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Abstract: An electrocardiogram (ECG) is used to check the electrical activity of the heart over a
limited short-term or long-term period. Short-term observations are often used in hospitals or clinics,
whereas long-term observations (often called continuous or stream-like ECG observations) are used
to monitor the heart’s electrical activity on a daily basis and during different daily activities, such
as sleeping, running, eating, etc. ECG can reflect the normal sinus rhythm as well as different heart
problems, which might vary from Premature Atrial Contractions (PAC) and Premature Ventricular
Contractions (PVC), to Sinus Arrest and many other problems. In order to perform such monitoring
on a daily basis, it is very important to implement automated solutions that perform most of the
work of the daily ECG analysis and could alert the doctors in case of any problem, and could even
detect the type of the problem in order for the doctors to have an immediate report about the patient’s
health status. This paper aims to provide a workflow for abnormal ECG signals detection from
different sources of digitized ECG signals, including ambulatory devices. We propose an algorithm
for ECG pre-annotation and beat-to-beat separation for heartbeat classification using Autoencoders.
The algorithm includes the training of different models for different types of abnormal ECG signals,
and has shown promising results for normal sinus rhythm and PVC compared to other solutions.
This solution is proposed for no-noise and noisy signals as well.

Keywords: ECG; signal processing; ECG annotation; Autoencoder; ECG classification

1. Introduction

Monitoring the overall status of patients on a daily basis has become a very important
key point in the field of healthcare due to the fact that patients cannot stay under long-term
monitoring in Intensive Care Units (ICU), which is limited to cases of serious health problems.
Therefore, another solution is to use the capabilities of IT in order to come up with much easier
ways to automate such tasks and alert doctors in cases of the detection of any deterioration
in the health status of their patients. Telemedicine is a good solution for this, as it provides
the ability to share the actual health status of patients using a shared online service between
doctors and patients, which shares immediate data related to different human bio-signals
that could be collected using either small non-invasive sensors, such as pulse meters, pulse
belts, ECG single-channel/multi-channel sensors and even body temperature sensors, or
minimal-invasive sensors, such as instant blood glucose sensors or continuous blood glucose
sensors that perform Continuous Glucose Monitoring (CGM).

ECG is a very important parameter for detecting human bio-signals as it might reflect
both the normal sinus rhythm of the heart as well as many heart problems that are usually
very critical to human life. By monitoring human ECG, we can detect many kinds of
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heart problems/failures, such as Premature Atrial Contractions (PAC), also called atrial
premature complex (APC), Premature Ventricular Contractions (PVC), Sick Sinus Syndrome
(Bradycardia, Tachycardia), or Sinus Arrest. PAC [1] is described as an extra heartbeat
starting in the upper chamber of the human heart, where it could be felt as a skipped beat
if the heart contains less blood at that moment, or is felt as an extra heartbeat if the heart
contains a lot of blood at the moment of this beat. PVC [2] is described as a very early
heartbeat in the ventricles, which follows a normal beat and causes a small pause in the
heart and then a strong heartbeat due to the amount of blood that was collected in the heart
during the pause. A “normal sinus rhythm” will result in a normal pulse ranging from
60 bpm to 100 bpm; however, the “Sick Sinus Syndrome” [3] is basically described as an
abnormal sinus rhythm, which could be a “Bradycardia” that presents a slow sinus rhythm
(pulse is less than 60 bpm) or a “Tachycardia” that presents a fast sinus rhythm (pulse is
higher than 100 bpm). Sinus Arrest/Pause is a pause in the heart’s sinus rhythm, presented
as a slightly longer time period between two sequential heartbeats.

From the previous explanation, we can see that these are the most relevant sinus rhythms
for this study. We can extract seven different signal types, with different ECG shapes for each
one of them. The different shapes are explained by the following characteristics:

1.  Normal sinus rhythm in a normal healthy person would result in a normal pulse rate
of a value of 60-100 bpm. Each beat has a normal shape in the PQRST complex;

2. PAC, which might not affect the pulse rate but will affect the sinus rhythm by causing
an early heartbeat generated in the upper part of the heart (Atrial) followed by a small
pause of the sinus rhythm. It has a normal ECG shape in the PQRST complex, but
occurs earlier than usual, so that the time period between the “P” peak of this beat
and the “T” peak of the previous beat is almost null;

3. PVC shape 1, which is an extra heartbeat generated in the lower part of the heart
(ventricle) and disrupts the normal heartbeat generated in the upper part. This will
result in a different shape, whereby the peaks “P” and “T” are missing, and a wide
QRS complex;

4. PVC shape 2, which is the same as the previous but is different only in the shape;

5. Sinus Arrest, which is a pause in the sinus rthythm, meaning that we can detect a
slightly longer time period between two beats, and this could have a big influence on
the pulse if the pause is repeated;

6.  Sick Sinus Syndrome (Bradycardia), which is a slow sinus rhythm and will result in
a pulse of less than 60 bpm. The shape of the PQRST complex is normal;

7. Sick Sinus Syndrome (Tachycardia), which is a fast sinus rhythm and will result in a
pulse of more than 100 bpm. The shape of the PQRST complex is normal.

As the digitalized ECG values are presented as a signal, we are able to use different
signal processing approaches to analyze the ECG signal. The main idea here is that we are
interested in detecting the different peaks of a heartbeat from the whole ECG signal. To do
so, we need to first split every beat; then we are able to train a model in order to predict the
type of every beat. The first step in splitting the beats is calculating the discrete derivative of
the ECG signal function, then checking the points where the derivative changes its sign in
order to find the “R” peaks. Finally, we split the heartbeats in connection with the sampling
rate (or the measurement frequency) of the used sensor.

