
����������
�������

Citation: Nguyen, T.T.; Nguyen,

T.T.B.; Lee, H. An Analysis of

Hardware Design of MLWE-Based

Public-Key Encryption and

Key-Establishment Algorithms.

Electronics 2022, 11, 891. https://

doi.org/10.3390/electronics11060891

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 11 February 2022

Accepted: 9 March 2022

Published: 12 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

An Analysis of Hardware Design of MLWE-Based Public-Key
Encryption and Key-Establishment Algorithms
Tuy Tan Nguyen * , Tram Thi Bao Nguyen and Hanho Lee *

Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea;
baotram137@gmail.com
* Correspondence: tuynguyen@inha.ac.kr (T.T.N.); hhlee@inha.ac.kr (H.L.)

Abstract: This paper presents a review of module ring learning with errors-based (MLWE-based)
public-key encryption and key-establishment algorithms. In particular, we introduce the preliminaries
of public key cryptography, MLWE-based algorithms, and arithmetic operations in post-quantum
cryptography. We then focus on analyzing the state-of-the-art hardware architecture designs of
CRYSTALS-Kyber at different security levels, including hardware architectures for Kyber-512, Kyber-
768, and Kyber-1024. This analysis is dedicated to providing complete guidelines for selecting the
most suitable CRYSTALS-Kyber hardware architecture to apply in post-quantum cryptography-based
security systems in reality, with different requirements of security levels and hardware efficiency.

Keywords: CRYSTALS-Kyber; number theoretic transform (NTT); module-LWE; public-key encryption;
key establishment

1. Introduction

Cryptography is broadly categorized into symmetric key cryptography and asym-
metric key cryptography (or public key cryptography). In symmetric key cryptography, a
single key is used between a sender and a receiver to enable secure communication, and the
key is kept confidential from anyone else. Public key cryptography utilizes a public key in
encryption and a private key in decryption, as demonstrated in Figure 1. While the private
key is kept secret to use in the decryption operation, the public key is published to everyone
and used in the encryption operation. The encryption process generates the encrypted mes-
sage (ciphertext) from the input message (plaintext) and the public key. The ciphertext can
be decrypted using the private key. One of the most well-known asymmetric cryptographic
algorithms was developed by Rivest–Shamir–Adleman (RSA) [1–4]. The RSA algorithm is
the earliest public key cryptographic algorithm developed and published for commercial
use. It is widespread and has been integrated in both Netscape Web and Microsoft browsers
to provide security solutions for e-commerce applications. The patented RSA encryption
algorithm has, in fact, become a standard for public-use encryption applications. Elliptic
curve cryptography (ECC) [5–9] is another widely used public key cryptography algorithm.
The ECC encryption and decryption operations rely on an elliptic curve and arithmetic
operations over a Galois field, either GF(p) or GF(2m). In the key-generation operation, the
recipient selects a base point PS on the elliptic curve and a random number as its private key
kS to calculate ECC point multiplication QS = kS × PS. The public key is stored publicly so
that the sender can use the receiver’s public key to encrypt the input data before sending
the data over the network. At the receiver side, the data sent by the transmitter can be
retrieved using ECC point multiplication operations and the private key of the receiver.

With the rapid growth of quantum computers, the existing public key schemes can
be basically broken in the next few years. In 2016, National Institute of Standard and
Technology (NIST) launched the post-quantum cryptography (PQC) project to discover
PQC candidates for future standardization [10]. The goal of the PQC project is to develop

Electronics 2022, 11, 891. https://doi.org/10.3390/electronics11060891 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11060891
https://doi.org/10.3390/electronics11060891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9485-7720
https://orcid.org/0000-0003-0876-6599
https://orcid.org/0000-0001-8815-1927
https://doi.org/10.3390/electronics11060891
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11060891?type=check_update&version=2

Electronics 2022, 11, 891 2 of 13

cryptographic systems that are secure against both classical and quantum computers, and
that can be compatible with existing communications protocols and networks. Round 3
finalists include (1) four candidates for public-key encryption (PKE) and key-establishment
(KEM) algorithms (Classic McEliece, CRYSTALS-Kyber, NTRU, Saber), (2) three candidates
for digital signature algorithms (CRYSTALS-Dilithium, Falcon, Rainbow), and (3) alternate
candidates. Among the PKE and KEM algorithms in the round 3 finalists, the CRYSTALS-
Kyber algorithm is a promising candidate.

Learning with errors (LWE) problems are lattice-based problems attracting a lot of
attention from research communities in recent years. In LWE problems, given a finite field
Zq with modulus q, two matrices A and p, and a small noise e, it is a challenge to find the
secret key s from the equation A · s + e = p. Many proposals using standard LWE [11] and
the structured ring-LWE [12–17] have been conducted. The typical advantage of standard
LWE is easy scalability. However, it introduces a significant decrease in efficiency. The
structured LWE offers better efficiency in terms of speed and key and ciphertext sizes.
Nevertheless, there is a tradeoff between efficiency and security because of the additional
structure [18]. Module-LWE can balance these two extremes. In [18], the authors of the
CRYSTALS-Kyber algorithm mentioned that Kyber helps to reduce structure and offers
much better scalability compared to ring-LWE. The performance of Kyber is very similar to
the ring-LWE-based schemes, using 256 bits to encrypt messages [19].

