
����������
�������

Citation: Bansal, K.; Singh, A.;

Verma, S.; Kavita; Jhanjhi, N.Z.;

Shorfuzzaman, M.; Masud, M.

Evolving CNN with Paddy Field

Algorithm for Geographical

Landmark Recognition. Electronics

2022, 11, 1075. https://doi.org/

10.3390/electronics11071075

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 22 February 2022

Accepted: 17 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Evolving CNN with Paddy Field Algorithm for Geographical
Landmark Recognition
Kanishk Bansal 1 , Amar Singh 1, Sahil Verma 2 , Kavita 2 , Noor Zaman Jhanjhi 3,* ,
Mohammad Shorfuzzaman 4 and Mehedi Masud 4

1 Department of Computer Applications, Lovely Professional University, Phagwara 144411, India;
kbansal71@gmail.com (K.B.); amar.23318@lpu.co.in (A.S.)

2 Department of Computer Science, Chandigarh University, Mohali 140413, India; sahilverma@ieee.org (S.V.);
kavita@ieee.org (K.)

3 School of Computer Science, SCS Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
4 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; m.shorf@tu.edu.sa (M.S.); mmasud@tu.edu.sa (M.M.)
* Correspondence: noorzaman.jhanjhi@taylors.edu.my

Abstract: Convolutional Neural Networks (CNNs) operate within a wide variety of hyperparameters,
the optimization of which can greatly improve the performance of CNNs when performing the task at
hand. However, these hyperparameters can be very difficult to optimize, either manually or by brute
force. Neural architecture search or NAS methods have been developed to address this problem and
are used to find the best architectures for the deep learning paradigm. In this article, a CNN has been
evolved with a well-known nature-inspired metaheuristic paddy field algorithm (PFA). It can be seen
that PFA can evolve the neural architecture using the Google Landmarks Dataset V2, which is one
of the toughest datasets available in the literature. The CNN’s performance, when evaluated based
on the accuracy benchmark, increases from an accuracy of 0.53 to 0.76, which is an improvement of
more than 40%. The evolved architecture also shows some major improvements in hyperparameters
that are normally considered to be the best suited for the task.

Keywords: convolutional neural network; paddy field algorithm; neural architecture search; evolu-
tion; geographical landmark recognition

1. Introduction

Currently, convolutional neural networks (CNNs) are used as one of the fundamental
techniques for image-processing tasks in artificial intelligence (AI) [1]. Convolutional
neural networks (CNNs) are the most widely used architecture for image recognition,
retrieval, and processing tasks. CNNs are used for convolving images into newer images
so that we can get a better feel for the information stored in a particular digital image. The
convolution operation was introduced by the then-postdoctoral researcher Yann LeCun in
1980 [2]; today, it has become one of the most commonly used operations in computing.
Developers and researchers have to use this operation while dealing with computer vision
tasks. Today, CNNs have become part and parcel of the method of dealing with image
processing.

CNNs are part of the deep learning paradigm in AI; deep learning includes many
architectures known as artificial neural networks (ANNs). ANNs are similar to the neural
networks that exist in our bodies [3]. These architectures process data in the same way
that the neural networks of our body process sensory information. In an ANN, many
hyperparameters exist that must be fine-tuned so that we can achieve the best possible
results. To get the best output, we perform a neural architecture search (NAS) to establish
the best architecture for a CNN [4].

Electronics 2022, 11, 1075. https://doi.org/10.3390/electronics11071075 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071075
https://doi.org/10.3390/electronics11071075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8606-6446
https://orcid.org/0000-0003-3136-4029
https://orcid.org/0000-0001-5422-1659
https://orcid.org/0000-0001-8116-4733
https://orcid.org/0000-0002-8050-8431
https://orcid.org/0000-0001-6019-7245
https://doi.org/10.3390/electronics11071075
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071075?type=check_update&version=2


Electronics 2022, 11, 1075 2 of 13

Search and optimization have existed throughout human history and algorithms
known as metaheuristics have been developed [5]. Metaheuristics are generalized al-
gorithms that are used to compute the best solutions to problems, even those that are
NP-Hard [6]. Hundreds of metaheuristics have now been developed, one of which is the
paddy field optimization algorithm [7]. The paddy field algorithm was based on the theory
of the spread of seeds of a paddy crop and how they find the best place to grow.

For NAS, we created a PFANET, i.e., a paddy field algorithm network. We evolved the
network and established the best architecture by finding the best-suited hyperparameters
for a geographical landmark recognition task. The geographical landmarks dataset was
derived from the Google Landmarks Dataset V2 and was augmented to allow the further
improvement of results [8]. The contribution of this article is as below:

(i) We proposed a paddy field algorithm-based approach to evolve an optimized CNN
architecture.

(ii) We validated the proposed approach to landmark recognition and its application.

Section 1 of this article introduces the motivation behind the work. Section 2 delves
deeper into CNNs and deep learning. Section 3 explores other NAS works. Section 4
elucidates the paddy field algorithm, while Section 5 discusses the experimentation and
results and Section 6 offers our conclusions.

2. Convolutional Neural Networks

ANNs are a network of many activation functions that work together to achieve
data processing. Networks are trained in such a manner that the appropriate function is
activated from a function in the previous layer [9]. The architecture includes many layers
and performance is usually better with an increase in the number of layers [10]. This has
made ANNs one of the best choices for machine learning (ML).