After splitting the heartbeats, we use so-called Autoencoders in order to detect if a
given ECG signal of a heartbeat is normal or abnormal. The Autoencoder will provide a
reconstructed version of the formal shape of a normal sinus rhythm in an ECG signal. After
determining that a given heartbeat is abnormal, we perform the next step to predict the
type of abnormal ECG signal according to the known characteristics of heart problems. Any
failure in detecting the shape of the ECG signal could mean that the given signal presents
another heart problem, and this is alerted to doctors for manual assessment.

Autoencoders are often used for noise reduction in images [4], human bio-signals such
as the ECG [5,6], and even for speech signals [7], but they are here used to train a model for
abnormal ECG arrhythmia detection by comparing the test data to the reconstructed ECG
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signal. The training is performed using the MIT-BIH database, the St Petersburg INCART 12-
lead Arrhythmia Database, and the Long-Term Atrial Fibrillation (AF) Database (LTAFDB).
The prediction result is further assessed by calculating the error value between every
heartbeat and the reconstructed ECG signal. The error is introduced by the area surface
between the heartbeat and the reconstructed ECG signal, whereas, in this case, it is the
cumulative absolute value of the difference between these two signals for all consecutive
values of one heartbeat.

In this paper, we propose a novel algorithm for ECG pre-annotation and beat-to-beat
separation for heartbeat classification using Autoencoders. The solution and workflow are
proposed for no-noise and noise-based ECG signals, where the noisy ECG signal mostly
comes from stream-like ECG sensors. In the pre-annotation process, we aim to detect the R
peaks in order to use them to separate the heartbeats, and make the prediction later using
the trained Autoencoder models. First, we get the first discrete derivative of the original
signal, calculated as the difference between all consecutive values of the data. Second, we
calculate the threshold based on the maximum value of the discrete derivative. Finally, we
determine which represents the R peaks.

The novelty of our research is our use of Autoencoders to learn the formal shape of
a normal heartbeat ECG curve, reconstruct its shape, and then compare it to any input
signal in order to check the similarity between the two input signals and thus predict if it
is a normal or abnormal heartbeat, using the auto-calculated threshold derived from the
training process. Therefore, we first had to develop a preprocessing block to perform the
pre-annotation based on the first discrete derivative of the input signal, calculated as the
difference between every two consecutive values of the signal, and then detect the spots
where this derivative changes its polarity and has a big value of change in a small time
period. The change should be bigger than the threshold calculated automatically based on
the input signal, where these detected spots present the R peaks of the different heartbeats.
These annotations are used to split the heartbeats based on the sensor sampling rate. The
different heartbeats are then assessed using the trained Autoencoder model to detect
normal or abnormal beats. If any arrhythmia is detected in any of these beats, the given
heartbeat is checked again with the very same process, but using another Autoencoder
model trained to detect anomalies such as different shapes of PVC heartbeats. The same
process is used to detect other types of arrhythmias.

In the Section 3, we introduce the background of similar attempts using automated
ECG annotation tools. In the Section 4, we start by introducing heart problems, which
helps us to understand the patterns of these heart issues; then, we give a deep explanation
of the proposed algorithm. Section 5 gives a brief introduction of the achieved results,
followed by a discussion, and finally, we summarize the technical contributions of our
paper compared to other existing solutions.

2. Materials and Methods

This research presents briefly the new proposed algorithm for human heart arrhythmia
detection. It presents the use of Autoencoders for the purpose of detecting abnormality
in ECG signals. The proposed algorithm involves the training of Autoencoder models for
different types of arrhythmias that show different shapes in the ECG signal. The pre-trained
models could detect whether the input signal has the same shape as the reconstructed
version of the signal or not by using a threshold that defines the maximum accepted error
between the two signals. The proposed workflow involves the pre-annotation process
applied to feed the models with pre-annotated data related to different peaks in the ECG
signal, and/or detect these peaks in the ECG signals as normal signals. Then, the mathe-
matical format for calculating the threshold of the binarization process is defined after the
pre-annotation algorithm. In addition, the detailed structure of the built-in Neural Network
for the Autoencoder is briefly explained.

The data used to train these models are taken from the following annotated ECG
databases: the MIT-BIH Arrhythmia Database, the St Petersburg INCART 12-lead Arrhyth-
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mia Database, and the Long-Term Atrial Fibrillation Database (LTAFDB). These databases
are all available online, and the results achieved in this research could be easily reproduced
by using these databases together with the proposed algorithm in Section 4.2 of this article.
Its results could thus be validated together with the results presented in Section 5.

3. Related Work

Many attempts have been made to provide automated solutions to detect deteriora-
tions in patients by detecting different types of abnormalities in human bio-signals. In the
case of human ECG signals, some research has been undertaken to provide annotated ECG
databases that will enable researchers to then further improve the manual annotations,
detect important spots in the signals, such as the QRS complex of the ECG signal, or to
find the RR intervals between different heartbeats. Other types of research include the use
of machine learning techniques and trained models to automatically detect the different
peaks or the key points of an ECG signal (PQRST peaks). Furthermore, other advanced
research has been undertaken to enable patient monitoring with noisy signals, or even to
provide a real-time solution to enable the real-time monitoring of patients in all types of
daily activities. In this section, we provide a good description of the related work, assessing
all the different contributions made by researchers in this field.

