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Abstract: Smart wearable technologies such as fitness trackers are creating many new opportunities
to improve the quality of life for everyone. It is usually impossible for visually impaired people to
orientate themselves in large spaces and navigate an unfamiliar area without external assistance. The
design space for assistive technologies for the visually impaired is complex, involving many design
parameters including reliability, transparent object detection, handsfree operations, high-speed real-
time operations, low battery usage, low computation and memory requirements, ensuring that it is
lightweight, and price affordability. State-of-the-art visually impaired devices lack maturity, and they
do not fully meet user satisfaction, thus more effort is required to bring innovation to this field. In
this work, we develop a pair of smart glasses called LidSonic that uses machine learning, LiDAR,
and ultrasonic sensors to identify obstacles. The LidSonic system comprises an Arduino Uno device
located in the smart glasses and a smartphone app that communicates data using Bluetooth. Arduino
collects data, manages the sensors on smart glasses, detects objects using simple data processing,
and provides buzzer warnings to visually impaired users. The smartphone app receives data from
Arduino, detects and identifies objects in the spatial environment, and provides verbal feedback
about the object to the user. Compared to image processing-based glasses, LidSonic requires much
less processing time and energy to classify objects using simple LiDAR data containing 45-integer
readings. We provide a detailed description of the system hardware and software design, and its
evaluation using nine machine learning algorithms. The data for the training and validation of
machine learning models are collected from real spatial environments. We developed the complete
LidSonic system using off-the-shelf inexpensive sensors and a microcontroller board costing less than
USD 80. The intention is to provide a design of an inexpensive, miniature, green device that can be
built into, or mounted on, any pair of glasses or even a wheelchair to help the visually impaired.
This work is expected to open new directions for smart glasses design using open software tools and
off-the-shelf hardware.

Keywords: visually impaired; sensors; LiDAR; ultrasonic; machine learning; obstacle detection;
obstacle recognition; assistive tools; edge computing; green computing; sustainability; Arduino Uno;
smart app

1. Introduction

Both behavioral and neural experiments concerning human navigation have shown
that how we interpret visual input is an essential part of how we represent space [1]. Visual
impairment and blindness are among the most incapacitating disabilities, and we know
very little about the experiences of visually impaired and blind people [2]. The World
Health Organization (WHO) states that, due to population growth and aging, the number of
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individuals with visual disabilities is expected to increase. Moreover, modern-day lifestyles
have given rise to many chronic diseases that cause deterioration in visual and other human
functions [3]. For example, diabetes and hyperglycemia can result in a variety of health
concerns, including vision problems. Diabetes mellitus can affect several tissues in the
eye system, and cataracts are among the most common causes of vision impairment [4].
Therefore, it is expected that the demand for assistive devices will grow.

It is usually impossible for visually impaired people to orientate themselves in large
spaces and navigate in an unfamiliar area without external assistance. For example, land-
plane tracking is a natural mobility task for humans, but for those with weak to no vision,
it is considered a problem. This capability is important for people to avoid the danger of
falls, and to change their position, posture, and balance [5]. The major obstacles that they
face are, moving up and down on staircases, low and high static mobile obstacles, wet
floors, potholes, a lack of knowledge about recognized landmarks, obstacle detection [6],
object recognition, and hazards. These are the major challenges in indoor [7] and outdoor
navigation and orientation.

The white cane is the most common tool for visually impaired people to assist them
in navigating their environments; however, it has several disadvantages. For example, it
occupies one hand, it requires physical contact with the environment [2], it cannot sense
obstacles above the ground such as ladders, scaffoldings, tree branches, and open win-
dows [8], and it causes neuromusculoskeletal overuse of injuries and syndromes, which
could require rehabilitation [9]. In addition, the person who uses a white cane is often
stigmatized due to social reasons [2]. The lack of necessary assistive technologies for visu-
ally impaired people makes them reliant on family members [10]. Assistive technologies
and devices could enable richer life experiences for visually impaired and blind people,
allowing them to interact with communities that are fortunate to be sighted [2].

Smart cities and societies are driving unprecedented technological developments, with
a promise to provide a high quality of life [11–13]. Smart wearable technologies are creating
many new opportunities to improve the quality of life for everyone. Examples include
fitness trackers, heart rate monitors, smart glasses, smartwatches, electronic travel aids,
etc. The case for visually impaired people is no different. Several technologies have been
proposed and commercialized for visually impaired people to help them navigate their
environments. An Electronic Travel Aid (ETA) is a commonly used assistive technology
that helps improve mobility for the visually impaired and blind [14]. An ETA is expected to
“enable independent, efficient, effective, and safe travel in unfamiliar surroundings” [15].
ETAs are available in different wearable and handheld formats, and can be classified based
on whether they use smartphones, sensors, or computer vision [16]. There is a low adoption
rate of ETAs within the visually impaired and blind community [10]. The low adoption
rate does not mean that disabled people necessarily oppose the use of ETAs, but rather, it
confirms that further studies are needed to investigate the reasons for the low adoption
rate, as well as to enhance the functionality, usability, and adaptability of the assistive
technologies [10,17]. Moreover, adding unnecessarily complex ETAs that could involve
lengthy and complementary training times to acquire extra and complicated skills is not a
viable option, and is definitely not a logistically reasonable strategy [9].

The design space for assistive technologies for the visually impaired is complex,
involving many design parameters including reliability, usability, and functioning in indoor,
outdoor, and dark environments; transparent object detection; hand-free operations; high-
speed real-time operations; low battery usage and energy consumption; low computation
and memory requirements; low device weight; and price affordability (see Section 2 for
a detailed review of existing works). For example, several solutions based on cameras
and computer vision have been proposed. However, the computational cost and power
consumption of image processing algorithms cause problems with portable or wearable
low-power devices [18]. Although many devices and systems for the visually impaired
have been proposed and developed in academic and commercial arenas, the state-of-
the-art devices and systems lack maturity, and they do not fully meet user requirements
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and satisfaction [7,19]. Many more research efforts and proposals are needed to bring
innovation, smartness, and user satisfaction to this important problem domain.

In this paper, we develop a pair of smart glasses called LidSonic that uses machine
learning, LiDAR, and ultrasonic sensors to identify obstacles. The LidSonic system com-
prises an Arduino Uno device located in the smart glasses and a smartphone app that
communicates data using Bluetooth. Arduino collects data and manages the sensors on
smart glasses. It also detects objects using simple data processing and provides buzzer
warnings to visually impaired users. The smartphone app receives data from Arduino
and uses machine learning for data processing, detects and identifies objects in the spatial
environment, and provides verbal feedback about the object to the user. Compared to
image processing-based glasses, the proposed LidSonic system requires much less process-
ing time and energy to classify objects because it uses simple data containing 45-integer
readings taken from the LiDAR sensor. We provide a detailed description of the system
hardware and software design, and its evaluation using nine machine learning algorithms.
The data for the training and validation of machine learning models are collected from real
spatial environments.

We developed the complete system, LidSonic, using off-the-shelf inexpensive sensors
and a microcontroller board costing less than USD 80. The intention is to design an
inexpensive, miniature, lightweight, easy-to-use, and green (in terms of computing and
communications) device that can be built into, or mounted on, any pair of glasses or even
a wheelchair to assist visually impaired people. The devices that are based on simple
sensors are unable to provide advanced functionalities. The majority of existing machine
learning-based solutions contain a computer vision approach that requires large storage and
computational resources including large RAMs to process large volumes of data containing
images. This could require substantial processing and decision-making times, and would
consume energy and battery life. It is important to develop simple approaches for the
purpose of providing faster inference and decision-making abilities using relatively low
energy with smaller data sizes. This has been achieved in this work through our novel
approach of using LiDAR data to train the machine learning algorithm. Smaller data sizes
are also beneficial in communications, such as those between the sensor and processing
device, or in the case of fog and cloud computing, because they require less bandwidth and
energy, and can be transferred in relatively short periods of time.

As mentioned earlier, the design space for assistive technologies for the visually
impaired is complex, involving many design parameters requiring many new investigations
to bring novelty, smartness, and user satisfaction. Increased research activity in this field
will encourage the development, commercialization, and widespread acceptance of devices
for the visually impaired. We believe this work will open new directions in smart glasses
design using open software tools and off-the-shelf hardware.

The remainder of this paper is organized as follows; in Section 2, we review related
works in the field of assistive technologies, and tools including academic and commercial
works. Section 3 provides a high-level view of our developed LidSonic system including
user, developer, and system views. The design and implementation of our proposed system
are described in Section 4. Section 5 provides an evaluation of our system. Section 6
concludes the paper and provides future directions.

2. Related Works

This section provides a review of the literature relevant to this paper. We have inten-
tionally provided a detailed literature review because currently no such review is available
in the published literature. Section 2.1 provides a taxonomy of the solutions and tech-
nologies available for visually impaired people. Section 2.2 reviews commercial solutions.
Section 2.3 reviews sensor-based approaches. Section 2.4 discusses computer vision-based
technologies and solutions for the visually impaired. Section 2.5 explores augmented
reality-based solutions. Section 2.6 reviews hybrid system-based approaches. Section 2.7
summarizes the literature review using a table, and establishes the case for this work.
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2.1. Solutions for Visually Impaired: A Taxonomy

Figure 1 gives a taxonomy of solutions and technologies for the visually impaired.
These solutions can be classified using four dimensions: (academic) Research, Commercial
Solutions, Software, and System Aspects. The main technologies in the research literature
are based on sensors, machine learning, hybrid systems, and augmented reality. The
commercial solutions are based on wearables (especially glasses) and white canes. In
software and application development, solutions are dependent on human or external
support, through which the visually impaired are communicating with someone who can
assist them in recognizing and navigating the surroundings, or they are standalone, non-
external support applications that have solutions requiring no external human assistance
(in operations mode). We will address some related works and solutions in the sections
that follow, and then we will make a comparison with the proposed work to establish the
research gap.
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2.2. Commercial Solutions

A variety of creative solutions have recently appeared for visually-impaired and blind
people, providing various functionalities and capabilities that account for a wide spectrum
of visual impairments. Some of the devices in the literature are not meant for visually
impaired or blind users, but they have some functionality or features that can assist them, or
they can be improved or adjusted with further work, such as providing SDK for developers.
Discussed below are some notable commercial wearable tools.