The implementations of CRYSTALS-Kyber include software design [18,20], software
and hardware codesign [20], and pure hardware design [20–24]. In [18], the authors
showed the implementation results on Intel Haswell CPUs and ARM Cortex-M4 CPUs.
The authors in [20] described the software implementation of post-quantum cryptography
schemes including CRYSTALS-Kyber using C language on ARM Cotex-A53. In order
to accelerate the operations of Kyber, the authors in [25] introduced massively parallel
algorithms implemented on a GPU. The authors in [20] also presented a software and
hardware codesign of Kyber. The software and hardware codesign offers a remarkable
improvement in encapsulation time and decapsulation time compared with pure software
implementation results. The pure hardware implementations in [20–24] introduce different
approaches, with a focus on reducing hardware complexity and speeding up the processing
time.

Figure 1. Public-key encryption.

In this paper, we summarize the CRYSTALS-Kyber public-key encryption and key-
establishment algorithms. We then present an analysis of the state-of-the-art implementa-
tions of CRYSTALS-Kyber in pure software, software and hardware codesign, and pure
hardware. From the existing implementation results, we recommend the most suitable
Kyber hardware architecture for various systems which have different requirements of
hardware resources and latency.

The rest of this paper is structured as follows. Section 2 gives background information
about CRYSTALS-Kyber. Section 3 presents an analysis of the implementation of the state-

Electronics 2022, 11, 891 3 of 13

of-the-art designs. We discuss some potential solutions to improve the existing works in
Section 4. Finally, conclusions are drawn in Section 5.

2. Background

In this section, we introduce CRYSTALS-Kyber, an MLWE-based public-key encryption
and key-establishment algorithms that entered round 3 of the PQC standardization. Kyber
has first been introduced in [26], which includes three parameter sets, as reported in Table 1,
corresponding to three security levels of NIST. Polynomials are of the same degree n = 256,
and the polynomial coefficients are members of the prime field Zq, where q = 3329 for
all security levels. However, for each security level, different numbers of polynomials
are required. These polynomials are considered as a vector whose size is specified by a
parameter k. The values of k are 2, 3, and 4, corresponding to the security levels 1, 3, and 5,
respectively. The remaining parameters η1, η1, du, and dv are chosen to balance between
security, ciphertext size, and failure probability. A detailed explanation of parameter
selection can be found in [18]. Centered binomial distribution (CBD) is used to generate
secret noise polynomials. In this paper, the same notation presented in [18] is used. For
example, regular font letters represent elements in R or Rq, bold lower-case letters denote
vectors with coefficients in R or Rq, bold upper-case letters are matrices. For bytes and byte
arrays, Bk is the set of byte arrays of length k, and a||b is the concatenation of two byte
arrays a and b. More details about notation can be found in [18].

Table 1. Kyber parameter sets [18].

Algorithm NIST Security Level
Parameters

n k q (η1, η2) (du, dv)

Kyber-512 1 256 2 3329 (3, 2) (10, 4)

Kyber-768 3 256 3 3329 (2, 2) (10, 4)

Kyber-1024 5 256 4 3329 (2, 2) (11, 5)

2.1. Public-Key Encryption Algorithm

Operations in the PKE algorithm includes key generation, encryption, and decryption.
The key-generation function generates a public key pk and a private key sk, which are then
used in encryption and decryption operations, respectively. Particularly, the public key
participates in the encryption process to generate a ciphertext c from the input message m
and the public key pk. The public-key encryption process is illustrated in Figure 2.

Figure 2. Encryption process of a public-key algorithm.

The decryption function restores the original message m from the ciphertext c and the
private key sk, as described in Figure 3.

Electronics 2022, 11, 891 4 of 13

Figure 3. Decryption process of a public-key algorithm.

The functions of the Kyber chosen-plaintext attack public-key encryption (Kyber.CPAPKE)
are defined as follows:

• Kyber.CPAPKE key-generation function

The Kyber.CPAPKE key-generation function generates a public key pk used for the
encryption process and a secret key sk used for the decryption process. Noise vectors s
and e are sampled from a CBD. The public matrix Â is generated from a rejection sampler.
The public key pk and private key sk are computed as pk = (ρ, t̂), and sk = ŝ, in which
t̂ = Â ◦ ŝ + ê. The details of the Kyber.CPAPKE key-generation function are described in
Algorithm 1. In this algorithm, XOF is an extendable output function instantiated with
SHAKE-128. A parse function returns the NTT-representation of the input byte stream. G
is a hash function G: B∗ → B32 ×B32. PRF and NTT represent a pseudo-random function
and the number theoretic transform, respectively.

Algorithm 1: Kyber PKE key-generation algorithm (Kyber.CPAPKE.KeyGen) [18].