PhysioBank, PhysioToolkit, and PhysioNet [8] are the three main components of a
research solution that enables researchers to save, archive, or reuse complex physiologic
signals in the PhysioBank, using the libraries of PhysioToolkit and visualizing using Phys-
ioNet. The MIT-BIH Arrhythmia Database [9] was the first standard test material available
for researchers to undertake further research on the usage of automated solutions for
patient monitoring. The St Petersburg INCART 12-lead Arrhythmia Database [10] is a
12-lead ECG database of heart ECG arrhythmia records presented and contributed by the
St. Petersburg Institute of Cardiological Technics (Incart). The Long-Term Atrial Fibrillation
(AF) Database [11] is another ECG database available online that provides 84 long-term
ECG signals of patients with paroxysmal or sustained atrial fibrillation. Moreover, the
Chinese Cardiovascular Disease Database (CCDD or CCD database) [12] was developed to
provide a wide set of improved technical parameters of raw ECG data.

Some attempts have been made to automate the annotation process of these ECG signal
recordings and/or those from many other databases that are available online. A cascaded
classification system is provided in [13] for multi-lead ECG signals based on feature fusion
to improve the performance of ECG signal classification on a beat-to-beat basis. In this
research, ten different features were selected and used to train the model separately on
the 12 different leads of the ECG input signal. Furthermore, these ten features were fused
together in a novel feature fusion method to implement the cascaded classifier using
multilayer perceptron (MLP) and random forest (RF). A new single lead delineator [14] was
developed based on phasor transform by converting every ECG sample into a phasor that
can easily manage P and T peaks with low amplitude compared to the R peak; this research
used many different online databases and reached 99.81% detection accuracy for the QRS
complex, with a maximum localization error of 6 milliseconds between the automated and
the manual annotation.

A convolutional neural network (CNN) model was trained in [15] using PhysioNet
databases for ECG annotation of P waves, QRS complexes, T waves, noise signals, and inter-
beat ECG segments. This research was performed as the basis for proposing a classification
system of normal or abnormal cardiac rthythms. Signal features were extracted for NSR,
AF, alternative rhythm and noisy signals. This research achieved a 98% positive detection
rate in the manual annotation of R peaks in the QT database, and a 99% positive predictive
value. However, the positive detection rate of the P and T peaks reached 92% and 88%,
respectively. A semi-automated solution was introduced in [16] based on the PhysioNet
LightWAVE visualization tool to extend its capabilities for ECG peak annotation. This
solution is referred to as semi-automated because it can produce automated annotations,



Electronics 2022, 11, 4021

50f 20

but will require manual annotation by specialists in cases of low detection confidence
compared to a threshold.

A novel algorithm was presented in [17] to enable the real-time detection of heart
rate and the annotation of heart-beats in multi-model data that consist of the ECG signal
together with the blood pressure signals. This latter is used to detect heartbeat annotations
if the ECG signal is unavailable, distorted, or very noisy. As part of the PhysioNet/CinC
Challenge 2017, the authors of [18] presented an automated algorithm that classifies atrial
fibrillation (AF), normal sinus rhythm (NSR), and noisy signals in short and single-channel
ECG records. Another method was used to combine two different methods for a better
onset prediction of atrial fibrillation using the variability of ECG signals [19], and the final
prediction rate reached 90%; the first method involved the analysis of the ECG signal’s heart
rate variability (HRV), while the second method is based on the ECG signal’s morphologic
variability (MV). Furthermore, a system [20] was implemented to perform the automated
annotation of different specific peaks of the ECG signal, as well as the rhythm of the
heartbeats, by diagnosing and detecting significant changes in the ECG signal.

In the case of ambulatory ECG devices, the results obtained in [21] show that this
is a good starting point, and is suitable to include in next-generation wearable devices
or sensors. This research involves the use of a reliability index that is assigned to ECG
segments in order to assess the reliability of heart rate signals retrieved from ambulatory
ECG sensors or devices. The proposed method was validated on 1500 manually annotated
samples of ECG signals with different sampling rates taken from other studies. Another
study was undertaken in [22] to provide a filtering and classification tool for ECG signals
in free-living or so-called non-supervised environments. An integral-coefficient-band-stop
(ICBS) filter and two-layered Hidden Markov Models (HMMs) are used to firstly remove
the time-consuming floating-point processes and then perform the feature extraction and
classification of the input signals into the normal or one of the two abnormal ECG signals
(either APC or PVQ).

Other research was performed in [23] to provide decision support or a decision-making
system to diagnose coronary heart disease caused by plaque in the walls of heart arteries.
This research involves the implementation and comparison of seven different algorithms
that are used for the baseline removal of the ECG signal. The compared algorithms
involve the use of different approaches and methods, such as adaptive filters, linear digital
filters, polynomial-based approaches, multi-resolution analysis, and curve fitting. The
comparison was made according to the manual annotation of ST segments in many ST
segment deviation records of the European Society of Cardiology (ESC) ST-T database.
This research shows that the results obtained from the use of a “Wavelet Adaptive Filter”
for baseline removal were the closest to the ground-truth manual annotations. Another
study [24] combined the analysis of ECG signals and motion activity to diagnose coronary
heart disease. The research involves the detection of the ST segments of ECG signals
together with the motion activity, represented by the heart rate signal. The method is
trained and simulated using the Long-Term ST Database, which includes in its annotation
whether the specific patient has a coronary heart disease, and achieves an accuracy of 80%.

Other studies used wavelet transform to detect the R peaks, such as in [25], where the
authors introduced a supervised learning algorithm that is able to automatically detect the
scales of the used training database using a small dataset with manual annotations made
by physicians. The selected scales are applied to the whole ECG signal in order to annotate
the R peaks. Furthermore, the wavelet transform technique was used to analyze ECG data
compression in [26] by looking for redundancy in the ECG signal and trying to find an
optimal compression method based on a strategy specifically designed for ECG signals. In
addition to this research, an automated solution [27] was developed and tested to detect
pediatric ventricular pre-excitation (VPE) with a trained classifier based on decision trees,
where the positive prediction value reached 88%. Furthermore, a novel real-time classifier
for normal human cardiac behavior detection was proposed in [28]. This classifier is used
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to profile different cardiac behaviors in different patients, and even for different physical
conditions for the same patient.

