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Abstract: Transportation systems need more accurate predictions to further optimize traffic network
design with the development and application of autonomous driving technology. In this article,
we focus on highway traffic flow systems that are often simulated by the modified Greenshields
model. However, this model can not perfectly match the true traffic flow due to its underlying
simplifications and assumptions, implying that it is inexact. Specifically, some parameters affect
the simulation accuracy of the modified Greenshields model, while tuning these parameters to
improve the model’s accuracy is called model calibration. The parameters obtained using the L2

calibration have the advantages of high accuracy and small variance for an inexact model. However,
the method is calculation intensive, requiring optimization of the integral loss function. Since traffic
flow data are often massive, this paper proposes a fast L2 calibration framework to calibrate the
modified Greenshields model. Specifically, the suggested method selects a sub-design containing
more information on the calibration parameters, and then the empirical loss function obtained from
the optimal sub-design is utilized to approximate the integral loss function. A case study highlights
that the proposed method preserves the advantages of L2 calibration and significantly reduces the
running time.

Keywords: traffic flow system; modified greenshields model; sequential sub-design; L2 calibration;
uncertainty quantification

1. Introduction

To keep up with rapidly growing travel demands, urban traffic management systems
are required to be continuously updated and innovated. Among them, connected and
automated vehicles (CAV) are considered to be new technologies with great promise, as
well as the future direction of the global automotive industry. CAV needs more accurate
traffic dynamics at the network level to secure transport infrastructure and to prevent traffic
congestion [1]. Thus, it is mandatory to analyze more extensively the characteristics of
spatio-temporal travel patterns for traffic flow analysis at the network level. Given that the
dynamic traffic assignment system (DTA) is often utilized to simulate real traffic flows [2,3],
the DTA’s dual-regime modified Greenshields traffic flow model can be employed to
simulate highway traffic based on previous experience [4], called computer model or
determetic simulator in computer experiments. The model can be expressed as a set of
segmentation functions:

vl =


u f , 0 < kl < kbp,

v0 + (v f − v0)(1−
kl

k jam
)α, kbp < kl < k jam,

(1)

where vl is the speed on link l on which we are focusing, kl is the density on link l
indirectly determined by the flow rate to speed ratio, i.e., kl = fl/vl , and fl denotes the
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total carriageway flow on link l. The density is the input variable of interest, referred to
as design in the computer experiments. Moreover, u f , v0, and v f are the free-flow speed,
minimum speed, and intercept speed on link l, respectively, kbp and k jam are the breakpoint
density and the jam density on link l, and α is a shape parameter. Figure 1 illustrates the
modified Greenshields model.

Figure 1. The dual-regime modified Greenshields traffic flow model of DTA.

This is because the vehicles’ speeds are different for different times for when the
highway is not jammed, i.e., v0 varies. Additionally, the speed changes due to the weather
and terrain, and there are some ideal assumptions and simplifications in the dual-regime
modified Greenshields model compared with the real traffic flow system [5–7]. Namely,
the modified Greenshields model is inexact.

Let θ = (kbp, u f , v f , α, v0, k jam)
T be unknown or unobservable in the traffic flow sys-

tem, with θ typically affecting the reliability and credibility of the simulators’ outputs. The
process of adjusting these parameters utilizing real traffic flow data is called the calibration
of computer models, and these parameters are the calibration parameters [8]. For further
details on computer model calibration, the reader is referred to [9,10]. The literature has
attempted several times to obtain accurate and rapid estimates of the calibration param-
eters, with many efforts focusing on obtaining a consistent estimator for the calibration
parameters, which are then applied to the traffic flow framework. Current methods are
the KO calibration [9], the least square calibration (LS) [11–13], the weighted least squares
method (WLS) [14], and the optimization-based model calibration [3,15].