A wearable device called eSight is proposed in [20]. It stimulates synaptic activity
in the rest of the visually impaired eye’s photoreceptor function. The device uses video
feed enhancement algorithms and displays the video in front of the user’s eyes via eSight’s
OLED screens. The cameras improve the footage that beams across two screens instantly,
one in front of each eye. A 21.5 MP camera with a liquid lens and 24× zoom is used for
viewing footage that is both near and far away. The eSight device depends strongly on
magnifying the video. The effect on the persons who are using the eSight device is that
they can read books and street signs, see things from distance, and recognize images of
their peers and family. However, eSight is expensive, priced at USD 5950.

With a price of USD 2950, IrisVision [21] is a Class 1 Medical Equipment Assistive
Technology System licensed and registered by the FDA. It also depends on the technology
of magnifying images or videos by wearing an electronic glass with a VR headset mounted
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on a smartphone. It can magnify up to 14×. The device can be operated through voice
commands. The device also uses optical character recognition (OCR), a feature that enables
it to read texts to users. Orcam [22] is an assistive device that can be mounted to any pair
of glasses. Orcam has several features such as barcode identification, face recognition, color
detection, and product identification, with a price of USD 3500.

As mentioned before, these devices are not affordable to all visually impaired users
because of their high cost. We will now discuss some smart glasses with substantially lower
prices that can be programmed to solve some of the problems that visually impaired people
face. The advantage of using these glasses is that they are available to the public and not to
special cases, so the user may not feel stigmatized.

We begin our discussion on smart glasses with the MAD Gaze glasses [23] that can be
controlled in several ways: hand gestures, voice recognition, smartphones, and tap control
for shortcuts. In addition, an SDK (Software Development Kit) is offered to developers to
make MAD Gaze control easy to access, allowing it to be operated on Android and UNITY
platforms. It is capable of streaming content from mobile phones, tablets, or computers,
which is then viewed on the GLOW glasses. It is equipped with a 5 MP RGB camera, a 5
MP IR detector camera, an infrared light, an IMU 9-axis (accelerometer, magnetometer, and
gyroscope), and an LED indicator. It is priced at USD 529.

ORA-2 Optinvent Smart Glasses [24] is a head-mounted display device, and uses
an augmented reality (AR) display technology. It can operate applications as a stand-
alone wearable computer and can link to the network through WiFi and Bluetooth to
any smart device. The ORA-2 includes a dual-core processor with a GPU, a camera,
sound, a microphone, inertial sensors, WiFi, GPS, Bluetooth, an ambient light sensor, and
a rechargeable battery. With a price tag of USD 790.50, the hardware framework of the
ORA-2 Smart Glasses comes complete with its own customizable Android SDK to build
applications and to fine-tune the user experience.

Vue Smart Glasses [25] come with Bluetooth 4.2, an A2DP profile, and a 10 m range
that is compatible with a wide range of devices. Wireless charging via a case is available
with charging times of up to 2 h. The case is charged through a USB. It also has an infrared
proximity sensor, a six-axis accelerometer and gyroscope, and a five fields capacitive
touchpad. It is compatible with iPhone 5+ running iOS 8+ and Android 4.3+. It uses an
ARM Cortex processor and costs USD 299.

Although the primary aim for Google Glass is to present information for people with
normal vision, its features can be adapted for visually impaired users [26]. For example, the
Google Glass Enterprise Edition has a feature that allows it to request to “see what you see,”
with a live video stream for real-time communication and troubleshooting. This feature
can be helpful for visually impaired users. The device specifications include power-saving
features (on-head detection sensor, and eye-on screen sensor), ruggedization (water and
dust resistant), a weight of about 46 g, a multi-touch gesture touchpad, and an 8 MP
camera [27]. Google Glass is also intended for the developers. The Glass Development Kit
(GDK) is an Android SDK add-on that allows you to create Glassware that runs on Google
Glass. It costs between USD 1062 to USD 1195. Table 1 illustrates the most commonly used
commercial solutions, the sensors used by them, their design methodology, key features,
advantages, and disadvantages.

Table 1. Commercial Solutions.

Product Distinctive Sensors Methodology Features Disadvantages

eSight • Camera

• Improves the view,
magnifies it to up to
24×, directly displays
it on the screen of the
wearable unit.

• Uses video feed
enhancement
algorithms.

• For partially sighted or
low-vision users only.

• Very high cost.
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Table 1. Cont.

Product Distinctive Sensors Methodology Features Disadvantages

IrisVision • Camera

• Depends on the
magnifying
technology of images
or videos (up to 14×).

• Operated by voice
commands.

• Uses optical character
recognition (OCR).

• For partially sighted or
low-vision users only.

• Expensive.

Orcam • Camera • Uses a machine
learning approach.

• Barcode identification.
• Face recognition.
• Colour detection.
• Product identification.

• Alternative solutions are
available in mobile apps
that have the same
functionality.

• Expensive.

MAD GAZE
Glass

• 5 MP RGB Camera
• 5 MP IR Detector

Camera
• Infrared Light
• IMU 9-axis

(Accelerometer,
Magnetometer, and
Gyroscope)

• LED Indicator

• Augmented reality
(AR) display
technology.

• Streams contents from
mobile phones, tablets,
or computers.

• Views content on
GLOW glasses.

• Controlled by gesture of
hands, voice recognition,
smartphone, or shortcut
tap control.

• SDK offered to
developers.

• Can operate on Android
and UNITY.

• Not designed specifically
for visually impaired or
blind users.

• Some of its
functionalities are useful
and suitable but some
others are not.

• Expensive.

ORA-2
Optical Smart
Glass

• Camera
• Inertial sensors
• GPS
• Ambient light sensor

• Augmented reality
(AR) display
technology.

• Operates applications as
a stand-alone wearable
computer.

• Connects via WiFi.
• Connects to any smart

device via Bluetooth.
• Customizable

Android SDK.

• Not designed specifically
for visually impaired or
blind users.

• Some of its
functionalities are useful
and suitable but some
others are not.

• Expensive.

Vue Smart
Glass

• Infrared proximity
sensor

• Six-axis accelerometer
• Gyroscope

• Stream audio and
voice from/to
smartphone.

• Bone conduction
volume.

• Gesture control.
• Handsfree device.

• Expensive.

Google Glass

• Camera
• On head detection

sensor
• Eye-on screen sensor

• Presents information
which can be viewed
in front of the
users’ eyes.

• GDK for developers to
run an application using
the glass.

• Handsfree device.

• Not designed specifically
for visually impaired or
blind users.

• Some of its
functionalities are useful
and suitable but some
others are not.

• Expensive.

2.3. Sensors-Based Approaches

Sensors are the key organs of sensory technical systems. They collect knowledge
regarding environmental factors as well as non-electrical system parameters, and they
provide the findings as electrical signals. With the development of microelectronics, it is
possible for sensors to be compact devices with low costs and a wide range of applications
in different fields, especially in control systems [28].

A lot of research and studies have focused on obstacle detection due to its significance
for the visually impaired, as they consider it to be a major challenge for them. An ETA
is proposed in [19] that depends on a microwave radar to detect obstacles up to the head
level, due to the vertical beam of the sensor. To overcome the issue of power consumption,
they switch off the transmitter during the listening time of the echo. In addition, they also
adapt the pulsed chirp scheme to manage the spatial resolution.

When we talk about navigation, we may notice that it is divided into two main
categories, internal and external navigation, because the techniques used in each one are
different from one another. For example, Global Positioning System (GPS) is not suitable for
indoor localization, due to satellite signals becoming weak and unable to determine if one
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is close to a building or a wall [29,30]. However, some studies have developed techniques
that are applicable to both.

Al-Madani et al. [29] adopted a fingerprinting localization algorithm with fuzzy
logic type-2 to navigate indoor rooms with six BLE (Bluetooth Low Energy) beacons.
The algorithm calculation is done through the smartphone. They achieved 98.2% indoor
navigation precision and accuracy of about 0.5 m on average. Jafri et al. [31] have benefited
from the Google Tango Project to serve the visually impaired. It utilizes the UNITY engine’s
built-in functionalities in the Tango SDK to build a 3D reconstruction of the local area,
then it connects a UNITY collider component with the user and uses it to determine its
relationship with the reconstructed mesh to detect obstacles. Gearhart et al. [32] proposed
a technique to find the position of the detected object using triangulation by geometric
relationships to scalar measurements. They placed two ultrasonic sensors, one on each
shoulder, angled towards each other at five degrees from parallel, with a space of 10 inches.
However, this technique is too complex to be applied using several objects in front of
the sensor.