The applied research did not focus only on classifying ECG heartbeats, but also on
detecting the quality of the ECG signal. The research in [29] was based on a tree classifier
that classifies the ECG signal into four different classes, ranging from high quality signal to
electrode shedding with serious noise.

Furthermore, it is worth noting that the annotation of ECG is used in other research
related to seismocardiography (SCG), such as in [30], where the authors collected ECG
and SCG data from 18 participants subjected to lower negative body pressure and the
corresponding manual ECG annotation of R peaks, and then automatically annotated the
SCG. The results of comparing the manual isovolumic moment timings and the automated
results of the algorithm look promising. Another research [31] introduced a novel algorithm
for the use of micro-electro-mechanical system (MEMS) accelerometers in the automated
annotation of seismocardiographic (SCG) recordings for patients in a resting state, achieving
a 96.9% detection rate of isovolumic moment (IM) peaks and a 95.6% rate for aortic valve
closure (AC) peaks.

In the previous research presented in the literature, many problems have been detected
regarding ECG monitoring, such as the problems related to the digitalization and storage of
stream-like long ECG recordings that are collected from long-term ambulatory sensors or
devices [32]. A framework and a real solution for all the steps involved in ECG monitoring,
from data collection from single-channel ECG sensors and digitalization to data storing,
were introduced in [33]. Furthermore, we have presented a new enhanced version of the
Health Level Seven International (HL?7) Fast Healthcare Interoperability Resources (FHIR)
data format, named HL7-aECG. The new enhanced version, published in [34], serves to
improve the ability to store stream-like ECG data, which we have reviewed previously.
Finally, one of the most important problems when dealing with digital ECG data regards
the interoperability issues between different data formats or standards; therefore, we
introduced a conversion tool in [35] that uses an intermediate flexible data format in
order to enable data transfer between different standards, via mapping all data of different
standards to an intermediate data format. This was applied to conversion between digitized
ECG signals. On the other hand, the conversion from paper-based to digitized ECG signals
is a difficult task; however, a morphological method was presented in [36] introducing a
new conversion process that separates the background noise from the input paper-based
signal and provides it in a digital format in the corresponding ECG signal.

The novelty of our research lies in the use of Autoencoders, not for signal noise
reduction, but to learn the shape of a normal heartbeat ECG curve, reconstructing its
formal shape, and then comparing it to any input signal in order to extract a similarity
approximation between the two signals, then predicting its normality vs. abnormality
status compared to the threshold auto-calculated in the training process. To do so, we
first had to develop a pre-annotation solution based on the first discrete derivative of the
input signal, calculated as the difference between each two consecutive values of the signal,
and then detect the spots where this derivative shows a large change value (above a given
threshold calculated automatically based on the input signal) in a small time period. These
spots present the R peaks of the different heartbeats, and these annotations are used to
split the heartbeats based on the frequency of the sensor sampling rate. The different
heartbeats are then predicted using the trained Autoencoder model to identify normal or
abnormal beats. If any arrhythmia is detected in any of these beats, then the given heartbeat
is predicted again with the very same process using another Autoencoder model, trained
to detect anomalies such as a PVC heartbeat. The same process is used to detect other types
of arrhythmias.

4. Heart Arrhythmia and Proposed Algorithm

Before describing the details about the proposed algorithm, it is necessary to give brief
overview of the different problems related to heart rhythm in order to better understand
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the process of the novel algorithm. The heart problems presented in the Section 1 of the
Introduction will be explained, and an example is presented for each type of arrhythmia.

4.1. Heart Arrhythmia Problems
4.1.1. Premature Contractions

Premature Contractions are heartbeats that are generated either in the atrial or the
ventricle. The type generated in the atrial are referred to as Premature Atrial Contractions
(PAC), whereas those generated in the ventricle are called Premature Ventricular Contrac-
tions (PVC). PAC and PVC have different ECG signal shapes, and it is also important to
mention that the PVC exhibits two differently shape ECG signals.

PAC [1] is an extra heartbeat that is generated in one of the two upper chambers (atrial)
of the human heart, and it could be felt by the patient as a skipped beat if the heart contains
less blood at that moment, or as an extra heartbeat if the heart contains more blood at
the moment of this beat. This will result in a heartbeat that looks the same as a normal
heartbeat, but with a small RR interval between the affected heartbeat and its predecessor.
Figure 1a shows the general shape of a PAC, where we can see that the third heartbeat
comes too early and has the shape of a normal heartbeat, because it was generated in the
upper chambers of the heart.

(a) ‘\,\ ‘\,\A ﬁ i l/\—

(b)

(c) j.“_,k JY_A.__ 3 'h"\

25 mmy/sac 10 mm/my

Figure 1. Premature Contraction examples: (a) Premature Atrial Contractions (PAC) in the third
heartbeat; (b) periodical Premature Ventricular Contractions (PVC) of two different shapes in the
second, fifth, and the seventh heartbeats; (c) single PVC with the first shape in the third heartbeat.

PVC [2] is described as a very early heartbeat in the ventricles that follows a normal
beat, and it causes a small pause in the heart and then a strong heartbeat due to the amount
of blood that was collected in the heart during the pause. A PVC can show two different
ECG curves depending on the amount of blood collected in the heart and the timing of the
generation of the affected heartbeat in the ventricle. Figure 1b shows periodical Premature
Ventricular Contractions (PVC) of two different shapes in the second, fifth, and the seventh
heartbeats, whereas Figure 1c shows a single PVC of the first shape in the third heartbeat.