In [16,17], the authors defined the “true values” of the calibration parameters by
minimizing the distance between the computer model and the physical system. A follow-
up work, [16], proposed the L2 calibration method that is one of the most widely used in
practice [18,19]. This method is proven to have good statistical properties, including high
accuracy and small variance, posing it an appealing calibration solution requiring small
sample sizes. A brief review of this method is presented in Section 2. However, due to
the large-scale traffic flow framework in practice, the L2 calibration procedure involves
complex integration operations that are calculation intensive. Therefore, to apply the L2
calibration framework to the traffic flow model, we develop a fast L2 calibration framework
to obtain the estimates and variances of the calibration parameters from real data. Our
contributions can be summarized as follows:
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• We propose a fast L2 calibration framework to estimate the calibration parameters.
The suggested method finds the optimal sub-design containing more information
about the calibration parameters. Then, the empirical L2 loss function constructed
from the sub-design is used to approximate the integral L2 loss function.

• We develop the algorithm to generate sequential optimal sub-designs based on the
proposed criterion.

• A bootstrap method is adopted to quantify the uncertainty of the calibration parameters.

The remainder of this article is organized as follows. Section 2 briefly reviews the
L2 calibration approach proposed in [16]. Then, this section introduces the proposed fast
L2 framework utilizing a sub-design criterion and empirical loss function. The algorithm
generating the sequential optimal sub-design and the bootstrap method to quantify the
uncertainty are also provided. Section 3 applies the proposed method to the traffic flow
model of the M25 motorway in London, and finally, Section 4 concludes this work and
discusses the findings.

2. Optimal Sub-Design for the L2 Calibration

In Section 2.1, we review the L2 calibration, and in Section 2.2, we explain how
to develop the experimental sub-designs and how to quickly estimate the calibration
parameters of the dual-regime modified Greenshields model. The algorithm for generating
sequentially optimal designs is provided in Section 2.3, and finally, Section 2.4 suggests a
bootstrap method to quantify the uncertainty.

2.1. A Review of the L2 Calibration

We assume that the record traffic flow data V = (vt
1, · · · , vt

n)
T are conducted at the

design points K = (k1, · · · , kn)T , where ki ∈ K is a design value of the density. Suppose
that ζ(·) is the real traffic flow system, which is unknown. Since the measurement error
always exists, the data can be presented as:

vt
i = ζ(ki) + εi, i = 1, · · · , n, (2)

where ε′is are independent and identically distributed random variables with zero mean
and finite variance τ2 > 0.

Since we are concerned with the traffic flows on only one link, the subscript l from
the notations in the dual-regime modified Greenshields model (1) is deleted thereafter.
Let v(k, θ) be the output of the dual-regime modified Greenshields model, where k ∈ K
indicates the density; θ = {kbp, u f , v f , α, v0, k jam} ∈ Θ is a set of the calibration parameters.
The calibration process aims to find the estimates of θ so that the modified Greenshields
model outputs are as close as possible to the recorded data. Since the modified Greenshields
model is inexact, there is a “distance” between ζ(·) and v(·, ·), called the discrepancy function.
Therefore, the relationship between the simulation model and the discrepancy function can
be established as follows:

ζ(·) = v(·, θ?) + δ(·), (3)

where δ(·) is the model discrepancy, which is an unknown function. In this article, we
consider the observation error and model uncertainty during the calibration and prediction
process of the traffic flow simulation model. Moreover, θ? ∈ Θ is the “true value” or the
optimal calibration parameter, defined as [17]:

θ? = argmin
θ∈Θ

∫
K
(ζ(k)− v(k, θ))2dk. (4)

This loss function is named as the L2 loss function. In [16], the authors proposed the
L2 calibration method, where the definition of the calibration parameter estimation is:

θ̂L2 = argmin
θ∈Θ

∫
K
(ζ̂(k)− v(k, θ))2dk, (5)



Electronics 2022, 11, 3710 4 of 11

where the optimization function is denoted as the LL2 loss function and ζ̂(·) is a nonpara-
metric estimator of the traffic flow system estimated from the record data. The frequently
used estimators include the Gaussian process models [20,21], kernel ridge regression [16],
and smooth spline regression [22].