A significant amount of research in the field of detecting objects has depended on
ultrasonic sensors. Tudor et al. [33] proposed a wearable belt with two ultrasonic sensors
and two vibration motors to direct a visually impaired person away from obstacles. They
used the Arduino Nano Board with an ATmega328P microcontroller to connect and build
their system. Based on their investigations, the authors in [34] found that ultrasonic
sensors and vibrator devices are easily operated by Arduino Uno R3Impatto Zero boards.
Noman et al. [35] proposed a robot equipped with several ultrasonic sensors and Arduino
Mega (ATMega 2560 processor) to detect obstacles, holes, and stairs. However, the robots
may be utilized in indoor environments, but it is not practical to be used outdoors. Razu
and Sanwar [36] present a low cost, low power, and low latency model for detecting
obstacles by using three ultrasonic sensors built on the glass. When an obstacle reaches the
blind person within 5 m of the range, the sensors measure the distance from the obstacle
and transmit the value to a microcontroller (ATMega328P). However, this model cannot
recognize objects and it cannot detect ground level objects.

An infrared (IR) sensor is an electronic device that monitors and senses the infrared
radiation in its surroundings [37]. It is an eye-safe light, which emits pulses, and measures
the time it takes for light to be reflected in order to calculate the distance. Every metric of
IR consists of thousands of separate pulses of light that can lead to a reliable measurement
in the rain, snow, fog, or dust, and can be obtained using an infrared sensor, but is difficult
for cameras [9]. In addition, IR has a long range in both indoor and outdoor environments,
it has high precision, a small size, and low latency. An IR sensor can detect up to 14 m, with
a 0.5 resolution, and 4 cm accuracy [2]. IR has a medium width among ultrasonic and laser
sensors. The laser has a rather narrow scope and it attracts very narrow space information,
which is not large enough for free paths. On the other hand, ultrasonic sensors have many
reflections, so they are limited [38]. This research [39] suggests a smart walker with an
admittance controller for driving visually impaired people along a specified track. The
controller leverages the user’s physical engagement with the walker as input to give haptic
feedback that indicates the path to be taken.

2.4. Computer Vision-Based Approaches

The phrase “assistive technologies” refers to equipment designed to help those who
are vulnerable. As life expectancy and the global population continue to rise, the need
for the development and availability of more advanced assistive technologies that allow
vulnerable people to live secure and controlled lives, while actively participating in society
at a lower assistive cost, is becoming an increasingly pressing issue [40]. It is proposed that
as AI capabilities improve, a major part of the demands for assisted navigation software for
the visually impaired and AI-equipped moving devices, would converge [41]. Computer
science has played a crucial part in the evolution of human activity, providing tools that
solve issues in a variety of fields [42]. The goal of computer science is to collect mean-
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ingful data from the world in which humans interact, so that mathematical, statistical, or
quantitative models may be created to represent human senses and natural processes [43].
Computer vision is one such technology that represents human vision and improves and
facilitates some important needs such as mobility, orienting, object recognition, face recogni-
tion, emotion recognition, and color recognition [42]. Ranaweera et al. [7] propose a method
to measure the distance between the objects and the subject (disabled) by measuring the
differences between two images taken by two front cameras. The normal processing time
for the system is 7 to 8 min, which is prohibitive in real applications. To overcome this,
they work on the camera in its video mode, but the processing time remains high (5 to
10 s), which does not meet the requirements of the application to have immediate feedback.
To address this, they use parallel processing to achieve higher calculation speeds and
low image processing times. Audio feedback is used in their system. Their system has
another feature, a GPS, to locate the user’s location and navigate them with directions to
the selected destination. The user position is monitored using GPS, and the coordinates are
incorporated with the Google Maps API to get the current location address. Another feature
implemented is to give addresses to a selected location around the user’s current location.

Gutierrez-Gomez et al. [44] estimate walking speed from the frequency of body oscil-
lation using a single camera that can be worn on the head (helmet in their experiment) or
chest level. Through this process, they estimate a map and visual audiometry. However,
smartphone-based computer vision systems could be slow, since capturing images, pro-
cessing them, and generating feedback signals could take time [16,45]. Devices that use
image recognition methods also need to find some kind of symbol or object and aim at
them with a camera, which is not possible for the visually impaired [29]. The method of
detecting road sign characters on the road was investigated by Kim in [46].

The camera is utilized to gain various functionalities, and is used in different technol-
ogy solutions, using machine learning algorithms such as face recognition, object recogni-
tion, and localization. Research has used various kinds of cameras. The most used were
the common camera and RGB-Depth camera [47,48]. The common camera is used mostly
for face, emotion, and obstacle recognition. On the other hand, the RGB-D camera has
been used for detection, avoiding obstacles, and mapping, to assist in navigation for indoor
environments. A depth image is an image channel in which each pixel is related to a
distance in the RGB picture between the image plane and the respective point. Adding
depth to standard color camera techniques increases both the precision and density of
the map.

Lee and Medioni [49] present an innovative indoor navigation system for the visually
handicapped based on a wearable RGB-D camera. The technology directs a visually
challenged person from one point to another without the assistance of a map or GPS. For
such a system, an accurate real-time ego-motion estimate, mapping, and path planning in
the face of barriers are required. To decrease drift from a head-mounted RGB-D camera, we
conduct real-time 6-DOF ego-motion estimates by utilizing sparse visual data, dense point
clouds, and the ground plane. For efficient traversability analysis, the system also generates
a 2D probabilistic occupancy grid map, which serves as the foundation for dynamic path
planning and object tracking. While traveling, the system may retain and reload maps
created by the system, as well as continuously increase the navigation coverage area. Based
on the traversability result obtained, and the shortest path, the system provides a safe and
efficient waypoint and updates it as the user is moving. To lead the visually impaired person
through the waypoint, appropriate cues are created and delivered to a tactile feedback
system. A head-mounted RGB-D camera, a normal laptop running navigation software,
and a mobile are the equipment used for the system. The system computations, on the
other hand, are performed on a user-carried laptop that has difficultly bearing weight.
The authors [50] developed a smart glass system for visually impaired individuals that
use computer vision and deep learning models, as well as acoustic feedback and tactile
graphics, to enable autonomous mobility in a dark environment. As a result, the system
was created to help use a two-branch exposure-fusion network and to improve picture
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contrast in low-light circumstances, guiding users with messaging using a transformer
encoder–decoder object detection model, and accessing visual information using salient
object extraction, text recognition, and refreshable haptic display.

Bauer et al. [51] center their strategy on non-intrusive wearable gadgets that are also
low-cost. First, a depth map of the scene is calculated from a color picture, providing 3D
information about the surroundings. The semantics of the things in the scene are then
detected using an urban object detector. Finally, the three-dimensional and semantic data
are condensed into a more straightforward picture of the various roadblocks that users
may face. The user receives this information in the form of verbal or haptic feedback.
The mean accuracy is around 87.99 percent when detecting the presence of obstacles.
This research [52] offers an artificial intelligence-based, autonomous, assistive device that
recognizes various things, and provides aural input to the user in real-time, allowing the
visually impaired individual to comprehend their environment. Multiple images of objects
that are extremely relevant to the person with the visual disability are used to build a
deep-learning model. To improve the resilience of the learned model, training images are
enhanced and manually labeled. A distance-measuring sensor is included, in addition to
computer vision-based object identification algorithms, to make the gadget more robust by
identifying barriers when moving from one location to another. The design of a worn vision
aid system seems promising, thanks to developments in cameras and computer vision.

Jiang et al. [53] propose a wearable solution to enhance the standard of living for
visually impaired people. In actuality, a range of complicated variables impact the operation
of visual sensors, resulting in a huge amount of noise and distortion. In this study, picture
quality evaluation is used to creatively pick collected photos using vision sensors, ensuring
the scene input quality for the final recognition system. They employ binocular vision
sensors to acquire images at a set frequency and then they choose the most useful photos
using a stereo image quality evaluation. The collected photos will then be uploaded to
the cloud for processing. All of the received photos will be subjected to detection and
automated results. At this stage, a convolutional neural network based on huge data will
be deployed. According to image analysis, cloud computing can provide consumers with
the needed information, allowing them to make more rational decisions in the future.

2.5. Augmented Reality

Nowadays, mobiles can evaluate 3D space motion accurately since the development
of computer vision algorithms and artificial intelligence technologies. To aid visually
impaired users with sign-reading, the authors in [54] created an innovative software
program that runs on a common head-mounted augmented reality (AR) device. The
sign-reading assistant recognizes real-world text on demand, marks the text position,
transforms it to high contrast AR letters, and can optionally read the contents out through
text-to-speech. Tactile maps and diagrams are commonly utilized as an accessible graphical
medium for persons with sight problems, especially in educational settings. They may be
made more interactive by adding audio feedback. However, creating audio–tactile visuals
with rich and realistic tactile textures is difficult. To address these issues, the authors in [55]
present a novel augmented reality technology that allows novices to easily and rapidly add
auditory feedback to real-world items.

The authors in [56] assist users with visual difficulties, navigating around indepen-
dently by detecting pre-defined virtual routes and supplying context information, thus
bridging the gap between the digital and real worlds. They propose ARIANNA+, an
expansion of ARIANNA, a system for interior and outdoor localization and navigation,
specifically built for visually impaired persons. While ARIANNA assumes that landmarks
such as QR codes and physical paths (made up of colored tapes, painted lines, or tactile
paving) are placed in the surroundings and identified by a phone’s camera, ARIANNA+
does not require any physical assistance due to the ARKit library, which is used to make a
fully virtual path. ARIANNA+ also allows users to have more interactive engagements
with their surroundings, thanks to convolutional neural networks (CNNs) that are trained



Electronics 2022, 11, 1076 10 of 34

to detect objects or buildings, and which provide access to material related to them. ARI-
ANNA+ uses augmented reality and machine learning to improve physical accessibility
by utilizing a common mobile phone as a mediation device with the environment. By
loading a pre-recorded virtual path, and giving automated guidance along the route via
tactile, voice, and audio feedback, the suggested system allows visually impaired persons
to navigate both indoor and outdoor environments comfortably.