4.1.2. Sinus Arrest

Sinus Arrest (also called Sinus Pause) is a pause in the heart’s sinus rhythm presented
as a slightly longer period between two sequential heartbeats. The RR interval is used to
detect Sinus Arrest. The RR interval in Normal Sinus Rhythm is the same as that for most
of heartbeats; however, it looks very long (with a big RR value) in heartbeats affected by
a Sinus Arrest. Figure 2 shows an example of a Sinus Arrest presenting as a pause in the
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normal sinus rhythm between the second and third heartbeats, which would feel like a
skipped heartbeat for the patient.

25 mrri.’sec:: 10 mrﬁfrn(f

Figure 2. Sinus Arrest example presented as a pause in the normal sinus rhythm between the second
and third heartbeats.

4.1.3. Sick Sinus Syndrome

A Normal Sinus Rhythm (NSR) [3] presents an ECG curve status that would normal for
a healthy person, which will result in a normal pulse ranging from 60 bpm to 100 bpm and, in
the normal case of daily activities without extra physical effort, will show almost equal values
of RR intervals between all heartbeats, ranging from 0.6 s to 1 s. Figure 3a shows the Normal
Sinus Rhythm of a healthy person, where we can see all the PORST peaks of all the heartbeats,
in addition to the normal range of RR intervals between all heartbeats.

(@)

®) \/\,AJL/—‘AA_/\_,—AAJ\
© MV\.A/\AA/\/\A/\\A/\M

Figure 3. Normal Sinus Rhythm vs. Sick Sinus Syndrome examples: (a) Normal Sinus Rhythm
example; (b) Bradycardia example that shows a slow sinus rhythm (big RR intervals); (¢) Tachycardia
example that shows a fast sinus rhythm (small RR intervals).

However, “Sick Sinus Syndrome” [3], which could also be called “Abnormal Sinus
Rhythm”, can basically be described as an abnormal signal of the sinus rhythm that will
result in RR interval values that are out of the normal range. An Abnormal Sinus Rhythm
could mean either a “Bradycardia” (Figure 3b), presenting a slow sinus rhythm (where the
pulse is less than 60 bpm and the RR value is more than 1 s), or a “Tachycardia” (Figure 3c),
presenting a fast sinus rhythm (the pulse is higher than 100 bpm and the RR value is less
than 0.6 s). In order to determine that a given ECG signal is a Bradycardia or a Tachycardia,
the signal should indicate a sinus rhythm with RR interval values all above 1 s or less than
0.6 s consecutively.
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4.2. Proposed Algorithm

According to the description of the different types od ECG signals and arrhythmias, the

following workflow is proposed to provide a generic solution for detecting abnormalities
in ECG signals using Autoencoders. Autoencoders are used to determine the formal shape
of a normal heartbeat ECG curve, reconstruct its shape, and then compare it to an input
signal, which could be saved previously or even derived from real-time ECG data collected
from patients during different daily activities, in order to check for similarities between
the two input signals and then predict if this is a normal or abnormal heartbeat using the
auto-calculated threshold derived in the training process.

Therefore, the proposed algorithm involves the following steps:

First, start with the preprocessing block to form a pre-annotation based on the first
discrete derivative of the input signal, which is calculated as the difference between
each two consecutive values of the signal;

Detect the spots where this derivative changes its polarity and shows a big value
of change in a small time period—the change should be bigger than the threshold
calculated automatically based on the input signal. These detected spots present the R
peaks of the different heartbeats;

These annotations of R peaks are used to split the heartbeats based on the sensor
sampling rate;

The different heartbeat types are then predicted using the trained Autoencoder model
to determine if this presents a normal or abnormal beat;

If any arrhythmia is detected in any of these beats, the given heartbeat is checked
again with another Autoencoder model, which is trained to detect anomalies such as
different shapes in a PVC heartbeat;

The same process is used to detect other types of arrhythmias.

Figure 4 shows the overall structure of the proposed algorithm for the whole process

of classification.

Training
NSR Autoencoder PVC Autoencoder
| Train || Test || Validation | | Train || Test ” Validation
| Input data }
¥
Pre-annotation & pre-
processing

¥

—bl NSR prediction

Is NSR

v

PVC prediction

Is PVC

Unknown

Is PAC

Is Sinus Arrest

Is Bradycardia

RR interval
calculation &
prediction

Is Tachycardia

—

Figure 4. General structure of the proposed algorithm.

In the process of training the Autoencoders, we used over four thousand heartbeats
from the MIT-BIH ECG data of different patients, of which 20% were used for testing and
80% for training, and the numbers of signals implying normal and abnormal ECG were
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almost equal. More than 1500 heartbeats were NSR (normal sinus rhythm), and an equal
number were abnormal heartbeats containing APC, PVC, and noise data. However, in
the case of the Autoencoder dedicated to NSR detection, we selected only the heartbeats
annotated as NSR, while in the case of the Autoencoder dedicated to PVC detection, we
used the “St Petersburg INCART 12-lead Arrhythmia Database” dataset, which provides a
wide set of records with PVC annotations.

We used “Tensorflow” and “Keras” to build our model of the three main densely
connected Neural Network (NN) layers for both the encoder part and the decoder part.
The model was built to be trained using the “Adam” optimizer with 100 epochs and a batch
size of 512. In the case of the encoder, we used the following layers:

1.  Dense layer with a 32-unit output shape and rectified linear activation process (relu);
2. Dense layer with a 16-unit output shape and rectified linear activation process (relu);
3. Dense layer with an 8-unit output shape and rectified linear activation process (relu).