2.2. Optimal Sub-Design Criterion

L2 calibration requires optimization of the functions containing integral operations.
When the gradient descent algorithm is used, we must calculate the gradient and the
Hessian matrix of the L2 loss function to estimate the calibration parameters. These
calculations involve complex integration operations because the integration needs to be
recomputed at each update step. Thus, (4) poses a very challenging optimization process,
especially for large-scale network systems such as traffic flow. To overcome this concern, the
MCMC method approximates the LL2 loss integration. Indeed, a discrete set is generated
from the design region K, denoted {ξ1, · · · , ξM}, and the approximate loss is obtained
as follows:

L̂L2(θ) =
1
M

M

∑
i=1

(ζ̂(ξi)− v(ξi, θ))2. (6)

The minimum value of L̂L2 within Θ is noted as θ̂, which can be made arbitrarily near
to the minimum of the LL2 . However, the value of the approximate loss function imposes a
significant computational burden, since M is a large number. Therefore, we aim to design
efficient samples to adjust the calibration parameters accurately under a certain criterion.
In other words, we need to search for the optimal sub-design in the design region so that θ̂
is as close as possible to θ?.

Our motivation is derived from the truncated least squares (LTS) [23] concept, which
uses a portion of the selected samples by sorting the absolute values of the residuals. The
proposed approach employs a similar idea to select the design with a large discrepancy
over region K, affording more robust calibration parameter estimates. Thus, the optimal
sub-design can be obtained by maximizing the discrepancy function for a given value of θ.
Suppose that we have a design of N runs to estimate the calibration parameters efficiently.
The non-parametric approximation of the highway traffic flow system is estimated employ-
ing the record flow data, which affords considering the system as a known model. Let the
optimal sequential design be k? = {k?1 , · · · , k?N} ∈ KN , then the first optimality criterion is:

k? = argmax
k∈KN

‖ζ̂(k)− v(k, θ?)‖, (7)

where ‖ · ‖ denotes the Euclidean distance. Additionally, the optimal sub-design is expected
to contain more information of the calibration parameters, which is a concept that is
commonly used during the experimental design [20,24,25]. Specifically, this involves
placing as many points as possible where the information of θ is large affords robust and
accurate estimates. Furthermore, based on the information maximization criterion, [24]
suggested that the Fisher information matrix (FIM) of θ is obtained by:

I(k, θ) =
N

∑
i=1
∇v(ki, θ)∇v(ki, θ)T , (8)

where∇v(ki, θ) = ( ∂v(ki ,θ)
∂kbp

, · · · , ∂v(ki ,θ)
∂kjam

)T . The FIM is inversely correlated with the variance
of the calibration parameters. It is a natural choice to design points where a large amount
of information exists. Thus, the second criterion involves maximizing the determinant
of I(k, θ) for a given θ, which has been proven to be the approximate locally D-optimal
design [24]. The optimal FIM criterion is:

k? = argmax
k∈KN

|I(k, θ?)|, (9)
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where |A| is the determinant of matrix A. By considering the above two objectives and
aiming to obtain robust and accurate estimates, the design criterion becomes:

k? = argmax
k∈KN

{‖ζ̂(k)− v(k, θ?)‖+ λ|I(k, θ?)|}, (10)

where λ > 0 is a hyperparameter, selected as described in Section 2.3.

2.3. Algorithm for Generating a Sequential Optimal Sub-Design

Since θ? is unknown in (10), k and θ must be optimized simultaneously, with the
most common solution being updating k and θ iteratively using sequential methods. First,
assuming that D0 = {k1, · · · , kn0} is the initial design selected using the space-filling
methods, and that the current density set is Di = {k1, · · · , ki}, θ is estimated through
optimizing the empirical L2 loss function according to Di:

θ̂i = argmin
θ∈Θ

L f (Di, θ), (11)

where L f (Di, θ) = 1
i ∑i

r=1(ζ̂(kr)− v(kr, θ))2 presents the empirical L2 loss function. Addi-
tionally, by fixing θ? andDi in (10) to θ̂i and optimizing it, we obtain ki+1 = argmax

k∈K
{|ζ̂(k)−

v(k, θ̂i)|+ λ|I(k, θ̂iq)|}. It is widely believed that the design points should be evenly spread
in the experimental space to achieve a comprehensive exploration. Thus, we use the grid
search method to find the optimal sub-design, which avoids requiring many design points
in the neighborhood, with space-filling designs being typically used in grid search methods
to generate lattice points that are robust to the modeling choices. In this article, we illustrate
the method using the maximin Latin hypercube design (maximin LHD) [20,26], but we will
maintain this flexibility of choice for the experimenter. Let the candidate points generated
using the maximin LHD be Kc = {kc

1, · · · , kc
M}; the optimal density is generated by the

following equation according to the sequential criterion:

ki+1 = argmax
k∈Kc

{|ζ̂(k)− v(k, θ̂i)|+ λ|I(k, θ̂i)|}. (12)

This article uses the grid search method to select λ dynamically. Assuming that the
initial alternative points of λ are λ1, · · · , λt, the hyperparameter alternatives are input
into (12) to obtain t optimal sub-designs, respectively. Let the optimal sub-designs obtained
for the ith under different hyperparameters be Di1, · · · ,Dit. Applying them to the L f loss,
the objective hyperparameter is selected by minimizing:

λ?
i = argmin

j∈{1,··· ,t}
L f (Dij, θ̂i). (13)

where L f (Dij, θ̂i) =
1
i ∑i

r=1(ζ̂(krj)− ys(krj, θ̂i))
2. Since λ is reselected at each sequential

design, we call it a dynamic hyperparameter selection.
Finally, Algorithm 1 summarizes the proposed method for generating the optimal

sub-design.
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Algorithm 1 Generating the sequential optimal sub-design for the L2 calibration.

Input: Initial design D0 = (k1, · · · , kn0), traffic flow data K = (k1, · · · , kn)T and V =
(vt

1, · · · , vt
n)

T , candidate design set Kc, alternative hyperparameter {λ1, · · · , λt}, number
of sequential additional points m.

Initialize: ζ̂(·) is given based on K and V.
for i = 1 to m do

for j = 1 to t do
kij ← argmax

k∈Kc
{|ζ̂(k)− v(k, θ̂i−1)|+ λj|I(k, θ̂i−1)|},

Dij ← Di−1 ∪ kij.
end for
λ?

il = argmin
l∈{1,··· ,t}

L f (Dil , θ̂j),

k?i ← kil ,
Kc ← Kc − {k?i },
Di ← Di−1 ∪ k?i ,
θ̂i = argmin

θ∈Θ
L f (Di, θ).

end for
Output: Optimal sub-design Dm and calibration parameter estimate θ̂m.

2.4. Uncertainty Quantification of the Calibration Parameters

In practice, we aim not only to obtain the point estimates of the calibration parameters,
but to gain the variance of the parameter estimates to quantify uncertainty. Since the dual-
regime modified Greenshields model is deterministic, the model’s uncertainty originates
from θ̂. Considering the frequency methods, the bootstrap methods have been widely used
to calculate the variance and confidence intervals of the parameters [27]. The initial design
is repeated for T times, and the estimates of the calibration parameters are obtained using
the proposed method. The specific steps are presented below:

• Step 1: K′ = (k
′
1, · · · , k

′
n)

T and the corresponding V′ = (vt′
1 , · · · , vt′

n )
T can be obtained

using the replacement sampling method from the real traffic flow data K and V.
• Step 2: The surrogate model ζ̂ ′(·) of the traffic flow system is estimated according to

K′ and V′.
• Step 3: To estimate the calibration parameters according to Algorithm 1.
• Step 4: Repeat the above steps T times to obtain {θ̂1, · · · , θ̂T}, and compute their

variance and empirical confidence interval.