Output : Public key pk ∈ B12·k·n/8+32,
Secret key sk ∈ B12·k·n/8

1 d←∈ B32

2 (ρ, σ) := G(d)
3 N := 0
4 for i from 0 to k− 1 do
5 for j from 0 to k− 1 do
6 Â[i][j] := Parse(XOF(ρ, j, i))
7 end for
8 end for
9 for i from 0 to k− 1 do

10 s[i] := CBDη1(PRF(σ, N))
11 N := N + 1
12 end for
13 for i from 0 to k− 1 do
14 e[i] := CBDη1(PRF(σ, N))
15 N := N + 1
16 end for
17 ŝ := NTT(s)
18 ê := NTT(s)
19 t̂ := Â ◦ ŝ + ê
20 pk := Encode12(t̂ mod+q)||ρ
21 sk := Encode12(ŝ mod+q)
22 return (pk, sk)

• Kyber.CPAPKE encryption function

The Kyber.CPAPKE encryption function constructs ciphertext c = (c1, c2) from input
message m, random coins r ∈ B32, and the public key pk, as presented in Algorithm 2. As
described in Algorithm 2, ÂT is generated from a uniform distribution, and r, e1, and e2 are
sampled from a binomial sampler. The ciphertext c is constructed as c = (Compressq(u, du),

Electronics 2022, 11, 891 5 of 13

Compressv(v, dv)), where u = NTT−1(ÂT ◦ r̂) + e1 and v = NTT−1(t̂T ◦ r̂) + e2 + m.
NTT−1 is the inverse number theoretic transform.

Algorithm 2: Kyber PKE encryption algorithm (Kyber.CPAPKE.Enc(pk, m, r)) [18].

Input : Message m ∈ B32,
Public key pk ∈ B12·k·n/8+32,
Random coins r ∈ B32

Output : Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

1 N := 0
2 t̂ := Decode12(pk)
3 ρ := pk + 12 · k · n/8
4 for i from 0 to k− 1 do
5 for j from 0 to k− 1 do

6 ÂT
[i][j] := Parse(XOF(ρ, i, j))

7 end for
8 end for
9 for i from 0 to k− 1 do

10 r[i] := CBDη1(PRF(r, N))
11 N := N + 1
12 end for
13 for i from 0 to k− 1 do
14 e1[i] := CBDη2(PRF(r, N))
15 N := N + 1
16 end for
17 e2 := CBDη2(PRF(r, N))
18 r̂ := NTT(r)

19 u := NTT−1(ÂT ◦ r̂) + e1

20 v := NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1)
21 c1 := Encodedu(Compressq(u, du))

22 c2 := Encodedv(Compressq(v, dv))

23 return c = (c1, c2)

• Kyber.CPAPKE decryption function

The Kyber.CPAPKE decryption function shown in Algorithm 3 recovers the original
message m from the ciphertext c using a secret key sk. The value of m is calculated as
m = Compress(v−NTT−1(ŝT ◦ û), where u and v are extracted from c.

Algorithm 3: Kyber PKE decryption algorithm (Kyber.CPAPKE.Dec) [18].

Input : Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8,
Secret key sk ∈ B12·k·n/8

Output : Message m ∈ B32

1 u := Decompressq(Decodedu(c), du)

2 v := Decompressq(Decodedv(c + du · k · n/8), dv)

3 c1 := Encodedu(Compressq(u, du))

4 c2 := Encodedv(Compressq(v, dv))

5 ŝ := Decode12(sk)
6 m := Encode1(Compressq(v−NTT−1(ŝT ◦NTT(u)), 1))
7 return m

Electronics 2022, 11, 891 6 of 13

2.2. Key-Establishment Algorithm

The Kyber key-establishment algorithm (Kyber.CCAKEM) includes key generation,
encapsulation, and decapsulation. Kyber.CCAKEM is constructed from the CPA-secure
public-key encryption described in Algorithms 1–3. The encapsulation operation constructs
ciphertext c and a shared key K from the input message m, public key pk, and random
vectors, as illustrated in Figure 4. Figure 5 describes the decapsulation operation, which
recovers the shared key K from ciphertext c and private key sk.

Figure 4. Encapsulation process of a key-establishment algorithm.

Figure 5. Decapsulation process of a key-establishment algorithm.

The following algorithms describe the key generation, encapsulation, and decapsula-
tion of Kyber.CCAKEM in detail.

• Kyber.CCAKEM key generation algorithm

The Kyber.CCAKEM key-generation algorithm generating public key pk ∈ B12·k·n/8+32

and secret key sk ∈ B12·k·n/8+96 is presented in Algorithm 4. Initially, pk and sk′ are con-
structed by the Kyber.CPAPKE.KeyGen() algorithm presented in Algorithm 1. The value of
the secret key sk is then calculated using the formula sk := (sk′||pk||H(pk)||z), where z is a
value in B32. H is a hash function, H: B∗ → B32.

Algorithm 4: Kyber KEM key-generation algorithm (Kyber.CCAKEM.KeyGen) [18].