For the decoder, we used the following dense layers:

4.  Dense layer with a 16-unit output shape and rectified linear activation process (relu);

Dense layer with a 32-unit output shape and rectified linear activation process (relu);

6.  Dense layer with an output shape of the minimum signal length units and the sigmoid
activation function. The minimum signal length is calculated based on the sampling
rate/frequency of the input data depending on the used ECG device.

o1

In the pre-annotation process, we aimed to detect the R peaks in order to use them to
separate the heartbeats and thus later make the prediction using the trained Autoencoder
models. This step consists of three main sub-parts:

The first is to get the first discrete derivative of the original signal, calculated as the
difference between all consecutive values of the data. The proposed algorithm for the
pre-annotation is shown in Algorithm 1, and the necessary formulae from the algorithm
follow it.

Algorithm 1: Pre-annotate ECG Data

Data: X < dataSignal
Result: R_annotations

dxdy « diff(X);

# the whole ECG input signal
# the pre-annotated R peaks indices in the signal
# calculate the first forward discrete derivative

th < max(dxdy)/2; # the threshold could be changed, for instance using the standard deviation
dataLength < sizeOf(dxdy);

dxdy_bin < [];
rm < 5;

R_annotations < [];
fori < 1, dataLength do:
if dxdy[i] > th then:

# to contain the detected spots for possible R peak

# to contain the R peaks

dxdy_bin.append(1);

else:

dxdy_bin.append(0);

end
end

fori < 1, dataLength do:
if dxdy_bin[i]=1 then:

R_annotations.append(max(X[(i+1-rm, i+1+rm)]); # append the index of the detected R peak

end
end

return R_annotations;

The signal values are saved in the array “X”, “t” is the time axis (in this case, the index
of the data inside the data array, depending on the used sensor sampling rate), and “dx” is
the first forward discrete derivative of the signal data (Equation (1)).
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The second sub-part is to calculate the threshold based on the maximum value of the
discrete derivative (Equation (2)).

o _dX  X(x+1)—X(x)
dx*f(x)*ﬁf (t41)—t

=X(x+1)—X(x), Vx e N(x < |X]), (1)

max(dx)
T2 @
where “th” is the threshold. The third sub-part is finding the R peaks. In our case, it is
considered that the noise generated during the collection of data will have smaller values
than the actual change in voltage caused by the QRS complex; therefore, the detection of
the R peak is made easier by using the first discrete derivative of the ECG signal. Since we
are using the first forward discrete derivative, the selection of the R peak demands finding
the spots where the derivative changes its polarity with a value greater than the threshold;
however, it should be found within a given range from the detected spot, where the margin
of this range could be determined at the beginning (for instance, the range rm = 5).

The next task is what we call the “binarization” of the results by finding the points of
interest (POI), where “dx” surpasses the threshold “th”.

th =

1, dx > th

0. dx < th ,Vx € N (x < |dx|), (©)]

POI = bin(x) = {
The R peaks are detected using the following formula:
,Vx € N (x < |dx|), 4)

_f max(X[x —rm, x+rm], dx=1
R(x) = { null, dx=0

After the detection of the R peaks, we split the beats by taking the same amount of
signal data before and after each R peak, wherein the amounts of values taken before and
after depend on the sampling rate of the used sensor or device, taking into account the fact
that the normal pulse for a healthy person ranges from 60 bpm to 100 bpm, and in a normal
case of daily activities without extra physical effort, it will show almost equal values of RR
intervals between all heartbeats, ranging from 0.6 sto 1 s.

5. Results

This section outlines all the relevant results achieved in this research regarding all the
sub-sections related in Figure 4 in the previous section.

5.1. Pre-Annotation Results

This process consists of three main parts, shown in Figure 5, where we show an
example of testing data extracted in our lab for manual testing purposes. It is clear that the
signal that is collected using an ambulatory device (Savvy ECG) contains lot of distracting
noise (especially in the last third of the data). The first discrete derivative of the signal
is obtained, and we then calculate the threshold based on the maximum value of the
derivative signal. Then, a “binarization” process finds the spots where the values exceed
the threshold. These spots are the R peaks of the original signal.

As shown in Figure 5, the detection algorithm is limited to the high noise in the original
signal. In fact, Figure 5 shows the wrong detection that could occur in the system; for instance,
R peak 15 is missing because the value of change in the original signal was slightly under the
detected threshold, and this resulted in excluding this peak. Furthermore, R peaks 28 and 29
are missing from the original signal due to the high noise frequency, caused by the intentional
movement of the sensor used in order to show the limitations of the system.
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o 0 LLLHMM b
o 5 LAl

Record index

Figure 5. Pre-annotation results: (a) original noisy signal for testing taken from an ambulatory device
(Savvy ECG); (b) discrete derivative of the signal (difference between sequential values) and the
detected threshold; (c) detected R peaks; (d) final pre-annotation result.

The beats are then split as shown in Figure 6, where we can see that all the detected
R peaks from all data sources are perfectly aligned together. It is clear that the data in (a),
showing the values before and after the R peaks, are noisy, as we used an ambulatory sensor
that in some cases produces large noise values depending on the daily activity the patient is
performing. (b) shows the NSR heartbeats in the MIT-BIH database that are split correctly;
however, the data are slightly noisy, but not as much as those previous. (c) shows the NSR
heartbeat data of the INCART database split correctly, which are not noisy. (d) shows the
PVC heartbeat data from the INCART database split correctly, which are not noisy; (e) shows
the NSR heartbeat data from the LTAFDB database, split correctly except for one heartbeat,
which is clearly not aligned with the rest of the heartbeats but is still considered because it is
annotated as NSR in the original annotation, and the original data are very noisy.