However, not all types of data can be handled by all types of ANNs. The digital
images need to be handled by a type of ANN called a convolutional neural network (CNN).
A digital image contains 2 dimensions of pixelated information, where each pixel itself
contains one color out of millions of colors [11]. An 8-bit RGB encoding scheme contains
around 16 M colors and each pixel contains one of these colors [12]. To handle this volume
of data in tensor form, CNNs were developed.

A typical CNN takes parameters in the tensor form of:

x ∈ R(C∗W∗H∗n) (1)

where x designates the input in the network, C designates the color scheme in vector form,
W defines the width of an image in pixels, H defines the height of the image, and n is the
number of images provided to the network [13].

When the network is trained, the activation functions that are mostly used are the
Softmax activation functions:

σ(z)i =
ezi

Σk
j=1ezj

(2)

where σ is the softmax activation function, zi is the input vector, ezi is the standard expo-
nential function for the input vector, k is the number of classes in the multi-class classifier
and ezi is the standard exponential function for output vector [14].

The network trains itself in the backpropagation phase, wherein the information about
correctness is fed back into the network and appropriate measures have to be taken. These
measures are known as in-built optimizers; currently, many optimizers exist, like gradient
descent, stochastic gradient descent, Adagrad, AdaDelta, and Adam [15–20]. We have used
AdaDelta optimization to improve the network. The equation for AdaDelta optimization
is:

η′t =
η√

Sdwt+ε
where Sdwt = βSdwt−1 + (1− β)

(
∂L

∂wt−1

)2

ε is a small + ve number to avoid divisibility by 0
(3)



Electronics 2022, 11, 1075 3 of 13

where η is the learning rate. This changes with respect to Sdwt , which is the varied gradient
descent, and it changes according to the equation shown on the right. Each layer L and
weight w affect the optimization.

For evaluating the performance of an AI model, we may use one of the many param-
eters based on TP—true positive, TN—true negative, FP—false positive, and FN—false
negative. True and false refer to the true and false classification of a class, while positive
and negative represent two binary classes that can be extrapolated [21].

Some of the available performance metrics are accuracy, precision, recall, and F1 score.
These can be explained as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(7)

As one would guess, accuracy is the most intuitive parameter for the evaluation of an
AI model. Each parameter has its benefits when assessing performance; however, we have
used accuracy in this study to evaluate the model, since it is the most acceptable metric for
the evaluation of any AI model created, and to question it is highly improbable.

Optimization gives us a hint that more layers can give us more performance. However,
it has been seen previously that after a certain number of layers, the performance tends to
remain the same or even worsen. For this purpose, various architectures of CNNs were
developed, which include ResNets, LeNets, GoogLeNets, VGGNets, Inception Nets, DELF,
and many more [22].

In all these architectures, it was seen that as the sizes and variety of data increased, the
techniques failed miserably due to their heavy resource consumption [23]. This demanded
a newer way of looking at the problem and, today, we can employ evolutionary computing
to evolve the architectures of ANNs in an automated fashion. This is known as a neural
architecture search (NAS) [24].

3. Neural Architecture Search

NP-Hard problems have existed since the beginning of computing. An NP-Hard
problem refers to a problem in the computing arena that is not known to have been solved
in polynomial time. No definite amount of looping can guarantee an answer to these
problems. For finding a solution to such problems, soft computing is required [25]. Soft
computing tends to find the most optimal approximate solution to a problem instead of
an exact solution [26]. The best instances of soft computing are evolutionary algorithms,
which can be used to find highly optimal solutions to NP-Hard problems.

Artificial neural architectures include millions of parameters that can be varied to
produce the best-fitting individuals [27]. However, in the process of evaluating so many
parameters in an ANN, we can run into serious resource exhaustion issues. Limits to
available time, memory, processing capacity, etc., necessitate a different approach toward
the best-fit ANN search.

Here is where the concept of NAS comes into play. The neural architecture search
(NAS) amalgamates evolutionary computing and ANNs to produce better-fitting artificial
neural networks [28]. These ANNs are evolved on limited data and, when tested on
complete data, they prove to be highly proficient. Today, NAS has been tried alongside
many techniques like genetic algorithms (GA) and variants of particle swarm optimization
(PSO) [29,30].



Electronics 2022, 11, 1075 4 of 13

4. Paddy Field Algorithm

Metaheuristic optimization concerns the use of metaheuristic techniques to solve
optimization problems. From engineering to economics, optimization happens almost
everywhere. Because money, resources, and time are all finite, making the best use of what
is available is critical.

Under varied and difficult constraints, most optimizations are highly nonlinear and
multimodal. For a single neural network, different hyperparameters might frequently be
at odds. Even for a single goal, there are situations when optimal solutions do not exist.
Finding an ideal or even sub-optimal solution is not an easy undertaking, in general.

The paddy field algorithm (PFA) is a metaheuristic that is used to search for the best
individuals out of a generated population [31]. It was introduced by Premaratne et al. in
2009, inspired by the biological process of pollination in the seeds of a rice crop [32]. As
shown in Figure 1, the paddy field algorithm decides the best solution to a problem, just as
seeds spread themselves over a growing area to find the most suitable places to root.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 13 
 

 

Here is where the concept of NAS comes into play. The neural architecture search 

(NAS) amalgamates evolutionary computing and ANNs to produce better-fitting artificial 

neural networks [28]. These ANNs are evolved on limited data and, when tested on 

complete data, they prove to be highly proficient. Today, NAS has been tried alongside 

many techniques like genetic algorithms (GA) and variants of particle swarm 

optimization (PSO) [29,30]. 

