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Abstract: With the expansion of the civil UAV (Unmanned Aerial Vehicle) market, UAVs are also
increasingly being used in illegal activities such as espionage and snooping on privacy. Therefore,
how to effectively control the activities of UAVs in cities has become an urgent problem to be solved.
Considering the urban background and the radar performance of communication signals, a low-
altitude target detection scheme based on 5G base stations is proposed in this paper. A 5G signal
is used as the external radiation source, the method of transceiver separation is adopted, and the
forward-scattered waves are used to complete the detection of UAV. This paper mainly analyzes
the principle of forward scattering detection in an urban environment, where the forward-scattered
wave of a target is stronger than the backward-reflected wave and contains both height difference
and midline height information on the target. Based on the above theory, this paper proposes a
forward-scattered wave recognition algorithm based on YOLOv3-FCWImageNet, which transforms
the forward-scattered wave recognition problem into a target detection problem and accomplishes
the recognition of forward-scattered waves by using the excellent performance of algorithms in the
field of image recognition. Simulation results show that FCWImageNet can distinguish two different
low-altitude targets effectively, and realize the monitoring and classification of UAVs.

Keywords: low-altitude target detection; 5G; forward scattering; machine learning

1. Introduction

In recent years, with the rapid rise of UAV high-tech enterprises such as DJI, and the
further opening of low-altitude airspace, the civilian UAV market has further expanded.
At present, UAVs are widely used in traffic monitoring, long-distance aerial photography,
and other fields [1]. However, due to their portability, UAVs are also used by criminals in
illegal fields such as privacy snooping, causing harm to public security [2]. Low-altitude
targets mainly refer to “low altitude, slow speed, small flying targets”, which are difficult
to detected by radar. Therefore, how to realize the effective detection and control of
low-altitude small targets has become an urgent security problem.

Compared with traditional monostatic radar, bistatic radar separates the receiver from
the transmitter and uses the forward-scattering characteristics of electromagnetic waves to
detect low-altitude targets. When the target is in the forward-scattering area of the bistatic
radar, the radar cross-section (RCS) of the target can be increased by more than 10 dB [3,4]
and the echo signal strength is greatly enhanced, making small targets easier to detect.
Therefore, bistatic radar is more suitable for the detection of small targets with relatively
small RCS.

However, traditional bistatic radar needs large transmitters, which cause strong interfer-
ence in the electromagnetic environment in the city. However, if the existing telecommunica-
tion signals are the city is used as the radar radiation source, it can not only effectively avoid
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electromagnetic pollution, but also save on cost. With the development of 5G, telecommunica-
tion signals have wider bandwidth, denser networking, and higher carrier frequency, which
greatly optimizes the radar detection resolution and detection accuracy [5]. This makes 5G a
good solution for urban low-altitude target detection. At the same time, with the development
of artificial intelligence, machine learning has become widely used in image recognition, data
classification, and other fields. If the echo signal is processed and AI is used to classify the
UAVs, then an urban low-altitude target detection system including monitoring, identification,
and classification can be built.

In this paper, a low-altitude target detection system based on 5G base stations is
proposed that consists of a radar network composed of several 5G base stations and radar
receivers (as shown in Figure 1). Using 5G signals as radar radiation sources, when the target
passes through the baseline formed by 5G base stations and receivers, the target will radiate
forward-scattered waves, which will be received by the radar receiver. When the target
passes the baseline, the intensity of forward-scattered waves is theoretically more than 10 dB
greater than backward-reflected waves, allowing the effective detection of low-altitude small
targets. The classification of low-altitude targets can be accomplished by AI, which provides
a powerful solution for the detection and classification of urban low-altitude targets.

Figure 1. Low-altitude target detection system based on 5G base stations.

2. Forward Scattering Detection

In a bistatic radar system, when the target is in the forward-scatter region, the echo
intensity will increase by more than 10 dB, so when a small target is in the forward-scatter
region, it is easier to detect. However, it is worth noting that the scattering range of the
forward-scattering area is small, so to obtain a better forward-scattering signal, the target
motion should be near the baseline [6].