Output : Public key pk ∈ B12·k·n/8+32,
Secret key sk ∈ B12·k·n/8+96

1 z← B32

2 (pk, sk′) := Kyber.CPAPKE.KeyGen()
3 sk := (sk′||pk||H(pk)||z)
4 return (pk, sk)

• Kyber.CCAKEM encapsulation algorithm

The Kyber.CCAKEM encapsulation algorithm returns the ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

and shared key K ∈ B∗ from input public key pk that was generated from Algorithm 5.
Specifically, the ciphertext c is constructed by the Kyber.CPAPKE encryption function
in Algorithm 2, and the shared key K is generated using the SHA3-256, SHA3-512, and
SHAKE-256 algorithms from the input message m and ciphertext c. More details about the
functions used to generate K can be found in [18].

Electronics 2022, 11, 891 7 of 13

Algorithm 5: Kyber.CCAKEM.Enc(pk) [18].

Input : Public key pk ∈ B12·k·n/8+32

Output : Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8,
Shared key K ∈ B∗

1 m← B32

2 m← H(m)
3 (K̄, r)← G(m||H(pk))
4 c := Kyber.CPAPKE.Enc(pk, m, r)
5 K := KDF(K̄||H(c))
6 return (c, K)

• Kyber.CCAKEM decapsulation algorithm

The Kyber.CCAKEM decapsulation algorithm restores the shared key K from the input
ciphertext c ∈ Bdu ·k·n/8+dv ·n/8 and secret key sk ∈ B12·k·n/8+96, as described in Algorithm 6.

Algorithm 6: Kyber.CCAKEM.Dec(c, sk) [18].

Input : Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8,
Secret key sk ∈ B12·k·n/8+96

Output : Shared key K ∈ B∗
1 pk := sk + 12 · k · n/8
2 h := sk + 24 · k · n/8 + 32 ∈ B32

3 z := sk + 24 · k · n/8 + 64
4 m′ := Kyber.CPAPKE.Dec(s, (u, v))
5 (K̄, r′) := G(m′||h)
6 c′ := Kyber.CPAPKE.Enc(pk, m′, r′)
7 if c = c′ then
8 return K = KDF(K̄′||H(c))
9 else

10 return K = KDF(z||H(c))
11 endif
12 return K

The Kyber PKE enrcryption/decryption and Kyber KEM encapsulation/decapsulation
algorithms are summarized in Table 2.

Table 2. Comparison of Kyber PKE encryption/decryption and Kyber KEM encapsulation/decapsulation
algorithms.

Algorithm Input Output

PKE encryption
Input message m ∈ B32

Public key pk ∈ B12·k·n/8+32

Random coins r ∈ B32
Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

KEM encapsulation Public key pk ∈ B12·k·n/8+32 Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Shared key K ∈ B∗

PKE decryption Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Secret key sk ∈ B12·k·n/8 Original message m ∈ B32

KEM decapsulation Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Secret key sk ∈ B12·k·n/8+96 Shared key K ∈ B∗

Electronics 2022, 11, 891 8 of 13

2.3. Arithmetic Operations in CRYSTALS-Kyber

In this section, we introduce the typical arithmetic operations in CRYSTALS-Kyber,
which include number theoretic transform (NTT), modular reduction, and sampling.

• Number Theoretic Transform

Polynomial multiplication in Rq using NTT offers multiple advantages [18]: simple
code space, high speed, and no additional memory is required. NTT is a form of the well-
known fast Fourier transform (FFT) [27,28], with all arithmetic operations performed in a
finite field. NTT uses the n-th primitive root of unity ωn in the ring Zq. Given a polynomial
a in Rq:

a(x) = a0 + a1x + a2x2 + · · ·+ a255x255. (1)

NTT(a) is expressed as:

â(x) = â0 + â1X + â2X2 + · · ·++â255X255. (2)

Since NTT plays a crucial role in the hardware architecture design of post-quantum
cryptography, improving NTT performance has received great attention. In [29], the authors
proposed the algorithmic and hardware optimizations to design the NTT-based polynomial
multiplication architecture. In [30], the authors introduced a fast modular multiplication
method and a memory access scheme using doubled bandwidth ping-pong; the polynomial
multiplication can be accelerated using the significantly fewer hardware resources.

• Modular reduction algorithm

Modular reduction for Kyber is specified in [18] as follows: define r′ = r mod± α as
the unique element r′ in − α

2 < r′ ≤ α
2 such that r′ = r mod α for an even positive integer α.

For an odd positive integer α, the rank becomes − α−1
2 ≤ r′ ≤ α−1

2 . Define r′ = r mod+ α as
the unique element r′ in 0 ≤ r′ < α such that r′ = r mod α. Generally, modular reduction
can be simplified as r mod α.

In hardware design, the modular reduction operation in multiplication can be executed
using Barrett’s reduction [31] or Montgomery’s reduction [32]. Montgomery’s reduction
algorithm requires converting numbers into and out of Montgomery form [33]. For Barrett’s
modular reduction, the SAM2 technique is utilized to accelerate its operation in hardware.
Barrett’s modular reduction requires a large number of shift blocks, adders, subtractors,
and may be subject to timing attacks [33].