4. Paddy Field Algorithm 

Metaheuristic optimization concerns the use of metaheuristic techniques to solve 

optimization problems. From engineering to economics, optimization happens almost 

everywhere. Because money, resources, and time are all finite, making the best use of what 

is available is critical. 

Under varied and difficult constraints, most optimizations are highly nonlinear and 

multimodal. For a single neural network, different hyperparameters might frequently be 

at odds. Even for a single goal, there are situations when optimal solutions do not exist. 

Finding an ideal or even sub-optimal solution is not an easy undertaking, in general. 

The paddy field algorithm (PFA) is a metaheuristic that is used to search for the best 

individuals out of a generated population [31]. It was introduced by Premaratne et al. in 

2009, inspired by the biological process of pollination in the seeds of a rice crop [32]. As 

shown in Figure 1, the paddy field algorithm decides the best solution to a problem, just 

as seeds spread themselves over a growing area to find the most suitable places to root. 

 

Figure 1. The complete process followed in the paddy field algorithm [7].

When one paddy crop grows in an area, the future generations of that crop are decided
based on fitness, due to pollination. Some seeds distribute in the neighboring areas and the
viability of those seeds is at maximum, with maximum fitness. A seed with lesser fitness
will produce inferior seeds when it grows. This process repeats until the most optimal
population of paddy seeds is established [33]. To avoid the possibility of getting caught in
a local optimum, seeds are dispersed widely to search for better spaces. This ensures that
most of the search space is searched by the Algorithm 1.



Electronics 2022, 11, 1075 5 of 13

Algorithm 1. Paddy Field Algorithm

Step 1: Initialize a random population of seeds
Step 2: Calculate the fitness of each seed as:

s = qmax

[
y− yt

ymax − yt

]
(8)

where the maximum fitness value is expressed as max y, y indicates the fitness value of
seeds and yt indicates the threshold.

Step 3: Sort the seeds, in order of fitness.
Step 4: Produce seeds from the best individuals, where the best fits produce more seeds.
Step 5: Pollinate seeds in the neighboring space:

Sv = U ∗ s (9)

where 0 ≤ U ≤ 1. Given a circle of radius a, for two plants Xj and Xk, they will be
neighbors to each other if they meet the criteria in Equation (10); thus, determining the
neighbor number vj of each plant and the maximum neighbor number of the plant in the
same generation, which is expressed as vmax is Equation (11):

u
(

Xj, Xk

)
=

∣∣∣Xj − Xk

∣∣∣− a < 0 (10)

Uj = e[
vj

vmax
−1] (11)

Step 6: Disperse the plants: According to Gaussian distribution, the next generation of seeds
produced by each plant is scattered within the parameter space; the positions of the seeds
are expressed as:

Xi+1
seed = N

(
xi, σ

)
(12)

where σ is the coefficient of dispersion, which can determine the dispersion degree of the
produced seeds.

Step 7: Reach termination if one of the termination conditions is met. Otherwise, repeat from
Step 2. The termination condition that we used was a time boundary of 8 h. Smax =
S1 ∗ S2 . . . Sn : E(n) < 480 min E(n) is the event after n iterations.

Step 8: Produce output as Smax, when the termination condition is met.

We can also perform a pattern search in the given algorithm if we have enough
computing resources.

5. Dataset Pre-Processing

For this study, we used the Google Landmarks dataset, available at https://www.
kaggle.com/c/landmark-recognition-2021 (accessed on 22 February 2022) for performing
the network architecture search (NAS). This is a dataset comprising around 1.59 M images,
including the ones shown in Figure 2. However, training on such a huge dataset would
have taken an extremely long time. Therefore, for the evolution of our network, we used
only 600 images out of the dataset. It was also noted that one landmark class had a much
smaller number of images; hence, the data was augmented 15 times to about 9000 images.
The data was augmented in terms of translation, rotation, scaling. cropping. flipping, etc.
Augmentation paved the way for an improved generalization of the neural network.

https://www.kaggle.com/c/landmark-recognition-2021
https://www.kaggle.com/c/landmark-recognition-2021


Electronics 2022, 11, 1075 6 of 13

Electronics 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

We can also perform a pattern search in the given algorithm if we have enough 

computing resources. 

5. Dataset Pre-Processing 

For this study, we used the Google Landmarks dataset, available at 

https://www.kaggle.com/c/landmark-recognition-2021 (accessed on 22 February 2022) for 

performing the network architecture search (NAS). This is a dataset comprising around 

1.59 M images, including the ones shown in Figure 2. However, training on such a huge 

dataset would have taken an extremely long time. Therefore, for the evolution of our 

network, we used only 600 images out of the dataset. It was also noted that one landmark 

class had a much smaller number of images; hence, the data was augmented 15 times to 

about 9000 images. The data was augmented in terms of translation, rotation, scaling. 

cropping. flipping, etc. Augmentation paved the way for an improved generalization of 

the neural network. 

 

Figure 2. Landmark images from the Google Landmarks Dataset V2 [8]. 

Each picture was checked to make sure that it was in an RGB color encoding scheme, 

to ensure proper dimensions in terms of colors [34]. After this process, each picture was 

checked to make sure that it was the same size (64 × 64). An image of inappropriate size 

was resized to the given dimensions. 

