture. Both these values are considerably less
than that of the EKF-based architecture.

Figure 20. Image taken at t = 13.89 s. Traffic state: Sparse. Tracker: EKF.

It may be seen in Figures 18–20 that the fusion architecture switches the tracker
algorithm in real time. As a result, optimum performance is observed as the best possible
tracker is selected, due to the switching logic. Table 8 shows the comparison of the OR
and fps values of the switching tracker architecture against the fusion architecture with the
fixed EKF and the UKF.

Electronics 2022, 11, 3586 21 of 25

Table 8. Comparison of all 3 architectures—switched tracker-based fusion, EKF- and UKF-
based fusion.

Videos with Varying Scenarios
EKF UKF Switching Tracker

Architecture

OR (%) fps OR (%) fps OR (%) fps

Video 1–100% sparse 66.8 36.9 57.12 28.28 66.8 29.21

Video 2–80% sparse/20% dense 63.5 35.35 61.22 27.22 63.41 27.03

Video 3–60% sparse/40% dense 61.22 31.03 61.96 26.36 62.02 25.16

Video 4–40% sparse/60% dense 60.74 27.4 63.36 25.3 62.94 23.36

Video 5–20% sparse/80% dense 55.03 23.03 65.88 22.38 64.25 20.55

Video 6–100% dense 53.06 22.5 66.32 20.13 65.23 19.28

Average 58.71 27.862 63.748 24.278 63.57 23.076

Variance 22.22 9.58 2.46

We may draw three important conclusions from Table 8, as given below:
Firstly, the average accuracy obtained by using the switching tracker fusion architec-

ture is comparable to that of the UKF-based fusion. This value is considerably higher than
the fusion architecture that is based on the EKF.

Secondly, the execution speed of the switching tracker fusion architecture is marginally
less than that of the UKF-based architecture. Both these values are considerably less than
that of the EKF-based architecture.

Thirdly, and most importantly, the variance of accuracy is the lowest in the switching
tracker-based fusion architecture, as compared to both the EKF and UKF-based fixed tracker
fusion architectures.

Understandably, the switching tracker fusion architecture maintains high accuracy as
it chooses the tracker which provides the highest accuracy. Figure 21 shows the change in
accuracy for all three architectures as the scenario gradually changes from highly dense to
highly sparse.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 27

Thirdly, and most importantly, the variance of accuracy is the lowest in the switching
tracker-based fusion architecture, as compared to both the EKF and UKF-based fixed
tracker fusion architectures.

Understandably, the switching tracker fusion architecture maintains high accuracy
as it chooses the tracker which provides the highest accuracy. Figure 21 shows the change
in accuracy for all three architectures as the scenario gradually changes from highly dense
to highly sparse.

Figure 21. Variation in accuracy of the three architectures. The video number is represented on X-
axis (traffic density increases as video index number increases) and average OR value is repre-
sented on the y-axis.

Figure 21 and Table 8 show that the switched tracker architecture provides the most
consistently accurate output whilst still maintaining a ~23 fps average frame rate. The high
accuracy is achieved because it combines the benefits of both tracking algorithms. The
speed of execution is reduced as the architecture also uses both the EKF and the UKF as
and when necessary, which adds to the computing complexity, thereby leading to a lesser
fps temporarily. Moreover, the TSR and RTDE algorithms also add an overhead time of
~10 ms per frame, which leads to the decrease of approximately 5 fps. Figure 22 shows the
performance comparison of the three fusion architectures based on the three important
parameters—variance, execution speed, and accuracy.

50
52
54
56
58
60
62
64
66
68

1 2 3 4 5 6

Variation in accuracy for all three architectures

EKF UKF switched-tracker

Figure 21. Variation in accuracy of the three architectures. The video number is represented on X-axis
(traffic density increases as video index number increases) and average OR value is represented on
the y-axis.