• Sampling

The Kyber design is based on the module ring learning with errors encryption scheme,
which typically considers LWE with either a rounded Gaussian [34] or a discrete Gaus-
sian [35]. The authors of Kyber use centered binomial noise, which relies on LWE, in the
design of Kyber.

In uniform sampling, Kyber uses a deterministic approach to sample elements in
Rq, where q = 3329. These elements are statistically close to a uniform distribution [18].
Specifically, a byte stream B = b0, b1, b2, . . . is the input of a parse function: B → Rq, to
compute the number theoretic transform of a ∈ Rq. The details of the parse function can be
found in [18]. The output of the parse function is as follows:

â(x) = â0 + â1X + · · ·++ân−1Xn−1. (3)

Centered binomial distribution Bη is used to sample noise in Kyber, where η = 2 or
η = 3. The centered binomial distribution is described in Algorithm 7.

Electronics 2022, 11, 891 9 of 13

Algorithm 7: CBDη : B64η → Rq [18].

Input : Byte array B = (b0, b1, b2, . . . , b64η−1) ∈ B64η

Output : Polynomial f ∈ Rq
1 (β0, . . . , β512η−1) := BytesToBits(B)
2 for i from 0 to 255 do

3 a := ∑
η−1
j=0 β2iη+j

4 b := ∑
η−1
j=0 β2iη+η+j

5 fi := a− b
6 end for
7 return f0 + f1X + f2X2 + · · ·+ f255X255

3. Implementation of CRYSTALS-Kyber

In this section, we introduce existing implementation results of CRYSTALS-Kyber
in pure software, software/hardware codesign, and pure hardware. We then analyze
these results with a focus on hardware architecture design, and recommend suitable Kyber
hardware architectures among the state-of-the-art designs for specific design goals.

The pure software implementation results of Kyber on Intel Haswell CPUs and ARM
Cortex-M4 CPUs are reported in Table 3. Cycle counts are obtained on one core of a CPU
and the results on an Intel Haswell CPU are the C-reference implementation results. As
can be seen from Table 3, the software implementation on Intel Haswell CPUs offers a
better performance, in terms of number of clock cyles, than the implementation on ARM
Cortex-M4 CPUs, for both encapsulation and decapsulation processes at all security levels.

Table 3. Results of Kyber pure software design on Intel Haswell CPUs and ARM Cortex-M4 CPUs [18].

Algorithm Function
Time (Clock Cycles)

Intel Haswell CPUs ARM Cortex-M4 CPUs

Kyber-512 Encapsulation 154,524 561,518
Decapsulation 187,960 519,237

Kyber-768 Encapsulation 235,260 915,676
Decapsulation 274,900 853,001

Kyber-1024 Encapsulation 346,648 1,407,769
Decapsulation 396,584 1,326,409

Table 4 shows the processing time in microseconds of the Kyber encapsulation and
decapsulation operations in both software design and software/hardware codesign. As can
be seen, the Kyber encapsulation and decapsulation operations implemented in the soft-
ware/hardware codesign are much faster than those on pure software design. Specifically,
with Kyber-1024, the encapsulation time and decapsulation time in software/hardware
codesign are accelerated by up to 35.8 times and 38.6 times, compared with those in pure
software design, respectively.

Electronics 2022, 11, 891 10 of 13

Table 4. Existing pure software design and software/hardware codesign results of Kyber [36].

Algorithm Function
Time (µs)

Pure Software Design Software/Hardware Codesign

Kyber-512 Encapsulation 332.0 15.2
Decapsulation 433.0 17.1

Kyber-768 Encapsulation 536.7 17.8
Decapsulation 670.1 20.1

Kyber-1024 Encapsulation 787.5 22.0
Decapsulation 953.7 24.7

The pure hardware implementation results of Kyber-512, Kyber-768, and Kyber-1024
are presented in Tables 5–7, respectively. As can be seen in Table 5, among the Kyber-512
architectures, the design in [37] requires the highest hardware resources. In addition,
the architecture in [37] introduces the longest latency compared with other works. The
architecture in [23] helps reduce the hardware complexity, in terms of LUTs, and the
processing time, compared with [37]. However, the area-to-time ratio of the architecture
in [23] is still large. The architectures in [21,24,29,36] offer better values of hardware
complexity and latency. Therefore, these architectures are suitable for the systems which
require high speed and low complexity. Among the Kyber-512 architectures in Table 5, the
design in [21] offers the best value of area-to-time ratio, and the design in [24] requires the
lowest hardware resources to execute the Kyber-512 functions.

Table 5. Comparison of the existing Kyber-512 hardware architectures.