2.6. Hybrid Systems

A hybrid system is a system that includes sensors technology combined with computer
vision technology. Bai et al. [47] proposed a multi-sensor, fusion-based, obstacle avoiding
algorithm that utilizes both an RGB-D camera and an ultrasonic sensor to detect small
and transparent obstacles. They used RGB-D sensors to provide rich details, with their
low cost and good miniaturization. The RGB-D cameras provide both a dense range of
active sensory information, and color information from the passive sensor, similarly to a
standard camera. The sensor camera combines range information with color information
to extend the floor segmentation to the whole scene for detailed detection of the obstacles.
Nevertheless, the research is focused on mobility in the indoor environment alone.

Zhu et al. [57] proposed a dog guide robot, wheelchair robot, and portable robot as
assistants for visually impaired people. The robots are equipped with ultrasonic sensors
and cameras. The robots help in identifying obstacles, recognizing traffic lights, and moving
vehicles when crossing the streets. To overcome the calculation performance overhead,
they embedded their system with a Neural Compute Stick. They used the cloud to utilize
speech recognition. They benefited from fog architecture to achieve a higher performance.
However, the drawback of the design is the number of devices that need to communicate
with each other in a disjointed manner. In addition, it is not practical to use the moving
device for guidance especially in congested areas, or areas where it is not suitable for
mobile devices (e.g., a staircase). Another use of fog architecture has been proposed
by Perakovic et al. [58] which is to provide real-time information services about indoor
facilities. Gowda et al. [59] suggested an assistive technology solution for visually impaired
people that uses the Internet of Things (IoT), machine learning, and embedded technologies,
to enable them to navigate from one area to another without relying on someone else. They
developed a stick that not only allows the users to detect the item and do different tasks
such as walking, maneuvering a crowd, etc., but it will also inform them of the objects in
front of them. However, a short response time was the constraint.

We discuss Simultaneous Localization and Mapping (SLAM) here in the hybrid sys-
tems category because SLAM is fundamental to robotics and similar applications, it uses
heterogenous (i.e., link with hybrid systems) technologies, and today, it has progressed to
very advanced levels due to its importance in many applications. SLAM is used to create a
map of the local area and to locate the visually impaired person inside a map. Many SLAM
techniques have been suggested for use with numerous sensors such as sonar sensors, laser
scanners, and cameras to gain a 2D image of the unknown area [60].

2.7. Research Gap

Table 2 summarizes different aspects of the discussed solutions in this section, in-
cluding technology, environment, transparent object detection, handsfree, functioning
in the dark, machine learning usage, vocal feedback, high-speed processing, low energy
consumption, and low cost. The technologies employed by the individual works are listed
within their respective rows in Column 2. In Column 3, we mention the work environments,
(i.e., whether they were indoor or outdoor). The studies were then checked to determine
if the devices could identify transparent objects. We examined whether or not the device
is handsfree. It is crucial to know whether the research could be operational at night, and
this is recorded in Column 7. We also listed whether or not the study was undertaken
using machine learning techniques. We also looked into types of feedback and whether
or not they used vocal feedback. We also checked processing speed because we require
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real-time and swift processing of data. Whether the device has a low energy usage is also
covered. We also looked for cost-effectiveness and whether the device is low cost. We also
investigated whether the listed solutions use low memory, and their weights.

Table 2. Summary of the relevant works and a comparison with the proposed method.
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[61] SONAR X X X X X X X 7 7 X 7 X

[62] Camera, Unity3D, ARCore X X 7 X 7 X X 7 7 7 7 7

[63] TF-mini LiDAR 7 X X X X 7 7 X X X X X

[64] URG-04LX LiDAR X X X X X 7 X X X 7 X X

[19] Short-Range Radar X X X 7 X 7 7 X X X X X

[65] Fisheye Depth Camera, Ultrasonic X 7 X X X 7 X 7 7 7 X X

[29] BLE (Bluetooth beacons), RSSI X 7 X X X 7 X 7 7 X X X

[2] Array of LiDARs X X X X X 7 7 X 7 7 X 7

[10]
RFID, Ultrasonic, Gyroscope,

GSM, GPS,
Wet Floor Sensor

X X X 7 X 7 X 7 7 X X X

[18] Long/Short Range LiDAR,
UWB, Ultrasound X X X 7 X 7 X 7 7 7 X 7

[17] Ultrasonic, Infrared,
Camera, Mobile X X X 7 X 7 X X X X X X

[66] Ultrasonic, Rear Mobile Camera X X X 7 X X X 7 7 X 7 X

[59] RGB Senor, IR, Camera X X 7 7 X X X 7 7 X 7 X

[67] Fisheye Camera, Ultrasonic X X X X X X 7 7 7 X 7 X

[50] Smart Glass, Phone, Refreshable
Braille display X X X X X X X 7 7 7 7 X

[68] RGB-D Camera, Inertial
Measurement Unit, Smartphone X X 7 X X X X 7 7 X 7 X

This Work TF-mini LiDAR, Ultrasonic XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

Different studies contributed to, and met the requirements of, some of the required
features for this system design. The study in the first row addressed most of these features,
except for high-speed processing, low energy consumption, and low memory utilization.
The solution in the second row worked in both indoor and outdoor settings, is handsfree,
employs machine learning, and delivers verbal feedback; however, the remainder of the
features, such as transparent object detection, night functioning, high-speed processing,
low energy consumption, low cost, low memory usage, and low weight, are not fulfilled
by this work. Our work attempts to satisfy all these aspects of system design. We under-
stand that additional system optimizations and evaluations are needed to claim maturity
and robustness.

The literature review presented in this section establishes that the design space for
assistive technologies for the visually impaired is complex, involving many design parame-
ters including reliability; usability; functioning in indoor, outdoor and dark environments;
transparent object detection; handsfree operations; high-speed real-time operations; low
battery usage and energy consumption; low computation and memory requirements; low
device weight; and price affordability. The works that were based on simple sensors are un-
able to provide advanced functionalities. The majority of existing machine learning-based
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solutions contain a computer vision approach that requires large storage and computational
resources, including large RAMs to process large volumes of data containing images. This
could require substantial processing and decision-making times, and would also consume
energy and battery life.

We developed the complete system, LidSonic, using off-the-shelf inexpensive sensors
and a microcontroller board costing less than USD 80. The intention is to provide the design
of an inexpensive, miniature, lightweight, easy-to-use, and green (in terms of computing
and communications) device that can be built into, or mounted on, any pair of glasses or
even a wheelchair to assist visually impaired people. It is important to develop simple
approaches for the purpose of providing faster inference and decision making, using
relatively low energy with smaller data sizes. This has been achieved in this work by our
novel approach of using LiDAR data to train the machine learning algorithm. Smaller data
sizes are also beneficial in communications, such as those between the sensor and processing
device, or in the case of fog and cloud computing, because they require less bandwidth and
energy, and can be transferred in relatively shorter periods of time. Moreover, our system
does not require a white cane, and therefore, it allows handsfree operation.

3. LidSonic System: A High-Level View

Before we delve into the details of the system design in the next section, this sec-
tion gives an overview of the user, developer, and system views of the LidSonic system
presented in Section 3.1, Section 3.2, and Section 3.3, respectively.

3.1. User View

Figure 2 lists the steps a user takes to set up and use the LidSonic smart glasses. The
user puts on the glass frame in which the LidSonic device is mounted. Note that LidSonic
can be sold as an inexpensive miniature device that can be a built-in device within a pair of
smart glasses, or it could be sold as a device that can be mounted on any pair of glasses to
help the visually impaired. The user downloads the LidSonic smartphone app and installs
it on the smartphone. The LidSonic mobile app and the LidSonic device are connected to
each other using Bluetooth. LidSonic is expected to be trained extensively using indoor and
outdoor environments. The user walks around in indoor and outdoor environments that
enable further training and validation of the LidSonic device. Moreover, a family member
or a helper of the visually impaired person can walk around and retrain and validate the
device as needed.
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Figure 2. The steps a user takes to setup and use LidSonic.

The device contains a warning mechanism for any obstacles that the user may en-
counter. A buzzer alert will sound when the user comes across an obstacle. Furthermore, the
system may alert the user of an obstacle by providing verbal feedback such as “descending
stairs”. The user can also hear the result by tapping the prediction mode screen.

A user, or her/his helper, can also label or relabel an obstacle class and generate a
dataset using voice instructions. This allows validation and refinement of the machine
learning model by, for instance, correcting the label of an object if it was classified wrongly.
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3.2. Developer View

Figure 3 gives an overview of the process that the developer follows to build the
LidSonic system. The LidSonic system comprises the LidSonic device that is mounted on
the smart glasses and the mobile app. The development process comprises six steps that
are building the LidSonic Device, beginning with the LidSonic smartphone app, the dataset,
developing and training the machine learning models using the dataset, validating the
models using numerical metrics, and device testing in the operations mode.
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Figure 3. The steps a developer takes to build and test the LidSonic system.

The LidSonic device was created by attaching a LiDAR sensor, an ultrasonic sensor,
a servo, a buzzer, a laser, and Bluetooth to an Arduino Uno CPU. Then, we used an
Arduino sketch to integrate and manage the various hardware (sensors and actuators)
and the communication between them. We utilized Android Studio to create the LidSonic
smartphone app (LidSonic). For dataset creation, we developed the dataset module. Then,
the machine learning module was developed, which uses the Weka library integrated into
the system. The connection between the LidSonic device and mobile app is established
through Bluetooth, which is used for the data to be transferred between the device and
app. The speech module is created using the Google Speech-to-Text and Text-to-Speech
APIs (we used the free API service with limited functionality, the paid service allows
enhanced functionalities).