Electronics 2022, 11, 3586 22 of 25

Figure 21 and Table 8 show that the switched tracker architecture provides the most
consistently accurate output whilst still maintaining a ~23 fps average frame rate. The high
accuracy is achieved because it combines the benefits of both tracking algorithms. The
speed of execution is reduced as the architecture also uses both the EKF and the UKF as
and when necessary, which adds to the computing complexity, thereby leading to a lesser
fps temporarily. Moreover, the TSR and RTDE algorithms also add an overhead time of
~10 ms per frame, which leads to the decrease of approximately 5 fps. Figure 22 shows
the performance comparison of the three fusion architectures based on the three important
parameters—variance, execution speed, and accuracy.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 27

Figure 22. RADAR chart of the performance of the three considered fusion architectures based on
variance, execution speed, and accuracy.

However, the speed of execution is still respectable considering that it leads to an
88.94% increase in consistency compared to the fusion architecture with the EKF, and a
74.32% increase compared to the UKF-based fusion architecture. These values are calcu-
lated based on the percentage change in the variance of accuracy that is achieved by run-
ning these three architectures across the same set of videos. The accuracy of switched fu-
sion architecture will always be capped by the highest accuracy achievable by its constit-
uent tracking algorithms. However, using such a technique leads to an output which is
the most accurate, considering that the logic selects the tracker best suited for specific en-
vironments. The modified architecture leads to a drop in the average execution speed as
compared to the fusion with the EKF and the UKF; however, as discussed previously, this
may be reduced when a higher-end computing device is used to optimise the code further.

4. Conclusions
It is understood that all ADAS algorithms possess unique advantages and disad-

vantages, and the best choice of algorithms is defined by the requirement of the feature
[41,46]. For most ADAS algorithms, maintaining consistency across all external scenarios
is critical [47]. Following the critical analysis of the fusion architecture based on the
switching tracker mechanism, it must be noted that by using algorithms like the TSR and
the RTDE, we include certain shortcomings. The added expanse of code affects both the
space and time complexity of the overall logic. Therefore, a question arises regarding
whether the gains are worth the sacrifice of simplicity. In this case, even though the exe-
cution speed drops by a maximum of approximately 18%, it still remains above 20 fps in
most cases.

The gains, on the other hand, are significant. Not only do we see an optimally per-
forming architecture, but the consistency of output increases (that is, the variance in accu-
racy decreases) by 74.32% and 88.94%, respectively, when compared with fusion architec-
tures which employ the UKF and the EKF alone. After using the switching tracker fusion
logic, the performance is stable across a variety of videos, without any dependency on the
type of scenario being fed to the fusion algorithm. The variance in accuracy decreases
substantially. As seen in Figures 18–20, as the algorithm switches in real time between the
UKF to the EKF, a smooth consistency in performance is achieved whilst maintaining a
moderate execution speed. In real life, driving scenario environments change rapidly from
dense traffic to sparse. In such cases, sensor fusion architectures that are equipped with
the switched tracker would be able to perform consistently by benefiting from the best

Variance

AccuracyExecution speed (fps)

RADAR chart showing variance, execution speed and accuracy
for the three considered fusion architectures

Fusion with EKF Fusion with UKF Switched tracker fusion architecture

Figure 22. RADAR chart of the performance of the three considered fusion architectures based on
variance, execution speed, and accuracy.

However, the speed of execution is still respectable considering that it leads to an
88.94% increase in consistency compared to the fusion architecture with the EKF, and a
74.32% increase compared to the UKF-based fusion architecture. These values are calculated
based on the percentage change in the variance of accuracy that is achieved by running
these three architectures across the same set of videos. The accuracy of switched fusion
architecture will always be capped by the highest accuracy achievable by its constituent
tracking algorithms. However, using such a technique leads to an output which is the most
accurate, considering that the logic selects the tracker best suited for specific environments.
The modified architecture leads to a drop in the average execution speed as compared
to the fusion with the EKF and the UKF; however, as discussed previously, this may be
reduced when a higher-end computing device is used to optimise the code further.

4. Conclusions

It is understood that all ADAS algorithms possess unique advantages and disadvan-
tages, and the best choice of algorithms is defined by the requirement of the feature [41,46].
For most ADAS algorithms, maintaining consistency across all external scenarios is
critical [47]. Following the critical analysis of the fusion architecture based on the switching
tracker mechanism, it must be noted that by using algorithms like the TSR and the RTDE,
we include certain shortcomings. The added expanse of code affects both the space and
time complexity of the overall logic. Therefore, a question arises regarding whether the
gains are worth the sacrifice of simplicity. In this case, even though the execution speed
drops by a maximum of approximately 18%, it still remains above 20 fps in most cases.