3. Case Study

This section investigates the performance of the proposed method (abbreviated as
Fast-L2 calibration) on the traffic flow system of the M25 motorway in London. The
London Orbital motorway is a circular highway around London, and since the M25 is the
busiest motorway in the UK and traffic jam is relatively severe [28], we select it for our study.
Section 3.1 present the sources and description of the traffic flow data, Section 3.2 introduces
the settings of various calibration methods, and Section 3.3 presents the corresponding
calibration results.

3.1. Data Source of the Traffic Flow Model

The primary source of traffic data is obtained through loop detectors installed in the
highway lanes, and such data are available from several web-based data archiving systems.
This work utilizes real and simulated data downloaded from http://tris.highwaysengland.
co.uk/detail/trafficflowdata (accessed on 24 September 2022), which contains historical
traffic data at 15 min aggregation intervals on the M25 motorway in London from 1 to 5
June 2021. Figure 2 illustrates the distribution of the selected loop detector locations in the
study area, and Figure 3 depicts the scatterplot of the record traffic flow data. Figure 3
highlights that when the density is relatively small, the vehicle’s speed remains around

http://tris.highwaysengland.co.uk/detail/trafficflowdata
http://tris.highwaysengland.co.uk/detail/trafficflowdata
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110 km/h. As the density increases, traffic jams occur, and the speed gradually decreases to
the minimum value.

Figure 2. Maps of the selected detector locations on the M25 motorway in London, where the big red
pin indicates the detector.
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Figure 3. Speed vs. density scatterplot from 1 to 5 June 2021.

In [6,29], the authors used the modified Greenshields model to calibrate highways in
the United States. Based on their experience and scatter plots, the value regions for the six
calibration parameters are reported in Table 1.

Table 1. Value regions for the calibration parameters.

θ kbp u f v f α v0 kjam

Value region [10, 30] [80, 130] [170, 220] [0, 10] [0, 5] [200, 220]

3.2. The Settings of the Calibration Methods

To verify our proposed method’s performance, we challenge it against the L2, KO [9],
and the LS [11] calibration methods. However, due to the computational burden of the L2
calibration, in the comparisons, we use the projected L2 calibration (Proj-L2) [30] variant,
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which is the L2 calibration method under a Bayesian framework. Given that the true calibra-
tion parameter values cannot be calculated in this case study, to evaluate the performance
of the calibration methods, we first use the relative prediction discrepancy (RPD) as the
statistical criterion to compare the different approaches. The RPD determines the prediction
accuracy for the calibrated computer model, defined as follows:

RPD =
1
M

M

∑
i=1
{ 1

ntest

ntest

∑
j=1

∣∣∣∣∣v
t
j − v(k j, θ̂ij)

vt
j

∣∣∣∣∣}, (14)

where M = 50 is the repetition and | · | is the absolute value. {k1, · · · , kntest} and
{vt

1, · · · , vt
ntest} are the testing sets, with ntest being the sample size.

The initial design is fixed at the same sample size, which is changed at each replication
to calculate the RPD. For the proposed method, the initial design size is set to n0 = 2q
and is obtained using the maximin LHD method from K, where q is the dimension of the
calibration parameters. The number of additional sequential points is m = 5q obtained
on Algorithm 1. For a fair comparison, the sample size is set as N = 7q for the KO, LS,
and Proj-L2 calibration methods, which is the same as the total sample size after adding
points for the proposed method. ntest is set on n0 and the testing data are selected from the
real traffic flows data randomly. For the Fast-L2 calibration, we use the scaled Gaussian
process [21] to estimate the real traffic flow system, and the RobustGasp package [31] in
R is employed to build the scaled Gaussian Process model. The variance and running
time are also used as guidelines for comparing the performances of different calibration
methods. Since the Fast-L2 and LS are frequency methods, we use 500 bootstrap samples
to measure their variances and running times. For the KO and Proj-L2 calibrations, the
prior density of θ is set as an uninformative prior. Additionally, the r(·, ·) in the benchmark
methods is set on the Matérn kernel function with a smooth parameter ν = 5/2, and the
scaling parameter ψ is fixed to 1/2. The variances of KO and Proj-L2 are calculated using
posterior samples of the calibration parameters.