The developer put on the LidSonic device and walked around diverse areas with
diverse layouts and objects to generate the dataset. The LidSonic device transmitted
sensory data to the LidSonic smartphone app, so that it could label obstacle data and create
a dataset. Then, we used several classifiers to train the dataset in order to discover the
best classifier. The classifiers include Naive Base, SMO, KStar, RFC, RC, LB, FC, ASC, and
IBk. We utilized the following metrics to validate our findings: Kappa, TP rate, Correctly
Classified, Precision, and Confusion Matrix. The KStar classifier provided the best results
in our experiments. The developer put on the trained LidSonic device and walked around
to test the trained device in operations mode. In addition, the developer monitored the
system’s buzzer and verbal feedback. To improve accuracy and precision, the dataset can
be extended and rebuilt by the developers, users, or their helpers.

3.3. System View

Figure 4 depicts a high-level view of the LidSonic system. LidSonic senses the en-
vironment through multiple sensors, processes the information using multiple channels
or methods, and provides buzzer warnings and verbal information about the perceived
dangers. The sensors managed by the Arduino Uno controller unit provide the necessary
data to perceive the environment and provide feedback to the visually impaired. The
data processing happens using two separate channels or methods. First, processing the
ultrasonic and basic LiDAR data using simple logic via the Arduino unit for fast processing
and feedback through a buzzer. Second, is the processing of LiDAR data using machine
learning via the smartphone app that provides verbal feedback. These two channels are
independent of each other. We will elaborate on this system view using detailed diagrams
and algorithms in the following sections.
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4. LidSonic System: Design and Implementation

This section provides details of the LidSonic System design. Section 4.1 gives details of
the hardware components and design. Section 4.2 gives an overview of the software design
of the system. Sections 4.3–4.6 describe the four main software modules of the LidSonic
system, which are the Sensors Module, Dataset Module, Machine learning Module, and
Voice Module, respectively.

4.1. Hardware Design

In this subsection, we give an overview of the LidSonic hardware design. Details will
be given in later sections. Figure 5 shows a picture taken of the LidSonic device containing
the smart glasses with the sensors attached, and the Arduino Uno board.
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Figure 6 depicts a hardware view of the proposed LidSonic system. The system
comprises the LidSonic device (shown in the bottom rectangular block of the figure) and
the LidSonic app (shown in the upper block of the figure). The LidSonic device contains an
HC-SR04 ultrasonic sensor, TFmini-s LiDAR, laser, servo, and Bluetooth that is connected
with an Arduino Uno board and can be mounted into a glass frame. These sensors are
low-priced, easy to use, compact, and can be used in the consumer products industry.

The Arduino Uno microcontroller unit serves as the LidSonic device’s brain, is used to
integrate and manage the sensors and actuators, and to communicate the data collected
from the sensors to the smartphone app through Bluetooth. It is programmed to regulate
the interactions between servo movements, sensors, and other components.
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The LiDAR Unit block shown at the bottom of the LidSonic device is composed of
TFmini-s LiDAR, a servo, and a laser, attached together. The laser beam is mounted above
the TFmini-S LiDAR and serves to show us where the LiDAR is pointing to so that we can
scan and classify different kinds of objects to create a proper dataset. The TFmini-S LiDAR
collects data from its spatial environment and these data are sent to the Arduino unit.
Some of these data are used by Arduino to detect objects and sound the buzzers as needed,
whereas other data are sent to the smartphone app through the Bluetooth connection (it
will be explained in Section 4.3). Both the TFmini-S LiDAR and the laser are held by the
servo that is used to control the movement of the two devices.

The ultrasonic sensor can detect many types of obstacles. It is also used to compensate
for the shortcomings of the TFmini-s LiDAR by detecting transient obstacles that exist
in the path of the visually impaired. The ultrasonic sensor detects objects at 30 degrees
and within 0.02–4 m of the detector range. This information from the ultrasonic sensor
is analyzed by the Arduino unit and the buzzer is activated if an object is detected. The
buzzer is used to alert visually impaired users with different tones for different types of
objects detected by the sensors. The Arduino CPU controls the buzzer activation and sound
frequencies or tones based on the detected objects.

The hardware used for the smartphone app includes a microphone for user instruc-
tions, Bluetooth for interacting with the LidSonic device, and speakers for verbal feedback
about the detected objects. In the rest of this subsection, we give some details of the LiDAR
(Section 4.1.1) and ultrasonic sensors (Section 4.1.2).

4.1.1. TFmini-S LiDAR

A LiDAR is made of a laser diode that emits a light pulse. The light reaches, and is
reflected by, an object. The reflected light is detected by a sensor and the time of flight (ToF)
is defined. The TF-mini-S device is based on the OPT3101 and is a Benewake-produced
single-point short-range LiDAR sensor with impressive performance [69]. It depends on
ToF-based long-range proximity and distance sensor analog front end (AFE) technology [69].
A TFmini-S LiDAR uses the networking protocol UART (TTL)/I2C, it can be supplied with
the standard 5 V, and its total power consumption is 0.6 w.

The TFmini-S LiDAR has a high refresh rate of 1000 Hz, and it ranges in size between
10 cm to 12 m. It has an accuracy of ±6 cm between 0.1 m to 6 m, and ±1% between 6 m to
12 m. The operating temperature range is approximately between 0 ◦C to 60 ◦C. The angle



Electronics 2022, 11, 1076 16 of 34

range is 3.5◦ [70]. TFmini-S LiDAR data can be gathered rapidly and with great precision.
The LiDAR does not have any geometry distortions and can be used at any time of day
or night [70]. The sensor sends a value of 65,535 when no object is detected within the
12 m range.

To meet different requirements, the TFmini-S has the advantages of being low cost,
having a small volume, low energy consumption, and multiple interfaces but has the
disadvantage of not detecting transparent objects such as glass doors (we used an ultrasonic
sensor to compensate for it). The outdoor efficiency and accuracy of various reflectivities are
enhanced; it can detect stable, accurate, sensitive, and high-frequency ranges. The research
on using LiDAR for aiding the visually impaired and understanding their requirements
is limited. The devices for assisting the visually impaired use a comparatively costly
Linux-based LiDAR [71].

4.1.2. Ultrasonic Sensor

One of the finest instruments to use for detecting obstacles is an ultrasonic sensor
because of its low cost, low power consumption, its sensitivity to virtually all sorts of
artifacts [28], and the ultrasonic waves can be transmitted up to a distance of 2 cm to 300 cm.
Moreover, ultrasound sensors can detect objects in the dark, dust, smoke, electromagnetic
interference, toxic, and other tough atmospheres [72].

An ultrasonic sensor emits and receives ultrasonic pulses through a transducer, which
conveys information concerning the distance between an object and the sensor. It uses
a single ultrasonic unit for sending and receiving signals [73]. The HC-SR04 ultrasonic
sensor has an effectual angle of <15◦, a resolution of 0.3 cm, an operating frequency of
40 kHz, and a measuring angle of 30◦ [33]. The range limit of the ultrasonic sensors is
degraded when reflected from smooth surfaces, when it beams with low incidence, and
when it narrowly opens. Optical sensors, however, are not affected by these problems.
Nevertheless, the optical sensors’ weaknesses are sensitive to natural ambient light and
they rely on optical features of the object [19]. Sensors are commonly used in industrial
systems for calculating both the distance and flow velocity of objects. ToF is the length
of time taken for an ultrasonic wave to be broadcast from the transmitter to the receiver
after it is reflected by the object. The distance from the transmitter can be measured using
Equation (1), where c is the velocity of the sound [74].

d = [c × (ToF)]/2 (1)

Ultrasonic sensors outperform IRs (infrared sensor) and lasers. Infrared sensors cannot
function in a dark environment and they provide inaccurate results in the absence of light.
The laser sensor cannot be adapted because they are unsafe for people; it can harm the
skin and eyes [34]. However, there are fundamental disadvantages that limit the utility
of ultrasonic devices in mapping, or other tasks that require high precision in indoor
environments. They are lower in range, wide beam coverage, latency, update rates, and
reliability (due to sonar cross-talk) [2]. Moreover, ultrasonic range calculations fail if the
obstacle surface is inclined (i.e., surfaces formed in triangles or rough edges) because the
receiver senses an undetectably low volume of the reflected energy [75].

4.2. Software Design

The LidSonic system comprises the LidSonic Smartphone App (we use the terms
smartphone app and mobile app interchangeably) and the LidSonic device. Figure 7
depicts a high-level view of the software design of the LidSonic system that is composed of
four main modules: the Sensors Module, Dataset Module, Machine Learning Module, and
Voice Module. The Sensors Module is located in the LidSonic device and contains software
that comprises and manages the sensors (LiDAR and ultrasonic sensors) and actuators
(servo and laser beam). This module is also responsible for the basic logical processing of
sensors’ data to provide buzzer warnings when objects are detected. The Dataset Module
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is located in the smartphone app, and is responsible for collecting data from the LidSonic
device and properly storing the dataset, including the labels of the data items.
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The Machine Learning Module is located in the smartphone app and provides model
training, inference, and evaluation capabilities. The Voice Module uses two Google APIs.
The Text-To-Speech API is used to provide audio feedback from the smartphone app, such
as providing verbal feedback through mobile speakers about nearby objects detected by
the sensors. The Speech-to-Text Google API is used to convert voice commands from the
user, and to be analyzed by the app for taking appropriate actions, such as labelling and
relabeling data items.