Parameter [37] [23] [24] [36] [29] [21]

Device Virtex-7 Artix-7 Artix-7 Artix-7 Artix-7 Artix-7
LUTs 1978 K 89 K 7 K 12 K 11 K 18 K
FFs 194 K NA 5 K 10 K 10 K 5 K

Slices NA NA 2 K 4 K 4 K 5 K
DSPs 0 354 2 8 8 6

BRAMs 0 202 3 15 13 15
Frequency (MHz) 67 155 161 210 200 115

Total time (µs) 1169 761 72 35 31 148
Area × Time (LUTs × s) 2312.28 67.73 0.50 0.42 0.34 2.66

Among the Kyber-768 architectures in Table 6, the proposal in [29] obtains the best
value of area-to-time ratio compared with other designs, followed by the architecture in [36].
Therefore, the design in [29] is the best candidate for systems which strictly consider the
balance between hardware resource and latency. In addition, the design in [24] offers a
reasonable area–time efficiency on the lowest hardware resources. Therefore, the work
in [24] is an ideal candidate to deploy Kyber-768 on low hardware resource systems.

At NIST security level 5, the Kyber-1024 architecture in [29] is still the best work in
terms of area–time ratio. For the resource-constraint systems, the architecture in [24] is the
best choice. The design in [36] can be implemented on low hardware resources and offers
an acceptable value of area–time ratio.

Electronics 2022, 11, 891 11 of 13

Table 6. Comparison of the state-of-the-art Kyber-768 hardware architectures.

Parameter [23] [24] [36] [29] [21]

Device Artix-7 Artix-7 Artix-7 Artix-7 Artix-7
LUTs 167 K 7 K 12 K 12 K 16 K
FFs NA 5 K 10 K 10 K 6 K

Slices NA 2 K 4 K 4 K 4 K
DSPs 292 2 8 12 9

BRAMs 202 3 15 14 16
Frequency (MHz) 155 161 210 200 115

Total time (µs) 1155 111 46 40 209
Area×Time (LUTs×s) 192.89 0.78 0.55 0.48 3.34

Table 7. Comparison of the state-of-the-art Kyber-1024 hardware architectures.

Parameter [23] [24] [36] [29] [21]

Device Artix-7 Artix-7 Artix-7 Artix-7 Virtex-7
LUTs 133 K 7 K 12 K 13 K 16 K
FFs NA 5 K 12 K 12 K 6 K

Slices NA 2 K 5 K 54 K 5 K
DSPs 548 2 8 16 12

BRAMs 202 3 15 16 17
Frequency (MHz) 192 161 210 185 156

Total time (µs) 1260 154 63 56 205
Area × Time (LUTs × s) 167.58 1.08 0.76 0.72 3.28

4. Discussion

From the analysis results, the architecture in [29] requires the lowest latency to per-
form Kyber encapsulation and decapsulation at different security levels. In addition, this
architecture can offer the best value of area–time ratio at three security levels of CRYSTALS-
Kyber. The architecture in [24] requires the lowest hardware resources. The performance of
the existing CRYSTALS-Kyber architectures can be improved by deploying novel solutions
to accelerating polynomial multiplication, such as integrating a novel parallel polynomial
multiplication into the architecture in [24]. Discovering an efficient method for scheduling
arithmetic operations is another technique to reduce hardware consumption and improve
the area–time ratio.

5. Conclusions

In this paper, we introduced CRYSTALS-Kyber, a public key cryptography algorithm
that entered round 3 of the NIST PQC standardization. We briefly described the background
information of Kyber and introduced the key-encryption and key-establishment algorithms
in detail. Furthermore, we analyzed the existing implementations of the pure software
design, software and hardware codesign, and pure hardware design of Kyber, with a focus
on pure hardware design. From the analysis results, we recommended the most suitable
candidates at three security levels for different systems which have specific requirements
of hardware resources, latency, and area-to-time balancing.

Author Contributions: T.T.B.N. and T.T.N. formulated the idea for this research, analyzed data,
and prepared the initial version. H.L. reviewed, supervised, validated, and supported the research
with funding. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT) under the ITRC
support program (IITP-2021-0-02052) supervised by the IITP, and in part by the Inha University
Research Grant.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 891 12 of 13

References
1. Huang, X.; Wang, W. A Novel and Efficient Design for an RSA Cryptosystem with a Very Large Key Size. IEEE Trans. Circuits

Syst. II Express Briefs 2015, 62, 972–976. [CrossRef]
2. Sun, H.; Wu, M.; Ting, W.; Hinek, M.J. Dual RSA and Its Security Analysis. IEEE Trans. Inf. Theory 2007, 53, 2922–2933. [CrossRef]
3. Ma, K.; Liang, H.; Wu, K. Homomorphic Property-Based Concurrent Error Detection of RSA: A Countermeasure to Fault Attack.

IEEE Trans. Comput. 2012, 61, 1040–1049. [CrossRef]
4. Yang, C.; Chang, T.; Jen, C. A New RSA Cryptosystem Hardware Design Based on Montgomery’s Algorithm. IEEE Trans. Circuits

Syst. II Analog. Digit. Signal Process. 1998, 45, 908–913. [CrossRef]
5. Sutter, G.D.; Deschamps, J.P.; Imaña, J.L. Efficient Elliptic Curve Point Multiplication using Digit-Serial Binary Field Operations.