Then, the entire dataset was processed so that the input variable had the tensor of the 

shape: 

x = (9000,64,64,3) (13) 

The output tensor had the shape: 

y = (9000,24) (14) 

This meant that the input tensor had 110,592,000 parameters in total. The output had 

to be one out of 24 classes, as depicted by the output tensor. The dataset was converted 

into the input tensor variable, while the output tensor was assigned one out of 0–23 

numbers for each of the 9000 images. After this, the x tensor and y tensor were used for 

training. The TensorFlow library provided by Google was imported for creating tensors. 

However, the overall algorithm was self-designed. 

6. Experimentation and Results 

We ran the experiment on an Asus VivoBook S15 laptop with 8 GB RAM, a 4 GB 

NVIDIA graphics card, and an Intel CORE i7 processor. A self-designed code was run in 

a loop indefinitely for 8 h. In the code, a 3-layer CNN was designed that was then evolved 

with the paddy field algorithm, and the results were observed. 

As shown in Figure 3, the designed CNN consisted of three convolutional layers that 

were then followed by three max-pooling layers, all of which were then followed by a 

 

Figure 2: Landmark Images from Google Landmarks Dataset V2. Figure 2. Landmark images from the Google Landmarks Dataset V2 [8].

Each picture was checked to make sure that it was in an RGB color encoding scheme,
to ensure proper dimensions in terms of colors [34]. After this process, each picture was
checked to make sure that it was the same size (64 × 64). An image of inappropriate size
was resized to the given dimensions.

Then, the entire dataset was processed so that the input variable had the tensor of the
shape:

x = (9000,64,64,3) (13)

The output tensor had the shape:

y = (9000,24) (14)

This meant that the input tensor had 110,592,000 parameters in total. The output had
to be one out of 24 classes, as depicted by the output tensor. The dataset was converted into
the input tensor variable, while the output tensor was assigned one out of 0–23 numbers
for each of the 9000 images. After this, the x tensor and y tensor were used for training. The
TensorFlow library provided by Google was imported for creating tensors. However, the
overall algorithm was self-designed.

6. Experimentation and Results

We ran the experiment on an Asus VivoBook S15 laptop with 8 GB RAM, a 4 GB
NVIDIA graphics card, and an Intel CORE i7 processor. A self-designed code was run in a
loop indefinitely for 8 h. In the code, a 3-layer CNN was designed that was then evolved
with the paddy field algorithm, and the results were observed.

As shown in Figure 3, the designed CNN consisted of three convolutional layers that
were then followed by three max-pooling layers, all of which were then followed by a fully
connected layer, with 100 neurons that were varied afterward and 200 neurons that were
kept constant.

In Equations (4)–(7), T and F stand for True and False, respectively, while Cn stands
for nth class. Accuracy is one of the performance parameters which decide the goodness of
a CNN. The complete list of hyperparameters that were evolved can be described as:

1. Kernel Frame Size: the 3 × 3 kernel frames are considered highly optimal for CNNs.
However, varying the kernel frame size, we saw that a size of 7 × 7 was the kernel
with the best fit of seed. This performed the best with other arrangements of hyperpa-
rameters [35]. The kernel frame sizes chosen were between 1 × 1 and 11 × 11. These
were in the form of square matrices.

2. Number of Kernels: the number of kernels was varied to establish the best number
that could be checked to fall between 22 and 42. It has been suggested that 32 or
64 kernels seem to work well but, for us, 42 was the variant giving the best seed [36].
Other numbers could have worked even better, had we increased the search space.

3. Learning Rate: the learning rate refers to the speed with which the network trains
itself. With a slower learning rate, a network can achieve better accuracy, but this



Electronics 2022, 11, 1075 7 of 13

increases its chances of running into a local minimum. The network also takes more
time to run. A fast learning rate will quicken the rate of learning but run into the
problem of deviation from the global minima. A learning rate of 0.01 is considered
optimal in the usual cases; indeed, 0.099 was the best parameter found [37]. The
learning rate varied between 0.001 and 0.99.

4. Batch Size: the batch size refers to the number of images given to the network for
training in one go. A batch size of 32 is considered good; in this case, it was found that
32 is optimal and seemed to perform well [38]. A little variation was found to be good
in the batch size, which included 33 and 34 even though it varied between 22 and 42.

5. Neurons: Neurons were also varied to check for the best types of connections. The
initial 100 neurons were altered to fall between 90 and 110; the results showed that
many variations within this range seemed to do well, although the eventual best fit
was 102 [39].

Electronics 2022, 11, x FOR PEER REVIEW 7 of 13 
 

 

fully connected layer, with 100 neurons that were varied afterward and 200 neurons that 

were kept constant. 

 

Figure 3. The basic architecture of the designed CNN. 

In eqs. 4, 5, 6 and 7, T and F stand for True and False, respectively, while Cn stands 

for nth class. Accuracy is one of the performance parameters which decide the goodness 

of a CNN. The complete list of hyperparameters that were evolved can be described as: 

1. Kernel Frame Size: the 3 × 3 kernel frames are considered highly optimal for CNNs. 

However, varying the kernel frame size, we saw that a size of 7 × 7 was the kernel 

with the best fit of seed. This performed the best with other arrangements of 

hyperparameters [35]. The kernel frame sizes chosen were between 1 × 1 and 11 × 11. 

These were in the form of square matrices. 

2. Number of Kernels: the number of kernels was varied to establish the best number 

that could be checked to fall between 22 and 42. It has been suggested that 32 or 64 

kernels seem to work well but, for us, 42 was the variant giving the best seed [36]. 

Other numbers could have worked even better, had we increased the search space. 