Algorithm 1 gives the Master algorithm. The input of the Master algorithm is the array
VoiceCommands that contains various commands that are given to the LidSonic System.
These commands are Label, Relabel, VoiceOff, VoiceOn, and Classify. The Label and Relabel
voice commands are verbally given to the system by the user to Label or Relabel an object
detected by the system (we will discuss this in Section 4.4, which explains the Dataset
Module). The commands VoiceOff and VoiceOn are used to turn the voice commands on
and off in case the user wishes to only use the buzzer sound that informs them when an
object is nearby, as opposed to listening to the names of all the objects being classified in
the surrounding environment. The voice command Classify is used by the user when the
user wishes to classify a particular object; this command can be used by the user when
the verbal feedback has been turned off. The outputs of the Master algorithm are LFalert,
HFalert, and VoiceFeedback, which are used to alert the user about different kinds of objects
using a buzzer or verbal command (this will be discussed in Section 4.3 which explains the
Sensors Module).

Algorithm 1: The Master algorithm: LidSonic

Input: VoiceCommands [Label, Relable, VoiceOff, VoiceOn, Classify]
Output: LFalert, HFalert, VoiceFeedback

1. ServoSensorsModuleSubSystem (Angle, Position)

2. LaserSensorsModuleSubSystem ( )

3. UD2O← UltrasonicSensorsModuleSubSystem ( )

4. [LD2O, LDO]← LiDARSensorsModuleSubSystem ( )

5. FeedbackType← ObsDetWarnSensorsModuleSubSystem ( )

6. Dataset← DatasetModule (LDO, Label, Relable)

7. [MOL, VoiceCommands]←MachineLearningModule (Dataset, VoiceCommands)

8. VoiceModule (VoiceCommands, VoiceFeedback)
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The Master algorithm shows that the LidSonic system runs different modules and
subsystems for its various functions. These include the ServoSensorsModuleSubSystem, a
subsystem of the Sensors module, which takes the angle and position as inputs to determine
the servo starting position and motion, and to control the position of the LiDAR sensor;
the LaserSensorsModuleSubSystem, which shows the position that the LiDAR is targeting
(this is for development purposes only, and helps the developer to know the object being
scanned by the LiDAR); the UltrasonicSensorsModuleSubSystem, which returns the data
output from the ultrasonic sensor, “UD2O” (user’s distance to object computed based on
the data from the ultrasonic sensor); the LiDARSensorsModuleSubSystem, which returns
two outputs from the LiDAR sensor, “LD2O” (user’s distance to object computed based on
the data from the LiDAR sensor) and “LDO” (LiDAR data object that contains detailed data
about the objects); the ObsDetWarnSensorsModuleSubSystem, which detects objects and
warns the user about the detected objects using buzzers and voice feedback by returning
“FeedbackType”; DatasetModule, which takes “LDO”, “label”, and “relabel” as inputs,
and returns the labelled “Dataset”; the MachineLearningModule that takes “Dataset” and
“VoiceCommands” as inputs, and returns “MOL” (object level, below the floor or above
the floor) and “VoiceCommands”; and the VoiceModule that takes VoiceCommands and
VoiceFeedback as inputs and converts speech to text and vice versa. All four modules, the
inputs, and outputs will be explained in the upcoming sections using additional algorithms,
figures, and text.

4.3. Sensors Module

Figure 8 depicts how the LidSonic pair of glasses views the environment using ultra-
sonic and LiDAR sensors. The blue lines show the area covered by the ultrasonic sonic
pulse to detect any obstacles in front of the user. The ultrasonic sensor has a built-in range
of 30 degrees as shown in the figure. It can also identify obstacles that are transparent, such
as glass doors or glass walls that may not be detected by LiDAR.
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The LiDAR sensor range is shown using lines in green. The range of the LiDAR sensor
is 10 cm to 12 m. Using a servo motor that moves the LiDAR sensor, we cover an area of
45 degrees in front of the user, and this translates to an area, “m”, in meters on the floor.
For a user with a 1.7 m height (ignoring that the glasses are at eye level, not at head level)
the floor area,“m”, covered by the LiDAR sensor would be approximately 1.9 m. The figure
also shows the floor area “n”, which is the floor area nearest to the user that is not covered
by the LiDAR sensor because we have deliberately disabled this area to avoid false alarms



Electronics 2022, 11, 1076 19 of 34

potentially caused by the knee of the user when walking. For a user with a 1.7 m height,
the floor area nearest the user would be approximately 0.15 m. Note that any descending
stairs can be detected by the LidSonic system using the LiDAR sensor within this “m” floor
area. Longer lengths of floor and front areas can be covered by using degrees greater than
45 with the LiDAR Sensor.

Note that the range covered by the LiDAR beam is 3.5 degrees, and therefore, it
actually covers an area of 45 plus 3.5 degrees, and 1.7 degrees on the upper and lower sides
of the beam. This is shown in the figure using the dotted lines (45 degrees covered area)
and the hard lines (45 degrees plus 1.7 degrees on the upper and lower sides).

Figure 9 shows the obstacle detection and warning subsystem in action. The LidSonic
tool analyzes data from an ultrasonic sensor (UD2O is Distance to Object detected by the
ultrasonic sensor) and, if it falls below a threshold of 0.5, a buzzer with a low frequency
alarm, LFalert, is activated. The LidSonic gadget also examines the LiDAR sensor’s nearest
point reading (LD2O is the D2O detected by the LiDAR sensor), and if it is higher than
the floor, the LFalert is triggered, indicating that the obstacle might be a high obstacle, a
bump, and/or climbing stairs, and so on. However, if it is below the floor, impediments
such as falling stairs and/or holes are present, and a high-frequency alarm HFalert buzzer
tone is activated, then the ML Module provides Voice feedback to the user based on the
projected obstacle type. The predicted value is converted to MOL (Object Level detected by
the ML Module). If the predicted value type is an object above the floor, then the buzzer is
activated with LFalert, otherwise, the HFalert buzzer is activated.
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The algorithm for the obstacle detection, warning, and feedback subsystem is shown
in Algorithm 2. It accepts inputs, including ultrasonic data (UD2O), nearby LiDAR distance
reading (LD2O), and the object level computed by the machine learning module (MOL).
The ObsDetWarnSensorsModuleSubSystem function analyses the data for detection and
outputs the appropriate audio alerts. The output alarms are high-frequency buzzer tones
(HFalert), low-frequency buzzer tones (LFalert), and VoiceFeedback. The subsystem in-
vokes a logical function that takes UD2O, LD2O, and MOL as parameters, and returns the
type of obstacle (whether the obstacle is an object above the floor level, etc.). If the output
is a floor then no action is needed. However, if the obstacle returns HighObs, then the
obstacle is a wall or a high obstacle, and so on. To launch the low-frequency tone buzzer,
an LFalert command is sent to the buzzer. If the obstacle is of type LowObs, the buzzer
parameter HFalert is used to activate the High-frequency tone buzzer. The intention of
determining a high-frequency tone for low-obstacle outputs is that low obstacles such
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as descending stairs and holes are potentially more dangerous and harmful than a high
obstacle. The high-frequency tone may attract more attention than the low-frequency tone.

Algorithm 2: Obstacle Detection, Warning, and Feedback

Input: UD2O, LD2O, MOL
Output: FeedbackType (HFalert, LFalert, VoiceFeedback)
1. Function ObsDetWarnSensorsModuleSubSystem ( )
2. Obstacle← Check (UD2O, LD2O, MOL)
3. switch (Obstacle) do
4. case: Floor
5. skip;
6. case: HighObs
7. Buzzer (LFalert)
8. VoiceModule (VoiceCommands, VoiceFeedback)
9. case: LowObs
10. Buzzer (HFalert)
11. VoiceModule (VoiceCommands, VoiceFeedback)
12. End switch

4.4. Dataset Module

The dataset module is responsible for building and managing the dataset. It is critical
for the visually impaired to be aware of the different objects in their environment, particu-
larly those that are in their pathway. The types of objects considered in this paper are Wall,
Downstairs, Upstairs, Floor, and High Obstacle (table, couch, etc.). We plan to extend these
classes and experiments in the future. The data are collected from outdoor and indoor
environments. The dataset contains the measurements of the distances from the TF-mini
LiDAR sensor to the object. The LiDAR sensor connected to the servo scans the object
upward and downward at 45 degrees and takes the distance measurement for each degree.
The LidSonic system acquires the information needed from the sensors to construct the
dataset to identify different types of objects.

Figure 10 shows a user interface view of the LidSonic Smartphone app. The mobile
app continuously receives data from the LiDAR sensor through Bluetooth into a file called
LogFile. The LogFile data are shown in the left side mobile app view of the figure. The
first two lines contain 45 comma separated values (175, . . . 104, and 102, . . . 229,), and are
the downward and upward 45-degree measurements from the LiDAR sensor. The LiDAR
sensor is connected to a servo that moves downwards and upwards with one-degree steps,
and captures the distance to the object for each degree position. This is how the 45-degree
downward and upward measurements are taken. Essentially, each line of the data contains
45 distance measurements from the user’s eye to the object with different line of sight
angles. Every two lines containing 45-degree downward and upward measurements are
followed by a real number (196.69), which is the measurement from the ultrasonic sensor.
The ultrasonic measurements are not included in the dataset in this work, so they were
deleted. In future work, we will investigate to see if it is beneficial to include it as a feature.