When the target crosses the baseline of the receiver and 5G base station, the receiver
will receive the forward-scattered signal of the target, which is called the radio holographic
signal of the target, referred to as the holographic signal for short. After hologram signal
processing, the height difference between the top and bottom edges and the midline feature
of the target lateral projection profile can be obtained to complete the imaging of the
target [7–10].

In order to better study the holographic signal of the target, the construction model is
as follows.
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2.1. The Holographic Signal Model of the Target

As shown in the Figure 2, a 5G base station is located at Point T, the receiver is located
at point R, and the target is at point P. T is at the origin of the coordinate system (x, y, z),
R is at (b, 0, 0), and the baseline length is B. The ξ, η, and ζ axes of the coordinate system
(ξ, η, ζ) are parallel to the x, y, and z

axes of the coordinate system (x, y, z). The distance from the 5G base station to the
target is r1, and the distance from the target to the receiver is r2. When the target is moving
with a constant velocity v parallel to the (x, y) plane, crossing the baseline is projected on
the X-axis as point Q, and the included angle with the baseline is ϕ.

Figure 2. Holographic signal model.

Theoretical research shows that the holographic signal of the target corresponds to the
approximation of the Fresnel region of the forward scattering.

In the configuration above, the holographic signal of the target can be expressed
as [11]:

ĖT ∼=
kejkb

2πr1r2

∫∫
εs(η, ζ) exp

[
jΩ2

[
(η − ηN)

2 + (ζ − ζN)
2
]]

dζdη, (1)

where B is the baseline length and k = 2π/λ,λ is the electromagnetic wave wavelength.
ηN , ζN are the coordinates of the projection of R onto the plane (η, ζ). εs(η, ζ) is the field
distribution of profile aperture S. r1 and r2 represent the distances from the target to the
5G base station and the receiver. Under the assumption that the x-coordinate x changes
very little, that is, when the target has a very small relative motion along the baseline, we
think that Ω is a time-independent parameter in an observation interval and is inversely
proportional to the Fresnel radius.

When the target crosses the baseline at a uniform velocity v parallel to the plane xoy
at an angle ϕ to the baseline, the coordinate change of the target is:

xp − x0 + vt cosϕ,
yp − vt sinϕ,
zp − z0,

(2)

where (x0, y0, z0) is the initial position of the target in frame (x, y, z). Based on the above
hypothesis, the holographic signal representation of the target can be rewritten as:

Ė(t) = Q̇
∫

Ḣ(η) exp
[

j
γ

2

(η

v
+ t
)2
]

dη, (3)

where Q represents the influence of the geometric relationship between the target, the 5G
base station, and the receiver on the holographic signal. Formula (3) contains the Doppler
frequency change information caused by the target movement, which can estimate the
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position relationship between the target and the 5G base station and receiver. This is very
important for the estimation of target location and target motion parameters, and is an
important part of the estimation of the subsequent target motion trajectory.

Q =
k sinϕ exp

(
jkb + jΩ2z2

0
)

2π jr1r2
, (4)

According to (4), the amplitude of the holographic signal is inversely proportional
to the product of the distances between the target and the 5G base station and the re-
ceiver, and inversely proportional to the electromagnetic wave length. The phase of the
holographic signal depends on the length of the baseline and the height of the target.

In (3), γ represents the Doppler change rate of target movement at the target center
point at time T.

γ = 2Ω2V2 sin2 ϕ, (5)

γ mainly affects the phase information of E(t). When given time t and η, the phase change
is mainly caused by the change in Doppler frequency caused by the target motion.