3. Learning Rate: the learning rate refers to the speed with which the network trains 

itself. With a slower learning rate, a network can achieve better accuracy, but this 

increases its chances of running into a local minimum. The network also takes more 

time to run. A fast learning rate will quicken the rate of learning but run into the 

problem of deviation from the global minima. A learning rate of 0.01 is considered 

optimal in the usual cases; indeed, 0.099 was the best parameter found [37]. The 

learning rate varied between 0.001 and 0.99. 

4. Batch Size: the batch size refers to the number of images given to the network for 

training in one go. A batch size of 32 is considered good; in this case, it was found 

that 32 is optimal and seemed to perform well [38]. A little variation was found to be 

Figure 3. The basic architecture of the designed CNN.

When the CNN was run, the backpropagation ran in the following form:

Wnew
x = Wold

x − a
d(Error)

dWx
(15)

where Wnew
x are the newly trained weights, Wold

x are the old weights, a is the learning
rate, and a d(Error)

dWx
is the change in an error with respect to the weights. It was run

with an AdaDelta optimizer, using the Keras in-built libraries for the optimal changes
of weights [40–42].



Electronics 2022, 11, 1075 8 of 13

In the code, the CNN hyperparameters were replaced with variables; these variables
were initially assigned default CNN hyperparameter values. The accuracy was measured
first, then these variables were varied by means of the paddy field algorithm in the search
space formed, and the accuracies were consistently recorded. The best seed found, based
on accuracy, was [7, 42, 0.0099, 32, 102]. This was in the format of [kernel frame length,
number of kernels, learning rate, batch size, neurons] [43–46].

Figure 4 describes how the maximum accuracy of the evolved networks developed
over the elapsed time. Figure 5 shows the accuracy of checked seeds as time progresses.
This gives an idea of how the accuracy changes according to the number of seeds that were
checked. Figure 6 shows how the accuracy changes from start to finish, as time progresses,
when a default CNN is compared to an evolved CNN.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13 
 

 

good in the batch size, which included 33 and 34 even though it varied between 22 

and 42. 

5. Neurons: Neurons were also varied to check for the best types of connections. The 

initial 100 neurons were altered to fall between 90 and 110; the results showed that 

many variations within this range seemed to do well, although the eventual best fit 

was 102 [39]. 

When the CNN was run, the backpropagation ran in the following form: 

𝑊𝑥
𝑛𝑒𝑤 = 𝑊𝑥

𝑜𝑙𝑑 − 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
 (15) 

where 𝑊𝑥
𝑛𝑒𝑤 are the newly trained weights, 𝑊𝑥

𝑜𝑙𝑑 are the old weights, a is the learning 

rate, and 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
 is the change in an error with respect to the weights. It was run with 

an AdaDelta optimizer, using the Keras in-built libraries for the optimal changes of 

weights [40–42]. 

In the code, the CNN hyperparameters were replaced with variables; these variables 

were initially assigned default CNN hyperparameter values. The accuracy was measured 

first, then these variables were varied by means of the paddy field algorithm in the search 

space formed, and the accuracies were consistently recorded. The best seed found, based 

on accuracy, was [7, 42, 0.0099, 32, 102]. This was in the format of [kernel frame length, 

number of kernels, learning rate, batch size, neurons] [43–46]. 

Figure 4 describes how the maximum accuracy of the evolved networks developed 

over the elapsed time. Figure 5 shows the accuracy of checked seeds as time progresses. 

This gives an idea of how the accuracy changes according to the number of seeds that 

were checked. Figure 6 shows how the accuracy changes from start to finish, as time 

progresses, when a default CNN is compared to an evolved CNN. 

 

Figure 4. Accuracies of the evolved PFANET variants as the time elapsed. 

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

A
cc

u
ra

cy
 (

in
 %

)

Time Elapsed (in mins)

Maximum accuracy over time

Maximum Accuracy

Figure 4. Accuracies of the evolved PFANET variants as the time elapsed.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 5. Accuracies for the evolved seeds in the network. 

 

Figure 6. Accuracy change in evolved CNN vs. Default CNN. 

Table 1 gives an insight into how well the self-designed PFANET fared, when 

compared to a regular CNN with default hyperparameters. Each network has been 

compared on the basis of the approximate accuracy gained by each network over time. As 

is apparent, the best-fit PFANET variant gains more accuracy in shorter time frames, 

compared to a regular CNN. The key observations that should be made are: 

• The best kernel frame length is 7, while the length that was normally used was a 3. 5 

kernel frame length, which also performed better than 3 in some combinations. One 

striking observation was that an unusual kernel frame length of 4, which is not 

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18

A
cc

u
ra

cy
 (

in
 %

)

Number of seeds checked

Maximum accuracy of checked seeds

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

A
cc

u
ra

cy
 (

in
 %

)

Epochs

Accuracies over time, shown by default and 

evolved CNN

Accuracy Default CNN Accuracy PFANET (Best Fit)

Figure 5. Accuracies for the evolved seeds in the network.



Electronics 2022, 11, 1075 9 of 13

Electronics 2022, 11, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 5. Accuracies for the evolved seeds in the network. 

 

Figure 6. Accuracy change in evolved CNN vs. Default CNN. 