The gains, on the other hand, are significant. Not only do we see an optimally
performing architecture, but the consistency of output increases (that is, the variance

Electronics 2022, 11, 3586 23 of 25

in accuracy decreases) by 74.32% and 88.94%, respectively, when compared with fusion
architectures which employ the UKF and the EKF alone. After using the switching tracker
fusion logic, the performance is stable across a variety of videos, without any dependency
on the type of scenario being fed to the fusion algorithm. The variance in accuracy decreases
substantially. As seen in Figures 18–20, as the algorithm switches in real time between the
UKF to the EKF, a smooth consistency in performance is achieved whilst maintaining a
moderate execution speed. In real life, driving scenario environments change rapidly from
dense traffic to sparse. In such cases, sensor fusion architectures that are equipped with the
switched tracker would be able to perform consistently by benefiting from the best from
both worlds—high accuracy in dense traffic provided by the UKF, and in sparse traffic by
the EKF, respectively.

For future scope, this architecture may be further improved by optimising the TSR
and RTDE codes, for the creation of a minimum overhead. Moreover, different trackers
(like JPDA—Joint Probabilistic Data Association filter) and a greater variety of such track-
ers, may be used to allow the system to become more diverse and immune to several
environmental factors.

Author Contributions: Conceptualization, A.D. and V.P.; Data curation, A.D.; Formal analysis, A.D.;
Methodology, A.D. and V.P.; Project administration, V.P.; Resources, A.D. and V.P.; Software, A.D.;
Supervision, V.P.; Validation, A.D. and V.P.; Visualization, A.D. and V.P.; Writing—original draft, A.D.
and V.P.; Writing—review & editing, A.D. and V.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, J.; Han, D.S.; Senouci, B. Radar and Vision Sensor Fusion for Object Detection in Autonomous Vehicle Surroundings.

In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic,
3–6 July 2018; pp. 76–78. [CrossRef]

2. Kaur, P.; Sobti, R. Sensor Fusion Algorithm for Software Based Advanced Driver-Assistance Intelligent Systems. In Proceedings
of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17
December 2018; pp. 457–460. [CrossRef]

3. Warren, M.E. Automotive LIDAR Technology. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June
2019; p. 254. [CrossRef]

4. Wang, Y.; Liu, D.; Matson, E. Accurate Perception for Autonomous Driving: Application of Kalman Filter for Sensor Fusion.
In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020; pp. 1–6.
[CrossRef]

5. Deo, A.; Palade, V.; Huda, M.N. Centralised and Decentralised Sensor Fusion-Based Emergency Brake Assist. Sensors 2021,
21, 5422. [CrossRef] [PubMed]

6. Chen, X.; Wang, X.; Xuan, J. Tracking Multiple Moving Objects Using Unscented Kalman Filtering Techniques. arXiv 2018,
arXiv:1802.01235.

7. Tibba, G.; Malz, C.; Stoermer, C.; Nagarajan, N.; Zhang, L.; Chakraborty, S. Testing automotive embedded systems under
X-in-the-loop setups. In Proceedings of the 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
New York, NY, USA, 7–10 November 2016; pp. 1–8. [CrossRef]

8. Schlegl, T.; Bretterklieber, T.; Neumayer, M.; Zangl, H. A novel sensor fusion concept for distance measurement in automotive
applications. In Proceedings of the IEEE SENSORS, Waikoloa, HI, USA, 1–4 November 2010; pp. 775–778.

9. Kumar, C.; Punitha, R. YOLOv3 and YOLOv4: Multiple Object Detection for Surveillance Applications. In Proceedings of the
2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020;
pp. 1316–1321.