According to the used datasets and their noise, we expected that the training and
validation loss would be better when training the PVC model, as it is uses the non-noisy
data from the INCART ECG database.

5.2. NSR and PVC Autoencoders Training Results

According to the previous step of splitting the heartbeats for the training process, the
results of the training and those regarding validation loss were exactly as we expected,
as we see a big difference between the training of the NSR Autoencoder and the PVC
Autoencoder models. The training of the latter was far better than that of the first; however,
both trained models reached very low loss during both the training and the validation
processes. The training loss of the NSR Autoencoder reached 0.001 at the end of the training
process, while the validation loss was 0.0419. On the other hand, the training loss for the
PVC Autoencoder ended at 0.00097, with 0.004 for the validation. Figure 7 shows that the
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Figure 6. Beat-to-beat separation of the (a) testing data collected from the ambulatory sensor (Savvy
ECG); (b) training data derived from the MIT-BIH database; (c) NSR testing data taken from the
INCART database; (d) PVC training and testing data from the INCART database; (e) NSR testing
data from the LTAFDB database. (x-axis: sequential time value index; y-axis: ECG voltage measured
in millivolts (mV)).
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Figure 7. Training and validation loss for (a) NSR autoencoder; (b) PVC autoencoder. (x-axis: training
epochs; y-axis: training/validation loss value).

After the training of both Autoencoders, multiple testing processes were performed to
ensure the validity of the obtained results and the trained Autoencoder models, as shown
in Figure 8. The first involved predicting the MIT-BIH testing data of normal sinus rhythm
heartbeats (refer to Figure 8b). The second test involved the use of the anomalous testing
data from the MIT-BIH database (refer to Figure 8c). It is clear that the testing loss results
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of the NSR data are much closer to the NSR Autoencoder training results (Figure 8a). The
third test took place during the training process of the PVC Autoencoder (Figure 8d). The
other test involved using the testing data of the INCART database (Figure 8e), where the
similarity of the distribution of the results is clear, except for the number of data points.
Finally, the last test used the LTAFDB data to check NSR heartbeats. Furthermore, we tested
the INCART ECG data using the NSR Autoencoder, and compared them against the PVC
Autoencoder in order to validate the obtained results.
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Figure 8. Training and testing loss distribution with number of samples: (a) MIT-BIH training data;
(b) MIT-BIH normal testing data; (¢) MIT-BIH abnormal testing data; (d) INCART training data;
(e) INCART testing data; (f) LTAFDB testing data.

Figure 9 shows the confusion matrices for: (a) the training data from the MIT-BIH
database, where no false positives were present, which means that no bad heartbeat was
predicted as an NSR; (b) testing data collected from the ambulatory sensor (Savvy ECG),
where all the heartbeats were well predicted compared to our manual annotation of the
heartbeats, whereby we annotated only 18 abnormal heartbeats due to the high noise in
them; (c) INCART data tested using the NSR Autoencoder; (d) PVC Autoencoder prediction
results for the INCART data.

In the last two, we used the very same testing data with two different Autoencoders;
however, we derived different results due to the fact that the NSR Autoencoder was trained
using the MIT-BIH database, which contains some noise and shows differences in the
voltage rate compared to the INCART database (refer to Figure 6 for more details). The
results shows that the PVC Autoencoder was able to fix all the false negatives and false
positives in the NSR Autoencoder, which means that any problem with the detection in the
first Autoencoder will be resolved in the second attempt with the PVC Autoencoder.

5.3. Reconstruction Accuracy and Results

The trained models yielded very good results regarding the reconstructed models,
and the predictions according to the training, testing, and validation of the reconstructed
models are, in some testing cases, almost the same as the testing data. Figure 10 shows
the reconstruction shapes achieved for both the NSR (Figure 10a,b) and the PVC data
(Figure 10c). In addition, the achieved accuracy, precision, and recall are all presented
in Table 1, where we can see that the NSR Autoencoder achieved great results in the
prediction of the MIT-BIH data, the ambulatory sensor (Savvy ECG) data, and the LTAFDB
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data; however, its performance was low when applied to the INCART database because
the voltage of the T peak in this database is very high compared to those in the MIT-BIH
and Savvy ECG data. However, these problems were overcome by the use of the PVC
Autoencoder, which is accepted in the workflow proposed in Figure 4.
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Figure 9. Confusion matrices for the: (a) training data from the MIT-BIH database; (b) testing data
collected from the ambulatory sensor (Savvy ECG); (c) NSR testing data from the INCART database;
(d) PVC training and testing data from the INCART database.
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Figure 10. Reconstruction and testing results for: (a) MIT-BIH training data tested against the NSR
Autoencoder; (b) Savvy ECG data tested against the NSR Autoencoder; (c) PVC heartbeat from the
INCART database tested against the PVC Autoencoder.

5.4. PQRS Peaks Detection

The previous results were used in the same built system in order to detect the P, Q, R
and S peaks of every ECG beat separately when the given ECG heartbeat was annotated as
a normal heartbeat. The detection of P, Q, R and S peaks was performed as follows:

1. First, we detected the R peak as the maximum point of the signal;



Electronics 2022, 11, 4021

16 of 20

2. Then, Q was taken as the minimum point between the beginning of the signal and the
R peak;

The P peak is the maximum point between the beginning of the signal and the Q peak;
4.  Finally, S is the minimum point between the R peak and the end of the signal.