IEEE Trans. Ind. Electron. 2013, 60, 217–225. [CrossRef]
6. Koblitz, N.; Menezes, A.; Vanstone, S. The State of Elliptic Curve Cryptography. Des. Codes Cryptogr. 2000, 19, 173–193. [CrossRef]
7. Chelton, W.N.; Benaissa, M. Fast Elliptic Curve Cryptography on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2008, 16,

198–205. [CrossRef]
8. Mahdizadeh, H.; Masoumi, M. Novel Architecture for Efficient FPGA Implementation of Elliptic Curve Cryptographic Processor

over GF(2163). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 21, 2330–2333. [CrossRef]
9. Lee, Y.K.; Sakiyama, K.; Batina, L.; Verbauwhede, I. Elliptic Curve-Based Security Processor for RFID. IEEE Trans. Comput. 2008,

57, 1514–1527. [CrossRef]
10. NIST Post-Quantum Cryptography Standardization. Available online: https://csrc.nist.gov/projects/post-quantum-

cryptography (accessed on 8 February 2022).
11. Bos, J.; Costello, C.; Ducas, L.; Mironov, I.; Naehrig, M.; Nikolaenko, V.; Raghunathan, A.; Stebila, D. Frodo: Take off the Ring!

Practical, Quantum-Secure Key Exchange from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1006–1018. [CrossRef]

12. Nguyen Tan, T.; Lee, H. High-Performance Ring-LWE Cryptography Scheme for Biometric Data Security. IEIE Trans. Smart
Process. Comput. 2018, 7, 97–106. [CrossRef]

13. Rentería-Mejía, C.P.; Velasco-Medina, J. High-Throughput Ring-LWE Cryptoprocessors. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 2017, 25, 2332–2345. [CrossRef]

14. Chen, D.D.; Mentens, N.; Vercauteren, F.; Roy, S.S.; Cheung, R.C.C.; Pao, D.; Verbauwhede, I. High-Speed Polynomial Mul-
tiplication Architecture for Ring-LWE and SHE Cryptosystems. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 157–166.
[CrossRef]

15. Nguyen Tan, T.; Lee, H. Efficient-Scheduling Parallel Multiplier-Based Ring-LWE Cryptoprocessors. Electronics 2019, 8, 413.
[CrossRef]

16. Nguyen Tan, T.; Lee, H. High-Secure Low-Latency Ring-LWE Cryptography Scheme for Biomedical Images Storing and
Transmitting. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30
May 2018; pp. 1–4. [CrossRef]

17. Nguyen Tan, T.; Nguyen, T.T.B.; Lee, H. High-Efficiency Low-Latency NTT Polynomial Multiplier for Ring-LWE Cryptography. J.
Semicond. Technol. Sci. (JSTS) 2020, 20, 220–223. [CrossRef]

18. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-
Kyber Algorithm Specifications and Supporting Documentation. Available online: https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210131.pdf (accessed on 8 February 2022).

19. Ma, L.; Wu, X.; Bai, G. Parallel polynomial multiplication optimized scheme for CRYSTALS-KYBER Post-Quantum Cryptosystem
based on FPGA. In Proceedings of the 2021 International Conference on Communications, Information System and Computer
Engineering (CISCE), Beijing, China, 14–16 May 2021; pp. 361–365. [CrossRef]

20. Nguyen, D.T.; Dang, V.B.; Gaj, K. A High-Level Synthesis Approach to the Software/Hardware Codesign of NTT-Based Post-
Quantum Cryptography Algorithms. In Proceedings of the 2019 International Conference on Field-Programmable Technology
(ICFPT), Tianjin, China, 9–13 December 2019; pp. 371–374. [CrossRef]

21. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. Instruction-Set Accelerated Implementation of CRYSTALS-Kyber.
IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4648–4659. [CrossRef]

22. Roy, S.S.; Basso, A. High-Speed Instruction-Set Coprocessor for Lattice-Based Key Encapsulation Mechanism: Saber in Hardware.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 4, 443–466. [CrossRef]

23. Huang, Y.; Huang, M.; Lei, Z.; Wu, J. A Pure Hardware Implementation of CRYSTALS-KYBER PQC Algorithm through Resource
Reuse. IEICE Electron. Express 2020, 17, 20200234. [CrossRef]

24. Xing, Y.; Li, S. A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism Crystals-Kyber on FPGA. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2, 328–356. [CrossRef]

25. Gupta, N.; Jati, A.; Chauhan, A.K.; Chattopadhyay, A. PQC Acceleration Using GPUs: FrodoKEM, NewHope, and Kyber. IEEE
Trans. Parallel Distrib. Syst. 2021, 32, 575–586. [CrossRef]

26. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-Kyber:
A CCA-Secure Module-Lattice-Based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), London, UK, 24–26 April 2018; pp. 353–367. [CrossRef]

http://doi.org/10.1109/TCSII.2015.2458033
http://dx.doi.org/10.1109/TIT.2007.901248
http://dx.doi.org/10.1109/TC.2011.121
http://dx.doi.org/10.1109/82.700944
http://dx.doi.org/10.1109/TIE.2012.2186104
http://dx.doi.org/10.1023/A:1008354106356
http://dx.doi.org/10.1109/TVLSI.2007.912228
http://dx.doi.org/10.1109/TVLSI.2012.2230410
http://dx.doi.org/10.1109/TC.2008.148
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
http://dx.doi.org/10.1145/2976749.2978425
http://dx.doi.org/10.5573/IEIESPC.2018.7.2.097
http://dx.doi.org/10.1109/TVLSI.2017.2697841
http://dx.doi.org/10.1109/TCSI.2014.2350431
http://dx.doi.org/10.3390/electronics8040413
http://dx.doi.org/10.1109/ISCAS.2018.8350968
http://dx.doi.org/10.5573/JSTS.2020.20.2.220
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
http://dx.doi.org/10.1109/CISCE52179.2021.9445987
http://dx.doi.org/10.1109/ICFPT47387.2019.00070
http://dx.doi.org/10.1109/TCSI.2021.3106639
http://dx.doi.org/10.13154/tches.v2020.i4.443-466
http://dx.doi.org/10.1587/elex.17.20200234
http://dx.doi.org/10.46586/tches.v2021.i2.328-356
http://dx.doi.org/10.1109/TPDS.2020.3025691
http://dx.doi.org/10.1109/EuroSP.2018.00032

Electronics 2022, 11, 891 13 of 13

27. He, S.; Torkelson, M. Designing Pipeline FFT Processor for OFDM (De)modulation. In Proceedings of the 1998 URSI International
Symposium on Signals, Systems, and Electronics, Pisa, Italy, 2 October 1998; pp. 257–262. [CrossRef]

28. Nguyen, T.T.B.; Lee, H. High-Throughput Low-Complexity Mixed-Radix FFT Processor using a Dual-Path Shared Complex
Constant Multiplier. J. Semicond. Technol. Sci. (JSTS) 2017, 17, 101–109. [CrossRef]

29. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. High-Speed NTT-Based Polynomial Multiplication Accelerator
for Post-Quantum Cryptography. In IACR Cryptology ePrint Archive: Report 2021/563. 2021. Available online: https:
//eprint.iacr.org/2021/563 (accessed on 8 February 2022).

30. Zhang, C.; Liu, D.; Liu, X.; Zou, X.; Niu, G.; Liu, B.; Jiang, Q. Towards Efficient Hardware Implementation of NTT for Kyber on
FPGAs. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May
2021; pp. 1–5. [CrossRef]

31. Barrett, P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor.
In Conference on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1986; pp. 311–323.

32. Montgomery, P.L. Modular Multiplication without Trial Division. Math. Comput. 1985, 44, 519–521. [CrossRef]
33. Kundi, D.-S.; Zhang, Y.; Wang, C.; Khalid, A.; O’Neill, M.; Liu, W. Ultra High-Speed Polynomial Multiplications for Lattice-based

Cryptography on FPGAs. IEEE Trans. Emerg. Top. Comput. 2022. [CrossRef]
34. Regev, O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. J. ACM 2009, 56, 34. [CrossRef]
35. Brakerski, Z.; Langlois, A.; Peikert, C.; Regev, O.; Stehle, D. Classical Hardness of Learning with Errors. In Proceedings of the

Forty-Fifth Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA, 2–4 June 2013; pp. 575–584. [CrossRef]
36. Dang, V.B.; Farahmand, F.; Andrzejczak, M.; Mohajerani, K.; Nguyen, D.T.; Gaj, K. Implementation and Benchmarking of Round

2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware
Co-Design Approaches. In IACR Cryptology ePrint Archive: Report 2020/795. 2020. Available online: https://eprint.iacr.org/20
20/795 (accessed on 8 February 2022).

37. Basu, K.; Soni, D.; Nabeel, M.; Karri, R. NIST Post-Quantum Cryptography-A Hardware Evaluation Study. IACR Cryptology
ePrint Archive: Report 2019/047. 2019. Available online: https://eprint.iacr.org/2019/047 (accessed on 8 February 2022).

http://dx.doi.org/10.1109/ISSSE.1998.738077
http://dx.doi.org/10.5573/JSTS.2017.17.1.101
https://eprint.iacr.org/2021/563
https://eprint.iacr.org/2021/563
http://dx.doi.org/10.1109/ISCAS51556.2021.9401170
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/TETC.2022.3144101
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/2488608.2488680
https://eprint.iacr.org/2020/795
https://eprint.iacr.org/2020/795
https://eprint.iacr.org/2019/047

	Introduction
	Background
	Public-Key Encryption Algorithm
	Key-Establishment Algorithm
	Arithmetic Operations in CRYSTALS-Kyber

	Implementation of CRYSTALS-Kyber
	Discussion
	Conclusions
	References