10. Manjunath, A.; Liu, Y.; Henriques, B.; Engstle, A. Radar Based Object Detection and Tracking for Autonomous Driving. In
Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany,
15–17 April 2018; pp. 1–4. [CrossRef]

http://doi.org/10.1109/ICUFN.2018.8436959
http://doi.org/10.1109/ICSCCC.2018.8703269
http://doi.org/10.23919/VLSIC.2019.8777993
http://doi.org/10.1109/SAS48726.2020.9220083
http://doi.org/10.3390/s21165422
http://www.ncbi.nlm.nih.gov/pubmed/34450863
http://doi.org/10.1145/2966986.2980076
http://doi.org/10.1109/ICMIM.2018.8443497

Electronics 2022, 11, 3586 24 of 25

11. Deng, D. DBSCAN Clustering Algorithm Based on Density. In Proceedings of the 2020 7th International Forum on Electrical
Engineering and Automation, Hefei, China, 25–27 September 2020; pp. 949–953.

12. Tan, S.; Lu, G.; Jiang, Z.; Huang, L. Improved YOLOv5 Network Model and Application in Safety Helmet Detection. In
Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Tokoname, Japan, 4–6 March
2021; pp. 330–333. [CrossRef]

13. Zhang, F.; Clarke, D.; Knoll, A. Vehicle detection based on LiDAR and camera fusion. In Proceedings of the 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1620–1625. [CrossRef]

14. Thakur, R. Scanning LIDAR in Advanced Driver Assistance Systems and Beyond: Building a road map for next-generation
LIDAR technology. IEEE Consum. Electron. Mag. 2016, 5, 48–54. [CrossRef]

15. Yabroudi, M.E.; Awedat, K.; Chabaan, R.C.; Abudayyeh, O.; Abdel-Qader, I. Adaptive DBSCAN LiDAR Point Cloud Clustering for
Autonomous Driving Applications. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology
(eIT), Mankato, MN, USA, 19–21 May 2022; pp. 221–224. [CrossRef]

16. Kellner, D.; Barjenbruch, M.; Dietmayer, K.; Klappstein, J.; Dickmann, J. Tracking of Extended Objects with High-Resolution
Doppler Radar. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1341–1353. [CrossRef]

17. Khalil, M.; Eltrass, A.S.; Elzaafarany, O.; Galal, B.; Walid, K.; Tarek, A.; Ahmadien, O. An Improved Approach for Multi-Target
Detection and Tracking in Automotive Radar Systems. In Proceedings of the 2016 International Conference on Electromagnetics
in Advanced Applications (ICEAA), Cairns, QLD, Australia, 19–23 September 2016; pp. 480–483.

18. Lindenmaier, L.; Tihanyi, V. Comparison of Different Tracking Approaches on Pre-Fused Data for Automotive Perception
System. In Proceedings of the 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and
7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics
(CINTI-MACRo), Szeged, Hungar, 14–16 November 2019; pp. 199–204. [CrossRef]

19. Aeberhard, M.; Rauch, A.; Rabiega, M.; Kaempchen, N.; Bertram, T. Track-to-track fusion with asynchronous sensors and
out-of-sequence tracks using information matrix fusion for advanced driver assistance systems. In Proceedings of the 2012 IEEE
Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 1–6. [CrossRef]

20. Baek, J.W.; Han, B.-G.; Kang, H.; Chung, Y.; Lee, S.-I. Fast and reliable tracking algorithm for on-road vehicle detection systems.
In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria,
5–8 July 2016; pp. 70–72. [CrossRef]

21. Madhukar, P.S.; Prasad, L.B. State Estimation using Extended Kalman Filter and Unscented Kalman Filter. In Proceedings of the
2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), Lakshmangarh, India,
21–22 February 2020; pp. 1–4. [CrossRef]

22. Mochnac, J.; Marchevsky, S.; Kocan, P. Bayesian filtering techniques: Kalman and extended Kalman filter basics. In Proceedings
of the 2009 19th International Conference Radioelektronika, Bratislava, Slovakia, 22–23 April 2009; pp. 119–122. [CrossRef]

23. Bersani, M.; Vignati, M.; Mentasti, S.; Arrigoni, S.; Cheli, F. Vehicle state estimation based on Kalman filters. In Proceedings of the
2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy,
2–4 July 2019; pp. 1–6. [CrossRef]

24. Hu, G.; Gao, B.; Zhong, Y.; Ni, L.; Gu, C. Robust Unscented Kalman Filtering with Measurement Error Detection for Tightly
Coupled INS/GNSS Integration in Hypersonic Vehicle Navigation. IEEE Access 2019, 7, 151409–151421. [CrossRef]