The H(η) in Formula (3) represents the complex contour function of the target, the
amplitude of which includes the height difference information of the target profile, and the
phase of which contains the midline information of the target, which is the main theoretical
basis for obtaining the target shape by holographic signal, the expression is:

H(η) =
∫

εs(η, ζ) exp
(

jΩ2ζ2 + 2jΩ2ζz0

)
dζ, (6)

Let h(η) and c(η) be the height difference and the midline height of the target profile;
then, the top and bottom edges of the target profile can be written as:

c(η) + h(η)/2,
c(η)− h(η)/2,

(7)

Then, (6) can be rewritten as:

H(η) =
∫ c(η)+h(η)/2

c(η)−h(η)/2
exp

(
jΩ2ζ2 + 2jΩ2ζz0

)
dζ

=
∫ c(η)+h(η)/2

c(η)−h(η)/2
exp

(
jΩ2ζ2

)
exp(jkα1ζ)dζ,

(8)

where the α1 = z0b/
((

b− xp
)
xp
)

projection profile can be obtained to complete the imag-
ing of the target.

2.2. Target Feature Extraction

The above analysis shows that the holographic signal contains the profile information
of the target; in the case of a small diffraction angle, (8) can be further integrated by ignoring
the quadratic term to obtain [12]:

H(η) = h(η)sinc
(

kα1

2π
h(η)

)
exp(jkα1c(η)), (9)

where sinc(x) = sin(x)/x. It is observed that the inverse Fourier variation after motion
parameter compensation for (3) gives the relationship between H(η) and E(t):

H(η) =
γ

2πvQ

∫
Ė(t) exp

[
−j

γ

2

(η

v
+ t
)2
]

dt, (10)
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Further approximate treatment of Formula (10) can be obtained:

|H(η)| =
{

sin
(

kα1
2π h(η)

)
· λ

α1
, α1 6= 0,

h(η), α1 = 0,
(11)

φ(η) = angle(H(η)) ≈ kα1c(η), (12)

where (11) is the modulus value of the target complex contour function, and (12) is the
phase value of the complex contour function.

According to (11), when α1 = 0 (that is z0 = 0), the complex contour function modulus
of the target is equal to the height difference of the target, indicating that the height
difference information of the target can be obtained by directly taking the modulus of the
complex contour function when the target is in the xoy plane and crosses the baseline.

2.3. Target Holographic Signal Simulation
2.3.1. Target Aircraft Model

In order to better observe the holographic signals of different low-altitude targets, two
UAVs with different shapes were adopted as the aircraft to be tested: the DJI Consumer
UAV Phantom 4 advanced and the Mavic. The corresponding target model was established
as shown in Figures 3 and 4, and the above system was used to simulate the holographic
signal of the target aircraft model.

Figure 3. Phantom 4 advanced.

Figure 4. Mavic.

As shown in the figure above, Figure 3 is the Phantom 4 advanced entity diagram of
the first target aircraft, and Figure 4 is its front view. Figure 5 is the Mavic entity diagram
of the second target aircraft, and Figure 6 is its 3D view.

Figure 5. Phantom 4 advanced simulation model.
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Figure 6. Mavic simulation model.

2.3.2. Experimental Steps of Holographic Signal Simulation

Based on the above research, the steps for holographic signal simulation of the target
aircraft are as follows:

1. Draw the upper and lower edge coordinates of the target contour in the target coordi-
nate system according to the real geometric structure of the target, that is, the contour
aperture of the target profile;

2. Set various target motion parameters, such as coordinates of the target, radiation signal
wavelength, baseline length between the transmitter and receiver, total observation
accumulation time, moving speed of the aircraft target, flight altitude, etc.;

3. Calculate the motion trajectory of the target according to its motion parameters and
initial position, and calculate the corresponding r1 and r2;

4. Calculate H(η) according to (8), Q̇ according to (4), and γ according to (5);
5. Finally, the holographic signal is calculated by integrating the above expressions.

2.3.3. Analysis of Holographic Signal Simulation Results

The following is an analysis of the holographic signal obtained when the two targets
cross the baseline vertically. Figure 7 is the real part simulation of holographic signal of
Target 1, and Figure 8 is the virtual part simulation.

Figure 7. Real part simulation of Target 1 holographic signal.

Figure 8. Virtual part simulation of Target 1 holographic signal.