Another process in the mobile app reads data from this log file every three seconds,
stores it to the Arff file, and empties the log file, to avoid buffering problems. There are
46 attributes in each data item: 45 attributes from angles 1–45 of TFmini-s LiDAR readings
and the obstacle type. The first downward readings are taken as they are, but the next
(upward) readings are inverted. By doing so, each row’s attributes are consistent with
the other row. The obstacle type is inserted later on. During the build dataset phase, the
developer scans the same types of objects and labels the dataset with each object class. Then
the machine learning module uses this data to train and classify the objects. The dataset
is used for training during the training phase, otherwise, the dataset is updated with live
inference during the operations phase (prediction mode). The training and inference related
details will be discussed in Section 4.5.
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The limit on the maximum sensor data size that can be stored in the LidSonic smart-
phone app is dependent on the available memory of the smartphone. Modern smartphone
memories are hundreds of GBs. However, this is not a problem because the data can be
periodically moved to a cloud, enabling virtually limitless storage capacity. We will look
into a cloud extension of our work in the future.

Table 3 gives examples of data items for each of the five classes, containing 45 comma
separated integer values (distance to objects measured in centimeters), followed by the class
abbreviation. We have used Weka software [76] for machine learning, and therefore, we
need to save the dataset in the ARFF file format for its processing by Weka. An “.arff” file
is an ASCII text file representing a list of instances that share a collection of attributes [76].
Therefore, we created the training and test datasets in the ARFF file format.

Table 3. Examples of data for different classes.

Class Data

Floor 201, 196, 200, 206, 205, 203, 197, 194, 192, 184, 182, 183, 183, 184, 184, 183, 182, 181, 179, 179, 178, 177, 176,
175, 173, 173, 170, 170, 168, 166, 164, 164, 163, 163, 163, 163, 162, 162, 160, 160, 158, 157, 154, 155, 155, Flr

Ascending Stairs 131, 132, 137, 137, 137, 137, 135, 120, 121, 122, 120, 122, 120, 120, 120, 123, 132, 131, 130, 131, 131, 132, 132,
131, 129, 128, 127, 123, 123, 124, 124, 125, 125, 123, 123, 123, 122, 122, 121, 121, 121, 121, 121, 121, 122, AStair
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Table 3. Cont.

Class Data

Descending Stairs 299, 295, 292, 292, 288, 285, 283, 283, 280, 270, 260, 247, 244, 242, 245, 244, 243, 242, 237, 229, 227, 221, 220,
215, 210, 190, 195, 214, 214, 209, 198, 192, 190, 190, 190, 190, 190, 189, 189, 188, 188, 188, 190, 190, 190, DStair

High Obstacle 95, 96, 96, 99, 100, 103, 104, 125, 126, 118, 117, 120, 125, 127, 128, 130, 133, 137, 150, 151, 151, 151, 153, 153,
153, 153, 152, 151, 151, 151, 150, 150, 149, 149, 112, 79, 58, 47, 45, 44, 44, 44, 43, 43, 44, HObst

Wall 79, 79, 79, 83, 83, 84, 86, 87, 88, 89, 91, 91, 93, 93, 95, 96, 96, 97, 99, 99, 101, 102, 103, 105, 111, 111, 111, 113,
116, 119, 131, 130, 130, 131, 131, 131, 134, 137, 138, 142, 147, 150, 156, 158, 158, Wall

Algorithm 3 shows how the dataset is constructed for our system. The Arff header file
from ArffHeader is first inserted to the new dataset, ArffFile, using the Building Dataset
function. The DataCollection function gathers data from LDO and saves it in a LogFile. The
distance readings from the LiDAR are represented by LDO, while the loop saves the data
in the required format, including storing the LiDAR downwards data as it is, and reversing
the order of the LiDAR upward data.

Algorithm 3: Dataset Module: Building Dataset Algorithm

Input: ArffHeader, LDO
Output: Dataset
1. Function: BuildingDataset ( )
2. Insert ArffHeader into ArffFile
3. LogFile← LDO
4. While (not end of LogFile) // Bluetooth incoming data stored in LogFile
5. strLine← BufferLine // BufferLine is a line taken from LogFile
6. mutualFlag← true
7. While (strLine ! = 0)
8. If (mutualFlag)
9. DataLine← strLine + Obstacle class
10. Write DataLine in ArffFile
11. Clear my-Data
12. mutu-alFlag← false
13. Else
14. Store numbers of strLine into an array called strarr
15. For (x = (strarr.length) − 1; x >= 0; x–)
16. reverseStr← reverseStr + strarr[x] + “,”
17. End For
18. myData←myData + reverseStr + Obstacle class
19. Write myData in ArffFile
20. Clear my-Data and reverseStr
21. End If
22. End While
23 End While

4.5. Machine Learning Module

Figure 11 gives an overview of the machine learning module. The data received from
the LiDAR sensor is divided into the training and validation set for training and validation
purposes. We have used Weka software [76] for the object classification purposes. It was
developed by the Department of Computer Science of Waikato University, New Zealand.
We have trained nine different machine learning classifiers to measure performance, and
use the best of these for classifying the objects in the visually impaired user’s environment.
The algorithms are KStar, Ibk, Attribute Selected Classifier, Filtered Classifier, Logit Boost,
Random Committee, Randomizable Filtered Classifier, Naïve Bayes, and Sequential Mini-
mal Optimization. The details of the implementation of these classifier algorithms can be
found on the Weka pages [76]. The model is validated using the 10-fold cross-validation.
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Once the LidSonic glasses are in the operations model, the real-time data from the LiDAR
sensor is sent to the trained model. The predicted values from the trained model are
converted to voice outputs by the Voice Module, and will be discussed in Section 4.6. The
results of different machine learning algorithms are discussed in Section 5.
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Algorithm 4 gives a high-level algorithm for the machine learning module. To assist
visually impaired users, the prediction mode can be employed in three different ways:
Prediction button, fling gesture, or Voice instruction. To use Voice instruction the user could
double-tap the screen to launch the Speech-to-Text API then say the “Prediction Mode”
command. Flinging the screen will direct to the prediction mode.

Algorithm 4: Machine learning Module

Input: Dataset
Output: MOL, VoiceCommands
1. MLModel← Train (Dataset)
2. [MOL, VoiceCommands]← Inference (MLModel)

Performance Metrics

Because of limited mobile efficiency and energy usage, we need to be careful in
selecting an appropriate classifier to be applied to a mobile [77]. The measurement metrics
used to evaluate the study are TP, FP, precision, and Kappa. The True Positive (TP) rate
is the rate of correct recognition of an obstacle, which is expected to be true. The False
Positive rate (FP), is the false alert, where the recognition suggests the presence of obstacles
in front of the users is known to be true, but in fact, it is not. Precision, given in Equation (2)
(positive predictive value), is the fraction of relevant instances out of the retrieved instances.

Precision =
TP

TP + FP
(2)

Cohen’s kappa coefficient is a statistical measure of agreement for qualitative (cate-
gorical) items. It calculates the prediction agreement with the actual class; 1.0 signifies
the total agreement. As kappa considers the agreement that happens by chance, it is
commonly considered to be a more robust indicator than a basic percentage agreement
measurement. Some studies, however, have raised concerns about the tendency of kappa
to take the frequencies of the categories observed as givens, which may have the effect of
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underestimating agreement for a category that is also widely used; for this reason, kappa is
considered a fairly conservative agreement metric [78]. The Equation (3) for kappa is:

K =
Pr(a)− Pr(e)

1− Pr(e)
(3)

where Pr(a) is the relative observable agreement between raters, and Pr(e) is the hypo-
thetical probability of chance agreement, each group is randomly specified using the data
observed to determine the probabilities of each observer. If the raters completely agree,
then kappa = 1. If there is no agreement, other than what would be predicted by chance
among the raters (as specified by Pr(e)), kappa = 0.

4.6. Voice Module

Today, a plethora of Application Programming Interfaces (APIs) are available for
various tasks that, in the past, required a substantial programming effort from developers.
The work becomes a little more difficult when dealing with audio file data. As a result,
we used Google’s speech-to-text technology [79], which can transcribe any audio while
preserving context and language. Up to 120 languages are supported by the API. Voice
command and control, call center audio transcription, real-time streaming, pre-recorded
audio processing, and other features are included. With a variety of natural voices, the
Google Speech-to-Text service can successfully convert written text into grammatically
and contextually appropriate speech. The Google Text-to-Speech API allows developers to
engage consumers with speech user interfaces in devices and applications, as well as to
customize communication based on voice and language preferences.

For example, the Voice Module allows the user to use voice commands to construct
the dataset and switch between different development and operation phases. To start the
process of creating a dataset, the user enters the command “Train”, then, the system will
ask the user “what is the obstacle class”, to classify the incoming data. The obstacle is
specified by the user; for example, “Floor.” The system then prompts the user to “Specify
the dataset filename”. Finally, the file name is entered verbally by the user.

5. Results and Analysis

We now present the machine learning based classification results for our LidSonic
system. We have mentioned that we have used nine different classifiers in our experiments
to investigate the performance of the classifiers used in the LidSonic system. These are
listed in Table 4 along with their abbreviated names. The model is validated using the
10-fold cross-validation.

Table 4. Classifier names and their abbreviations.