3.3. The Results

Table 2 reports the RPD, the mean standard deviation (mSD) of θ̂, and the runtime,
which are used to compare the prediction discrepancy and computational efficiency of the
four methods.

Table 2. Summary statistics of θ̂ for different calibration methods.

Calibration Methods Fast-L2 KO LS Proj-L2

RPD 0.7039 2.6187 0.8345 6.7197
mSD 1.3377 3.0554 2.1423 6.8666

Runtime 14.28 s 40.67 s 0.22 s 637.55 s

Due to the ideal assumptions and simplifications, the modified Greenshields model is
inexact; that is, the RPDs of four different calibration methods are relatively large. Among
the four benchmark methods, the RPD of the Fast-L2 calibration method is the smallest,
affording the best prediction accuracy. According to (14), the RPD of LS is theoretically
smaller than Fast-L2. Since the Fast-L2 chooses more efficient sample points according to
the proposed optimal criteria, its RPD is smaller than the LS. The RPD of KO’s calibration
is larger than Fast-L2 and LS because the KO does not converge to the true value when
the discrepancy function exists [17]. The RPD and mSD of the Proj-L2’s calibration are
the largest due to the inaccurate Gaussian process estimation. Moreover, Fast-L2 has the
smallest mSD, indicating that it provides the smallest θ̂ uncertainty. Finally, LS requires the
shortest time due to simple calculations, and the runtime of Fast-L2 only requires 14.28 s,
which is much smaller than Proj-L2 calibration time.
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To further compare the uncertainty of each calibration parameter, Figure 4 illustrates
the box plots of θ̂ using different calibration methods. Combined with the mSD in Table 2,
it highlights that the proposed calibration parameter estimation has the smallest variance.
That is, the uncertainty provided by the Fast-L2 calibration is smaller than the competitor
calibration methods. The estimated value of the Fast-L2 is close to the LS, and although
the true value of θ is unknown, the estimates of Fast-L2 and LS are more accurate than the
other RPD-based methods and the θ estimates.
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Figure 4. Box plots for four calibration methods in case study.

Figure 5 depicts the predictions and confidence interval of the modified Greenshields
model after calibration, according to the optimal sub-design criterion. The results infer
that the computer model fits the observations well and that the 95% interval is narrow.
Additionally, the scatter plots of the testing data and the predicted values are uniformly
distributed around y = x, with the coefficient of determination R2 = 0.98.
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Figure 5. (Left): Computer model after calibration and the 95% prediction confidence interval, using
the proposed method. (Right): Observations vs. predictions of the calibrated computer model.

4. Conclusions

This work proposes a fast L2 calibration framework suitable for the inexact traffic flow
system. The proposed method first suggests an optimal sub-design criterion for the L2
calibration based on the discrepancy function and FIM, which reduces the computational
time and preserves the advantages of L2 calibration. Considering the space-filling of the
design, we employ the grid search method to find the additional points sequentially. Then,
we develop an algorithm to generate the optimal design, and a standard bootstrap method
is utilized to quantify the uncertainty of the predictors. Finally, we apply the proposed
method to a case study of the M25 motorway in London. The results demonstrate that
the prediction accuracy of the calibration parameters estimated based on our optimal
design criterion is better than that of the current calibration methods. Furthermore, the
suggested method significantly improves the computational efficiency of the L2 calibration
and reduces the calibration parameters’ uncertainty. The results demonstrate that the
proposed method applies to inexact traffic flow models.

The future research directions are multifaceted. First, since most data have periodicity,
which is not considered in our paper, an optimal design criterion for periodic data can be
developed in the future. Second, an optimal design criterion under the Bayesian version
can be considered as being more convenient for quantifying the uncertainty.
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