This is the basic automated task of the ECG signal annotation of P, Q, R and S peaks.
However, it is recommended for use to minimize the requirement of manual ECG data
annotation and improve the results by reducing the time of the annotation process. The
results of this process could be improved by manually checking after the automated process
is finished in order to confirm the achieved annotation. Table 2 shows an extracted version
of the PQRS peak detection results from the MIT-BIH database, where the detected values
present the index of the detected peak in the same heartbeat with a 360 Hz sampling rate in
the case of the MIT-BIH database. The proposed solution for PQRS peak detection achieved,
in the case of MIT-BIH data, 100% accuracy in detecting the R peak compared to the original
annotation of the MIT-BIH database, and even corrected these annotations by confirming
them in relation to the detection of the R peak with a margin of +/— 2 positions, which
means +/— 6 milliseconds from the original annotation. All the corrected annotations were
checked and validated manually.

w

Table 1. Testing results of different data sources.

Data Source :?—;‘::r%;gagt;}; Accuracy Precision Recall
MIT-BIH dataset (NSR) 3966 99.90% 100% 99.80%
Data from ambulatory sensor (Savvy ECG) 180 99.44% 99.39% 100%
St Petersburg TNCART &é%d Arrhythmia 1838 95.10% 96.98% 97.46%
St Petersburg DNEART %I%\}eca)d Arrhythmia 1838 100% 100% 100%
Long Tergﬁﬁif;ﬁggﬁ?ﬁo“ (AF) 3539 99.80% 99.97% 99.83%
Table 2. Short extract from the PQRS peak detection.
Prediction Truth Result P Q R S
1% False True False - - - -
2 False False - - - - -
3 True True - 88 131 140 146
4 False False - - - - -
5 True True - 87 131 141 146
6 True True - 77 130 141 150
7 False False - - - - -
8 False False - - - - -
9 True True - 90 129 141 147
10 True True - 92 129 141 146
11 True True - 90 132 141 146
12 True True - 90 130 141 147
13 False False - - - - -
14 False False - - - - -
15 True True - 92 131 141 146

* False negative detection.
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6. Discussion

The achieved results show high reliability compared to existing solutions in the field of
Neural Networks applied in patient health monitoring in general, and in ECG monitoring
specifically. This paper aims to present the whole workflow, not only an algorithm. All
the proposed solutions have been developed and tested, showing high precision and
performance. The workflow structure is well explained and anyone could reproduce the
results when following the exact description and configuration given in this paper. During
the implementation of this research, we used different sources of ECG data, and all the
results and the necessary comparisons of the trained models are well presented; the MIT-
BIH database showed good results for NSR heartbeat detection (with a normal low voltage
value for the T peak), while the INCART database is more suitable for PVC detection.

Regarding the pre-annotation solution, it is clear that the detection of the R peaks is
precise, and can be used for beat-to-beat separation, by which the detected R peaks are
well cropped and aligned, as presented in Section 5.1. The training process of the NSR
and PVC Autoencoders finished with fairly low data loss for both models, as described
in Section 5.2, and were used to attain high prediction accuracy, precision, and recall for
all the different sources of data, as shown in Section 5.3. In the case of any failure in the
first trained model of NSR heartbeats, the PVC model will perform rechecking in order
to validate the results and detect whether the given heartbeat is a PVC heartbeat. The
achieved results are very good in comparison with pre-existing solutions, and could be
prepared and validated further for real-world use.

Further work in this area will include the final validation of the achieved results with
a bigger ECG dataset and with other available datasets. It is worth saying that the INCART
and LTAFDB databases could also be used to retrain the first Autoencoder in order to yield
a wider prediction rate for NSR heartbeats with high voltage of the T peak (in the case
of the INCART data) and for noisy NSR heartbeats (in the case of the LTAFDB data). In
addition, this research could be extended using the same proposed workflow to detect
other types of heart arrhythmias in ECG signals, or even for other types of time series
related to human bio-signals.

Table 3 gives a comparison of detection accuracy between the results of the proposed
workflow, with its two Autoencoder models, and the single lead delineator presented in [14],
the CNN sing PhysioNet database [15], the onset prediction system of atrial fibrillation [19],
the coronary heart disease diagnostic system [24], the pediatric ventricular pre-excitation
detector [27], and the isovolumic moment (IM) peak detector [31].

Table 3. Performance comparison with other solutions.

Accuracy Precision Recall Training Loss
MIT-BIH dataset (NSR) 99.90% * 100% 99.80% 0.001
St Petersburg INCART 12-lead Arrhythmia Database (PVC) 100% * 100% 100% 0.00097

Single lead delineator 14 99.81% - - -
CNN sing PhysioNet databases 15 99% - - -
Onset prediction of atrial fibrillation 19 90% - - -
Coronary heart disease diagnostic 24 80% - - -
Pediatric ventricular pre-excitation detector 27 88% - - -
Isovolumic moment (IM) peaks detector 31 96.9% - - -
Aortic valve closure (AC) peaks detector 31 95.6% - - -

* best performing accuracy for our NSR and PVC models.

7. Conclusions

This paper aimed to present a novel workflow and an algorithm for patient monitoring
using ECG data. The proposed workflow involved the use of Neural Networks in order to
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train, test, and validate Autoencoder-based models using different sources of ECG data that
contain different types of heartbeat, including NSR and some types of heart arrhythmia.
The trained models are used to encode the normal ECG data using the encoder part of the
Autoencoder, and then build a reconstructed version of the NSR beat for use in predicting
the input ECG data, either on a real-time basis or for previously digitized data. The trained
models and the proposed workflow show promising results for future work, enabling us to
introduce more arrhythmias for a better and more robust patient health status monitoring
system, either in Intensive Care Units (ICU) or during daily activities. The achieved results
have been discussed and compared to other pre-existing solutions, and show great promise.
Further works could focus on using a wider set of databases with bigger number of records
in order to give more precise results for clinical use.
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