Table 1 gives an insight into how well the self-designed PFANET fared, when 

compared to a regular CNN with default hyperparameters. Each network has been 

compared on the basis of the approximate accuracy gained by each network over time. As 

is apparent, the best-fit PFANET variant gains more accuracy in shorter time frames, 

compared to a regular CNN. The key observations that should be made are: 

• The best kernel frame length is 7, while the length that was normally used was a 3. 5 

kernel frame length, which also performed better than 3 in some combinations. One 

striking observation was that an unusual kernel frame length of 4, which is not 

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18

A
cc

u
ra

cy
 (

in
 %

)

Number of seeds checked

Maximum accuracy of checked seeds

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

A
cc

u
ra

cy
 (

in
 %

)

Epochs

Accuracies over time, shown by default and 

evolved CNN

Accuracy Default CNN Accuracy PFANET (Best Fit)

Figure 6. Accuracy change in evolved CNN vs. Default CNN.

Table 1 gives an insight into how well the self-designed PFANET fared, when com-
pared to a regular CNN with default hyperparameters. Each network has been compared
on the basis of the approximate accuracy gained by each network over time. As is apparent,
the best-fit PFANET variant gains more accuracy in shorter time frames, compared to a
regular CNN. The key observations that should be made are:

• The best kernel frame length is 7, while the length that was normally used was a
3. 5 kernel frame length, which also performed better than 3 in some combinations.
One striking observation was that an unusual kernel frame length of 4, which is not
expected to be good because of its being an even kernel frame, also performed better
in many regards.

• The number of kernels after optimization was 42, within the range of 22–42, meaning
that the maximum number of kernels improved the model’s accuracy. However, more
research would be required to validate how many kernels are optimum.

• The learning rate that is usually used is 0.01; there was a positive observation that the
best learning rate came out to be 0.0099, which is almost 0.01.

• The number of optimum epochs is 100, but that figure was chosen manually since the
network did not then require much processing power at once.

• The best batch size that was seen was the regularly used size of 32.
• The neurons did not seem to vary a great deal; the best number was 102 when

initialized with 100.
• The code was run for 8 h and as many as 18 seeds were checked, over a wide variety

of combinations.
• In 18 seeds only, the accuracy improved considerably, from 53%, with the default

CNN, to 76%.
• The experiment showed that the paddy field search algorithm is a very viable evolu-

tionary metaheuristic for searching best-fit hyperparameters.



Electronics 2022, 11, 1075 10 of 13

Table 1. Accuracies in a default CNN and the network evolved with PFA are compared over best fits,
shown as the steps of time and epochs elapsed.

Accuracy

S. No. Epochs Time (in mins.) Default CNN
(Approx. in %)

PFANET (Best Fit)
(Approx. in %)

1 13 5 8 12
2 25 10 16 24
3 38 15 24 35
4 50 20 31 45
5 63 25 37 55
6 75 30 43 63
7 88 35 48 70
8 100 40 53 76

Figure 7 shows the confusion matrix developed for the trained CNN using the evolved
hyperparameters. Table 2 shows the best-evolved hyperparameters. The study demon-
strated that there can be a high level of change in the performance of a CNN when evolved
with an evolutionary metaheuristic, such as the paddy field algorithm.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 7. Confusion matrix for the trained model. 

Table 2. The best-fitted seed after the evolution of the CNN architecture with PFA. 

Kernel Frame 

Length 

Number of Ker-

nels 
Learning Rate Batch Size Neurons 

7 42 0.0099 32 102 

7. Conclusions 

We have demonstrated how to evolve a convolutional neural network using the 

paddy field algorithm (PFA). We concluded that there is a wide hyperparametric space in 

which to search for the best combination in a CNN; evolutionary metaheuristics help us 

to find the best possible combinations in this wide search space. It was found that high 

performance was recorded using the hyperparameters found by the paddy field 

algorithm; the accuracy improved a great deal once the CNN was trained. We also 

concluded that the hyperparameters we employed, which are very different from the 

hyperparameters that are regularly used, performed much better. We drew a comparison 

between a default CNN and our evolved CNN; the evolved CNN or PFANET seemed to 

perform much better. However, more research is required to establish if a particular 

hyperparameter can work with all combinations. Moreover, the evolution of a network 

can take too much time for some applications; therefore, we need to improve these 

algorithms to evolve the ANNs quickly and with stable hyperparameters. Data 

augmentation helps in the overall improvement of a network. 

Author Contributions: K.B.: Conceptualization, Software, Writing: Original Draft, Review and Ed-

iting. A.S.: Validation, Formal Analysis, Investigation. S.V.: Resources, Visualization. K.: Project 

Figure 7. Confusion matrix for the trained model.



Electronics 2022, 11, 1075 11 of 13

Table 2. The best-fitted seed after the evolution of the CNN architecture with PFA.

Kernel Frame
Length

Number of
Kernels Learning Rate Batch Size Neurons

7 42 0.0099 32 102

7. Conclusions

We have demonstrated how to evolve a convolutional neural network using the
paddy field algorithm (PFA). We concluded that there is a wide hyperparametric space in
which to search for the best combination in a CNN; evolutionary metaheuristics help us
to find the best possible combinations in this wide search space. It was found that high
performance was recorded using the hyperparameters found by the paddy field algorithm;
the accuracy improved a great deal once the CNN was trained. We also concluded that the
hyperparameters we employed, which are very different from the hyperparameters that are
regularly used, performed much better. We drew a comparison between a default CNN and
our evolved CNN; the evolved CNN or PFANET seemed to perform much better. However,
more research is required to establish if a particular hyperparameter can work with all
combinations. Moreover, the evolution of a network can take too much time for some
applications; therefore, we need to improve these algorithms to evolve the ANNs quickly
and with stable hyperparameters. Data augmentation helps in the overall improvement of
a network.