25. Zhao, Y.; Zhang, J.; Hu, G.; Zhong, Y. Set-Membership Based Hybrid Kalman Filter for Nonlinear State Estimation under
Systematic Uncertainty. Sensors 2020, 20, 627. [CrossRef] [PubMed]

26. St-Pierre, M.; Gingras, D. Comparison between the unscented Kalman filter and the extended Kalman filter for the position
estimation module of an integrated navigation information system. In Proceedings of the IEEE Intelligent Vehicles Symposium,
Parma, Italy, 14–17 June 2004; pp. 831–835. [CrossRef]

27. Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October
2000; pp. 153–158.

28. Lee, D.-J. Nonlinear Estimation and Multiple Sensor Fusion Using Unscented Information Filtering. IEEE Signal Process. Lett.
2008, 15, 861–864. [CrossRef]

29. Gao, G.; Gao, B.; Gao, S.; Hu, G.; Zhong, Y. A Hypothesis Test-Constrained Robust Kalman Filter for INS/GNSS Integration with
Abnormal Measurement. IEEE Trans. Veh. Technol. 2022. [CrossRef]

30. Bhat, S.; Kunthe, S.S.; Kadiwal, V.; Iyer, N.C.; Maralappanavar, S. Kalman Filter Based Motion Estimation for ADAS Applications.
In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking
(ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 739–743. [CrossRef]

31. Zhang, X.; Fei, X.; Zhu, Y.; Mu, X.; Lv, P.; Liu, H.; He, B.; Yan, T. Novel Improved UKF Algorithm and Its Application in AUV
Navigation System. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018;
pp. 1–4. [CrossRef]

32. Hu, G.; Gao, S.; Zhong, Y.; Gao, B.; Subic, A. Modified strong tracking unscented Kalman filter for nonlinear state estimation with
process model uncertainty. Int. J. Adapt. Control. Signal Process. 2015, 29, 1561–1577. [CrossRef]

33. Gao, B.; Gao, S.; Hu, G.; Zhong, Y.; Gu, C. Maximum likelihood principle and moving horizon estimation based adaptive
unscented Kalman filter. Aerosp. Sci. Technol. 2018, 73, 184–196. [CrossRef]

http://doi.org/10.1109/ISR50024.2021.9419561
http://doi.org/10.1109/ITSC.2014.6957925
http://doi.org/10.1109/MCE.2016.2556878
http://doi.org/10.1109/eIT53891.2022.9814025
http://doi.org/10.1109/TITS.2015.2501759
http://doi.org/10.1109/CINTI-MACRo49179.2019.9105224
http://doi.org/10.1109/IVS.2012.6232115
http://doi.org/10.1109/ICUFN.2016.7536983
http://doi.org/10.1109/ICONC345789.2020.9117536
http://doi.org/10.1109/RADIOELEK.2009.5158765
http://doi.org/10.23919/EETA.2019.8804527
http://doi.org/10.1109/ACCESS.2019.2948317
http://doi.org/10.3390/s20030627
http://www.ncbi.nlm.nih.gov/pubmed/31979194
http://doi.org/10.1109/IVS.2004.1336492
http://doi.org/10.1109/LSP.2008.2005447
http://doi.org/10.1109/TVT.2022.3209091
http://doi.org/10.1109/ICACCCN.2018.8748616
http://doi.org/10.1109/OCEANSKOBE.2018.8558844
http://doi.org/10.1002/acs.2572
http://doi.org/10.1016/j.ast.2017.12.007

Electronics 2022, 11, 3586 25 of 25

34. Gao, Z.; Mu, D.; Gao, S.; Zhong, Y.; Gu, C. Adaptive unscented Kalman filter based on maximum posterior and random weighting.
Aerosp. Sci. Technol. 2017, 71, 12–24. [CrossRef]

35. Fan, Y.; Zhang, W. Traffic sign detection and classification for Advanced Driver Assistant Systems. In Proceedings of the 2015
12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015;
pp. 1335–1339. [CrossRef]