Figure 9 is the real part simulation of Target 2, and Figure 10 is the virtual part simulation.

Figure 9. Real part simulation of Target 2 holographic signal.

Figure 10. Virtual part simulation of Target 2 holographic signal.

By observing the above two images, we can find that the high frequency component of
the holographic signal is rich, and the frequency is low when the target is near the baseline,
but its amplitude is strong. When it is far from the baseline, its frequency gradually increases,
and the time when the target crosses the baseline can be directly estimated from the graph
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(t = 0). When the target is near the baseline, the intensity of the holographic signal is high
and easy to resolved, so the detection effect is better when the target is flying near the
baseline. When the target is far from the baseline, the signal amplitude is small and it is
difficult to separate it from the strong clutter.

Based on the above analysis, it can be found that the difference between Target 1 and
Target 2 is mainly in signal frequency and amplitude. Target 1 increases rapidly, while
Target 2 changes slowly, with significantly smaller vibration amplitude. This is mainly
caused by the height difference and midline height difference between the two groups of
aircraft. We can intuitively know from the above two pictures that these are two different
aircraft targets, so we can know that the holographic signal has a good ability to distinguish
different target aircraft.

3. Classification of UAVs Based on Machine Learning

Because the forward-scattered wave of the target contains the information of the height
difference and centerline difference of the target, it belongs to the characteristic information
of the target and can be used as a classification feature. Therefore, the UAV classification
problem can be transformed into a classification problem of forward-scattering waves. Based
on the above thinking, this paper creatively transforms the recognition problem of forward-
scattering waves into a problem of target detection and classification in deep learning.

In this paper, a forward-scattering signal recognition algorithm named FCWImageNet
is proposed. The forward-scattered wave recognition problem is transformed into ab image
target detection problem, and the advanced achievements in the field of image recognition
are fully utilized to improve the recognition ability of forward-scattered wave signals. The
algorithm is mainly composed of two modules—the preprocessing module and the target
detection module—as shown in Figure 11.

Figure 11. FCWImageNet algorithm structure.

The preprocessing module mainly uses radar signal processing to extract the forward-
scattering signal from the echo and obtain the corresponding time domain image for
subsequent target recognition. The target detection module uses the time-domain image
of the forward-scattered wave obtained by preprocessing it as the input, passes through
the CNN feature extraction layer to obtain the abstract signal features, and then passes
through the target detection layer to convert the abstract features into the corresponding
target type as the output result. The end-to-end neural network model used in the target
detection module is based on the YOLOv3 model.

Similar to the YOLOv3 model, the network structure of the target detection module
of FCWImageNet mainly adopts the Darknet53 feature extraction network as the feature
extraction network for forward-scattered waves. The main feature of Darknet53 is its use of
residual networks. Residual networks are easy to optimize, and it is easier to improve their
accuracy by increasing network depth. The residual block inside the network uses jump
connection, which alleviates the gradient disappearance problem caused by increasing
the network depth in deep neural networks. The output of each convolutional layer is
processed with batch normalization, which increases the robustness and training speed of
the model and prevents overfitting by replacing dropout.

The data used in this paper are self-made datasets, which mainly select two UAV
products with high market share and construct simplified 3D models according to their real
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parameters. Because the attitude of the UAV is random, we hope that this deep learning
model can complete the target classification no matter what angle the UAV passes through
the baseline. Therefore, this dataset is composed of target silhouettes from different angles
(mainly because different silhouettes cause different forward scattering signals)

Figures 12 and 13 are the profiles at ϕ = 90◦ and ϕ = 135◦. According to the actual
application scenario, we chose the angle range of ϕ as 45–135◦. For each target, a forward-
scattering sampling signal including I/Q was obtained every 0.1 degree of rotation as the
signal to be classified. The whole dataset contains 3600 data points, of which 70% were
used for training and 30% for testing.

Figure 12. Crossing the baseline at 90◦.

Figure 13. Crossing the baseline at 135◦.