Author Contributions: K.B.: Conceptualization, Software, Writing: Original Draft, Review and
Editing. A.S.: Validation, Formal Analysis, Investigation. S.V.: Resources, Visualization. K.: Project
Administration. N.Z.J.: Project Administration, Investigation, Fund Acquisition. M.S.: Fund Acqui-
sition, Software. M.M.: Investigation, Fund Acquisition. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Taif University Researchers Supporting Project number
(TURSP-2020/79), Taif University, Taif, Saudi Arabia.

Acknowledgments: This work was supported by the Taif University Researchers Supporting Project
number (TURSP-2020/79), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Radenović, F.; Tolias, G.; Chum, O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach.

Intell. 2018, 41, 1655–1668. [CrossRef] [PubMed]
2. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361,

1995.
3. Rafiq, M.Y.; Bugmann, G.; Easterbrook, D.J. Neural network design for engineering applications. Comput. Struct. 2001, 79,

1541–1552. [CrossRef]
4. Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. In IEEE Transactions

on Neural Networks and Learning Systems; IEEE: Piscatway, NJ, USA, 2021. [CrossRef]
5. Yang, X.-S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Beckington, UK, 2010.
6. Hochba, D.S. Approximation algorithms for NP-hard problems. ACM Sigact News 1997, 28, 40–52. [CrossRef]
7. Kong, X.; Chen, Y.-L.; Xie, W.; Wu, X. A novel paddy field algorithm based on pattern search method. In Proceedings of the 2012

IEEE International Conference on Information and Automation, Shenyang, China, 6–8 June 2012; pp. 686–690.
8. Weyand, T.; Araujo, A.; Cao, B.; Sim, J. Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and

retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19
June 2020; pp. 2575–2584.

9. Bansal, K.; Rana, A.S. Landmark Recognition Using Ensemble-Based Machine Learning Models. In Machine Learning and Data
Analytics for Predicting, Managing, and Monitoring Disease; IGI Global: Hershey, PA, USA, 2021; pp. 64–74.

10. Xu, D.; Tu, K.; Wang, Y.; Liu, C.; He, B.; Li, H. FCN-engine: Accelerating deconvolutional layers in classic CNN processors. In
Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA, 5–8 November 2018; pp. 1–6.

11. Ghosh, S.; Singh, A. Image Classification Using Deep Neural Networks: Emotion Detection Using Facial Images. In Machine
Learning and Data Analytics for Predicting, Managing, and Monitoring Disease; IGI Global: Hershey, PA, USA, 2021; pp. 75–85.

http://doi.org/10.1109/TPAMI.2018.2846566
http://www.ncbi.nlm.nih.gov/pubmed/29994246
http://doi.org/10.1016/S0045-7949(01)00039-6
http://doi.org/10.1109/TNNLS.2021.3100554
http://doi.org/10.1145/261342.571216


Electronics 2022, 11, 1075 12 of 13

12. Hernández, H.; Blum, C. Distributed graph coloring: An approach based on the calling behavior of Japanese tree frogs. Swarm
Intell. 2012, 6, 117–150. [CrossRef]

13. Lin, Y.-S.; Lu, H.-C.; Tsao, Y.-B.; Chih, Y.-M.; Chen, W.-C.; Chien, S.-Y. Gratetile: Efficient sparse tensor tiling for CNN processing.
In Proceedings of the 2020 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 20–22 October 2020; pp. 1–6.

14. Wang, M.; Lu, S.; Zhu, D.; Lin, J.; Wang, Z. A high-speed and low-complexity architecture for softmax function in deep learning.
In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October
2018; pp. 223–226.

15. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 421–436.

16. Lydia, A.; Francis, S. Adagrad—An optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci. 2019, 6, 566–568.
17. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
18. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.
19. Wang, D.; Wang, X.; Kim, M.-K.; Jung, S.-Y. Integrated optimization of two design techniques for cogging torque reduction

combined with analytical method by a simple gradient descent method. IEEE Trans. Magn. 2012, 48, 2265–2276. [CrossRef]
20. Wichrowska, O.; Maheswaranathan, N.; Hoffman, M.W.; Colmenarejo, S.G.; Denil, M.; Freitas, N.; Sohl-Dickstein, J. Learned

optimizers that scale and generalize. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW,
Australia, 6–11 August 2017; pp. 3751–3760.

21. Jafarian, A.; Nia, S.M.; Golmankhaneh, A.K.; Baleanu, D. On artificial neural networks approach with new cost functions. Appl.
Math. Comput. 2018, 339, 546–555. Available online: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:546-555
(accessed on 20 February 2022). [CrossRef]

22. Raja, M.A.Z.; Shah, F.H.; Tariq, M.; Ahmad, I. Design of artificial neural network models optimized with sequential quadratic
programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput. Appl. 2018, 29,
83–109. [CrossRef]

23. Kumar, S.; Singh, A.; Walia, S. Parallel Big Bang–Big Crunch Global Optimization Algorithm: Performance and its Applications to
routing in WMNs. Wirel. Pers. Commun. 2018, 100, 1601–1618. [CrossRef]

24. Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.G.; Saeed, T. Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for
the Novel Fractional Order Pantograph Singular System. Fractal Fract. 2021, 5, 277. [CrossRef]

25. Boiarov, A.; Tyantov, E. Large scale landmark recognition via deep metric learning. arXiv 2019, arXiv:1908.10192v3.
26. Kumar, S.; Walia, S.S.; Singh, A. Parallel big bang-big crunch algorithm. Int. J. Adv. Comput. 2013, 46, 1330–1335.
27. Singh, A.; Kumar, S.; Walia, S.S.; Chakravorty, S. Face Recognition: A Combined Parallel BB-BC & PCA Approach to Feature