36. Prakash, A.S.; Vigneshwaran, D.; Ayyalu, R.S.; Sree, S.J. Traffic Sign Recognition using Deeplearning for Autonomous Driverless
Vehicles. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC),
Erode, India, 8–10 April 2021; pp. 1569–1572. [CrossRef]

37. George, R.; Vanajakshi, L.D.; Subramanian, S.C. Area Occupancy-Based Adaptive Density Estimation for Mixed Road Traffic.
IEEE Access 2020, 8, 5502–5514. [CrossRef]

38. Lim, D.; Seo, Y.; Ko, E.; So, J.; Kim, H. S patiotemporal Traffic Density Estimation Based on ADAS Probe Data. J. Adv. Transp. 2022,
2022, 5929725. [CrossRef]

39. Lee, H.; Lee, J.; Chung, Y. Traffic density estimation using vehicle sensor data. J. Intell. Transp. Syst. 2022, 26, 1–12. [CrossRef]
40. Erdem, M.; Özdemir, M.K. A simple approach to traffic density estimation by using Kernel Density Estimation. In Proceedings

of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015;
pp. 1865–1868. [CrossRef]

41. Cummings, M.L.; Bauchwitz, B. Safety Implications of Variability in Autonomous Driving Assist Alerting. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 12039–12049. [CrossRef]

42. Wahyono; Kurnianggoro, L.; Jo, K.-H. Traffic sign recognition and tracking for a vision-based autonomous vehicle using optimally
selected features. In Proceedings of the 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE), Hangzhou, China, 28–30 July 2015; pp. 1419–1422. [CrossRef]

43. Wang, Y.; Shi, M.; Wu, T. A Method of Fast and Robust for Traffic Sign Recognition. In Proceedings of the 2009 Fifth International
Conference on Image and Graphics, Xi’an, China, 20–23 September 2009; pp. 891–895. [CrossRef]

44. Donoser, M.; Riemenschneider, H.; Bischof, H. Shape Guided Maximally Stable Extremal Region (MSER) Tracking. In Proceedings
of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1800–1803. [CrossRef]

45. Ye, Z.Z.; Amirzzodi, J.; Alotaibi, M.; Tshiojwe, I.M.; Al-Harthi, M.; Yaz, E.E. Single-sensor based nonlinear density estimation for
traffic networks with multiple routes and sections. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 5, pp. 4146–4151. [CrossRef]

46. Gao, B.; Gao, S.; Zhong, Y.; Hu, G.; Gu, C. Interacting multiple model estimation-based adaptive robust unscented Kalman filter.
Int. J. Control Autom. Syst. 2017, 15, 2013–2025. [CrossRef]

47. Palade, V.; Deo, A. Artificial Intelligence in Cars: How Close Yet Far Are We from Fully Autonomous Vehicles? Int. J. Artif. Intell.
Tools 2022, 31, 2241005. [CrossRef]

http://doi.org/10.1016/j.ast.2017.08.020
http://doi.org/10.1109/FSKD.2015.7382137
http://doi.org/10.1109/ICCMC51019.2021.9418437
http://doi.org/10.1109/ACCESS.2019.2963273
http://doi.org/10.1155/2022/5929725
http://doi.org/10.1080/15472450.2021.1966626
http://doi.org/10.1109/SIU.2015.7130220
http://doi.org/10.1109/TITS.2021.3109555
http://doi.org/10.1109/SICE.2015.7285415
http://doi.org/10.1109/ICIG.2009.130
http://doi.org/10.1109/ICPR.2010.444
http://doi.org/10.1109/CDC.2001.980832
http://doi.org/10.1007/s12555-016-0589-2
http://doi.org/10.1142/S0218213022410056

	Introduction
	Material and Methods
	Dataset
	Camera, RaDAR and LiDAR Sensor Fusion
	Camera Object Detection—YOLOv4
	LiDAR Object Detection—DBSCAN
	RaDAR Object Detection

	Trackers—EKF and UKF
	Traffic Sign Recognition
	Real-Time Traffic Density Estimation

	Proposed Solution of Sensor Fusion with Tracker Switching
	Fusion Architecture with Single Fixed Tracker
	Traffic Sign Recognition
	Real-Time Traffic Estimation
	Fusion with Tracker Switching

	Conclusions
	References