3.1. UAV Classification Experiment Based on Machine Learning

The real and imaginary waveforms of the target holographic signal and the profile of
the target contain all the information needed to judge the type of the targets. Therefore, this
paper establishes three datasets to train and verify whether these three sets can be used as
eigenvalues of UAV classification.

Considering the influence of the target motion state on the forward-scattered signal,
holographic signal simulation was carried out for the target crossing the baseline with
different angles of ϕ. The variation range of angle ϕ was set from 45◦ to 135◦, and the
interval was 1◦. Each target can obtain 90 waveforms of real and imaginary parts of the
holographic signal. The height difference and midline information of the target can be
separated from the data of real and imaginary parts by Formulas (9) and (10); then, the
profile of the target can be restored. Each target dataset consists of three sub-datasets—real
waveform, imaginary waveform, and contour image subsets—each with 90 different angles
of data.

The AI platform ModelArt was used to complete the model construction. Three
datasets were trained using the TensorFlow-based image classification framework to ex-
plore whether holographic signals can be used to classify low-altitude targets

3.2. Classification Result Analysis of UAVs Based on Machine Learning

Based on the above research, the image classification model is trained for the three
data sets, and the results are shown in Table 1.
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Table 1. Machine-learning model training results.

Accuracy Recall Precision F1

Real waveform 0.986 0.986 0.987 0.986
Imaginary waveform 0.973 0.973 0.973 0.973
Reconstructed profile 1.000 1.000 1.000 1.000

It can be observed that the accuracy of classification of the three datasets exceeds
97%, and the accuracy of contour image classification reaches 100%, which shows that
the classification of the target aircraft can be realized by using the real and imaginary
parts of the holographic signal and the reconstructed profile. The recognition accuracy
of the target’s reconstructed profile is the highest, mainly because the target profile of
different aircraft is quite different. The reason why the recognition rates of the real part and
imaginary part are lower than that of the contour is that the sizes of the two kinds of targets
are similar and the numerical difference between the height difference and the midline
height is small, so it is difficult for the machine to distinguish through the waveform
directly. When the target size difference is large, using only the imaginary and real parts of
the waveform can also allow better classification of UAVs.

Due to the limited data, the accuracy and other parameters of this model do not reach
the optimal value. With further supplementation and expansion of data, a better machine-
learning model for UAV classification using forward-scattered waves can be obtained.

4. Conclusions

With the expansion of the UAV market, UAV detection in complex cities has become an
urgent problem to be solved. In this paper, a scheme for target detection and classification in
an urban environment is proposed, combining the signal characteristics of high frequency,
high bandwidth, and high coverage of 5G signals with the characteristics of the target’s
forward-scattering signal. A radio signal recognition algorithm based on deep learning
and forward scattering is also proposed in this paper.

In this paper, the theoretical derivation verifies that the forward-scattering signal
contains the target height difference and centerline information, and the forward-scattering
wave signal of the target was obtained by experimental simulation. Because the forward
scattering signal of the target contains the characteristic information of the target, the deep
neural network FCWImageNet model for target classification based on the forward scatter-
ing signal was creatively proposed and used to complete the target classification problem
with the background set in this paper.

Based on the YOLOv3 model, the algorithm first extracts the time-domain diagram
of the forward-scattering signal from the I/Q sampling signal by using traditional digital
signal processing methods, and then transforms the problem of radio signal recognition
into a problem of target detection in the field of image recognition. The simulation verifies
the classification of the real part waveform, the imaginary part waveform, and the contour
recombination of the holographic signal; the accuracy of distinguishing two different
UAVs reached more than 97% with our homemade dataset, which proves the feasibility
of using the model as a UAV classification. However, this is still a preliminary attempt.
In the future, we will further study which neural network model is most suitable for the
characteristics of radio signals by combining more dimensional features of forwarding
scattered signals. This paper verifies the feasibility of the scheme and the effectiveness
of the FCWImageNet algorithm, and also provides a new idea for UAV detection and
classification in urban environments.
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