Selection. Int. J. Comput. Sci. Inf. Technol. 2015, 2, 1–5.
28. Singh, A.; Kumar, S.; Walia, S.S. Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless Mesh Networks. In

Implementations and Applications of Machine Learning; Springer: Cham, Switzerland, 2020; pp. 1–28.
29. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of

Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]
30. He, X.; Wang, Y.; Wang, X.; Huang, W.; Zhao, S.; Chen, X. Simple-Encoded evolving convolutional neural network and its

application to skin disease image classification. Swarm Evol. Comput. 2021, 67, 100955. [CrossRef]
31. Muppala, C.; Guruviah, V. Detection of leaf folder and yellow stemborer moths in the paddy field using deep neural network

with search and rescue optimization. Inf. Process. Agric. 2021, 8, 350–358. [CrossRef]
32. Premaratne, U.; Samarabandu, J.; Sidhu, T. A new biologically inspired optimization algorithm. In Proceedings of the 2009

International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 28–31 December 2009; pp. 279–284.
33. Zhao, L.; Kobayasi, K.; Hasegawa, T.; Wang, C.L.; Yoshimoto, M.; Wan, J.; Matsui, T. Traits responsible for variation in pollination

and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China. Agric. Ecosyst.
Environ. 2010, 139, 110–115. [CrossRef]

34. Magliani, F.; Bidgoli, N.M.; Prati, A. A location-aware embedding technique for accurate landmark recognition. In Proceedings of
the 11th International Conference on Distributed Smart Cameras, Stanford, CA, USA, 5–7 September 2017.

35. Ullah, F.U.M.; Ullah, A.; Muhammad, K.; Haq, I.U.; Baik, S.W. Violence detection using spatiotemporal features with 3D
convolutional neural network. Sensors 2019, 19, 2472. [CrossRef]

36. Li, Y.; Lin, S.; Zhang, B.; Liu, J.; Doermann, D.; Wu, Y.; Huang, F.; Ji, R. Exploiting kernel sparsity and entropy for interpretable
CNN compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 16–20 June 2019; pp. 2800–2809.

37. Zhuangzhuang, T.; Ronghui, Z.; Jiemin, H.; Jun, Z. Adaptive learning rate CNN for SAR ATR. In Proceedings of the 2016 CIE
International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–5.

38. Radiuk, P.M. Impact of training set batch size on the performance of convolutional neural networks for diverse datasets. Inf.
Technol. Manag. Sci. 2017, 20, 20–24. [CrossRef]

39. Aizenberg, N.N.; Aizenberg, I.N. Fast-convergence learning algorithms for multi-level and binary neurons and solution of some
image processing problems. In International Workshop on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1993;
pp. 230–236.

http://doi.org/10.1007/s11721-012-0067-2
http://doi.org/10.1109/TMAG.2012.2191416
https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:546-555
http://doi.org/10.1016/j.amc.2018.07.053
http://doi.org/10.1007/s00521-016-2530-2
http://doi.org/10.1007/s11277-018-5656-y
http://doi.org/10.3390/fractalfract5040277
http://doi.org/10.1016/j.swevo.2021.100863
http://doi.org/10.1016/j.swevo.2021.100955
http://doi.org/10.1016/j.inpa.2020.09.002
http://doi.org/10.1016/j.agee.2010.07.006
http://doi.org/10.3390/s19112472
http://doi.org/10.1515/itms-2017-0003


Electronics 2022, 11, 1075 13 of 13

40. Dogra, V. Banking news-events representation and classification with a novel hybrid model using DistilBERT and rule-based
features. Turk. J. Comput. Math. Educ. 2021, 12, 3039–3054.

41. Srivastava, A.; Verma, S.; Jhanjhi, N.Z.; Talib, M.N.; Malhotra, A. Analysis of Quality of Service in VANET. In IOP Conference
Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 993, p. 012061.

42. Kumar, P.; Verma, S. Detection of Wormhole Attack in VANET. Natl. J. Syst. Inf. Technol. 2017, 10, 71–80.
43. Jhanjhi, N.Z.; Verma, S.; Talib, M.N.; Kaur, G. A Canvass of 5G Network Slicing: Architecture and Security Concern. In IOP

Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 993, p. 012060.
44. Gandam, A.; Sidhu, J.S.; Verma, S.; Jhanjhi, N.Z.; Nayyar, A.; Abouhawwash, M.; Nam, Y. An efficient post-processing adaptive

filtering technique to rectifying the flickering effects. PLoS ONE 2021, 16, e0250959. [CrossRef]
45. Puneeta, S.; Sahil, V. Analysis on Different Strategies Used in Blockchain Technology. J. Comput. Theor. Nanosci. 2019, 16,

4350–4355. [CrossRef]
46. Kumar, K.; Verma, S.; Jhanjhi, N.Z.; Talib, M.N. A Survey of The Design and Security Mechanisms of The Wireless Networks

and Mobile Ad-Hoc Networks. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020;
Volume 993, p. 012063.

http://doi.org/10.1371/journal.pone.0250959
http://doi.org/10.1166/jctn.2019.8524

	Introduction 
	Convolutional Neural Networks 
	Neural Architecture Search 
	Paddy Field Algorithm 
	Dataset Pre-Processing 
	Experimentation and Results 
	Conclusions 
	References