Classifier Abbreviation

KStar KS
Instance Based Learner IBk
Attribute Selected Classifier ASC
Filtered Classifier FC
Logit Boost LB
Random Committee RC
Randomizable Filtered Classifier RFC
Naïve Bayes NB
Sequential Minimal Optimization SMO (SVM)

Figure 12 plots the results for the nine classifiers. The computed metrics are Kappa,
TP Rate, Correctly Classified, and Precision. These performance metrics have been defined
in Section 4.5. The four metrics in the figure are grouped for each of the nine classifiers.
The top three results are scored by the Kstar (Kappa = 89.98, TP Rate = 92.10, Correctly
Classified = 92.08, Precision = 92.20), followed by IBk (Kappa = 88.96, TP Rate = 91.30,
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Correctly Classified = 91.26, Precision = 91.50), and RC classifiers (Kappa = 89.63, TP
Rate = 91.80, Correctly Classified = 91.80, Precision = 91.90). The worst score is by SMO
(Kappa = 68.06, TP Rate = 74.90, Correctly Classified = 74.86, Precision = 75.50). Note that
for each classifier, Precision (blue bars) typically has the highest score, and Kappa (yellow
bars) has the lowest score.
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Figure 13 provides the same information as in Figure 12, but in this case, it is grouped
into the four metrics (Kappa, TP Rate, Correctly Classified, Precision) to clearly show
and compare the classifier performance for each metric. The best performance given, as
previously mentioned, was by the KStar classifier (light blue bars), closely followed by the
RC classifier (green bars), and IBk classifier (orange bars). The worst performance given
was by the SMO classifier (dark grey bars).

Figure 14 shows the FP Rates of the nine classifiers used in the LidSonic device. Again,
SMO and Naïve Bayes clearly have the highest FP results, whereas KStar (1.9), IBk (2), and
RC (2.2) have the lowest, respectively (obviously, low is better). The figure shows that meta
and lazy classifiers are more efficient than Bayes or function classifiers.

Figures 15–17 provide confusion matrices of the KStar, IBk, and RC classifiers. We have
selected these three out of the nine classifiers to show their confusion matrices, because
these are the top three best performing classifiers. The abbreviations used in the figures are
as follows: F = Floor, AS = Ascending Stairs, DS = Descending Stairs, HO = High Obstacle,
and W = Wall.
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Figure 15 plots the confusion metric for the KStar classifier. The highest number of
true positives are for the Floor class (86), followed by Ascending Stairs (87), Descending
Stairs (66), High Obstacle (55), and Wall (43). The total number of wrong predictions for
the classes are: Floor (4), Ascending Stairs (1), Descending Stairs (10), High Obstacle (8),
and Wall (6). Obviously, the number of wrong predictions should be considered relative to
the total number of instances. It is possible that the higher number of wrong predictions
for some classes are due to the low number of instances for the data objects of those classes.
Note that Floor was also misclassified two times as Descending Stairs. Descending Stairs
are misclassified eight times as Floor, and two times as Ascending Stairs. High Obstacle
class is misclassified eight times as Wall, and the Wall class is misclassified six times as
High Obstacle. Ascending stairs have the least number of misclassifications with one
misclassification as Floor. These performance behaviors, along with the nature of wrong
predictions, will be considered in the future to improve the LidSonic‘s system performance.



Electronics 2022, 11, 1076 27 of 34

Electronics 2022, 11, x FOR PEER REVIEW 28 of 36 
 

 

figures are as follows: F = Floor, AS = Ascending Stairs, DS = Descending Stairs, HO = High 
Obstacle, and W = Wall. 

 
Figure 15. Confusion matrix (KStar classifier). 

 
Figure 16. Confusion matrix (IBk classifer). 

Figure 15. Confusion matrix (KStar classifier).

Electronics 2022, 11, x FOR PEER REVIEW 28 of 36 
 

 

figures are as follows: F = Floor, AS = Ascending Stairs, DS = Descending Stairs, HO = High 
Obstacle, and W = Wall. 

 
Figure 15. Confusion matrix (KStar classifier). 

 
Figure 16. Confusion matrix (IBk classifer). Figure 16. Confusion matrix (IBk classifer).

Electronics 2022, 11, x FOR PEER REVIEW 29 of 36 
 

 

 
Figure 17. Confusion matrix (RC classifer). 

Figure 15 plots the confusion metric for the KStar classifier. The highest number of 
true positives are for the Floor class (86), followed by Ascending Stairs (87), Descending 
Stairs (66), High Obstacle (55), and Wall (43). The total number of wrong predictions for 
the classes are: Floor (4), Ascending Stairs (1), Descending Stairs (10), High Obstacle (8), 
and Wall (6). Obviously, the number of wrong predictions should be considered relative 
to the total number of instances. It is possible that the higher number of wrong predictions 
for some classes are due to the low number of instances for the data objects of those clas-
ses. Note that Floor was also misclassified two times as Descending Stairs. Descending 
Stairs are misclassified eight times as Floor, and two times as Ascending Stairs. High Ob-
stacle class is misclassified eight times as Wall, and the Wall class is misclassified six times 
as High Obstacle. Ascending stairs have the least number of misclassifications with one 
misclassification as Floor. These performance behaviors, along with the nature of wrong 
predictions, will be considered in the future to improve the LidSonic‘s system perfor-
mance. 

Figure 16 plots the confusion metric for the IBk classifier. The highest number of true 
positives are for the Ascending Stairs class (88), followed by Floor (82), Descending Stairs 
(66), High Obstacle (55), and Wall (43). The total number of misclassifications for the clas-
ses were: Floor (8), Ascending Stairs (0), Descending Stairs (10), High Obstacle (8), and 
Wall (6). As previously mentioned, in the case of the KStar classifier, it is possible that the 
higher number of wrong predictions for some classes is due to the low number of in-
stances for the data objects of those classes. Note that Floor was misclassified zero times, 
as was Ascending Stairs, Descending Stairs was three times, High Obstacle was two times, 
and Wall was three times. Ascending Stairs was misclassified as another class zero times 
(i.e., it classified every instance perfectly). The Descending Stairs class was misclassified 
eight times as Floor, one time as Ascending Stairs, one time as High Obstacle, and zero 
times as Wall. The High Obstacle class was misclassified eight times as Wall and zero 
times as any other class. The Wall class was misclassified six times as High Object and 
zero times as any other class. Ascending stairs have the least number of misclassifications, 
at zero. 

Figure 17 plots the confusion metric for the Random Committee (RC) classifier. The 
highest number of true positives are for the Floor (84) and Ascending Stairs (84) classes, 
followed by Descending Stairs (66), High Obstacle (57), and Wall (45). The total number 
of wrong predictions for these classes are: Floor (6), Ascending Stairs (4), Descending 
Stairs (10), High Obstacle (6), and Wall (4). Note that Floor was misclassified one time as 
Ascending Stairs, four times as Descending Stairs, and one time as Wall. Ascending Stairs 
was misclassified two times as Floor, zero times as Descending Stairs, two times as High 

Figure 17. Confusion matrix (RC classifer).



Electronics 2022, 11, 1076 28 of 34

Figure 16 plots the confusion metric for the IBk classifier. The highest number of
true positives are for the Ascending Stairs class (88), followed by Floor (82), Descending
Stairs (66), High Obstacle (55), and Wall (43). The total number of misclassifications for the
classes were: Floor (8), Ascending Stairs (0), Descending Stairs (10), High Obstacle (8), and
Wall (6). As previously mentioned, in the case of the KStar classifier, it is possible that the
higher number of wrong predictions for some classes is due to the low number of instances
for the data objects of those classes. Note that Floor was misclassified zero times, as was
Ascending Stairs, Descending Stairs was three times, High Obstacle was two times, and
Wall was three times. Ascending Stairs was misclassified as another class zero times (i.e.,
it classified every instance perfectly). The Descending Stairs class was misclassified eight
times as Floor, one time as Ascending Stairs, one time as High Obstacle, and zero times as
Wall. The High Obstacle class was misclassified eight times as Wall and zero times as any
other class. The Wall class was misclassified six times as High Object and zero times as any
other class. Ascending stairs have the least number of misclassifications, at zero.

Figure 17 plots the confusion metric for the Random Committee (RC) classifier. The
highest number of true positives are for the Floor (84) and Ascending Stairs (84) classes,
followed by Descending Stairs (66), High Obstacle (57), and Wall (45). The total number
of wrong predictions for these classes are: Floor (6), Ascending Stairs (4), Descending
Stairs (10), High Obstacle (6), and Wall (4). Note that Floor was misclassified one time as
Ascending Stairs, four times as Descending Stairs, and one time as Wall. Ascending Stairs
was misclassified two times as Floor, zero times as Descending Stairs, two times as High
Obstacle, and zero times as Wall. Descending Stairs was misclassified 10 times as Floor,
and zero times as any other class. The High Obstacle class was misclassified zero times
as Floor and Descending Stairs, and three times each as Ascending Stairs and Wall. The
Wall class was misclassified four times as High Obstacle. Ascending stairs have the least
number of misclassifications as Floor and High Obstacle.

Figure 18 plots the model training times and the inference times for the top three
classifiers. The highest time spent building the classification model was by RC (113 ms),
followed by KStar (34 ms), and IBk (7 ms). Although the RC classifier had the longest time
to build its model, it has the shortest time to predict an object with less than 1 ms, followed
by IBk (2 ms), and KStar (45 ms).
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Table 5 provides a comparison of our work with three other works that have used
machine learning and are related to our work. We list the sensors used in the work for
machine learning in Column 2, the precision scores in Column 3, the platforms used in
Column 4, the time for inference in Column 5, and whether the proposed system is able to
function in the night. The precision score for the work in the second row is not available,
hence, it is not added to the table. Note that our work provides the highest precision of
92.2% compared with 89.7% for [68], has the lowest inference time of 0.9 ms compared with
249.57 ms for [68]. The main point of note from the comparison table is that camera images
produce large data sizes and require computation over a large number of features, hence,
longer training and inference times are needed. In contrast, we used a LiDAR sensor that
produces a relatively small amount of numerical data, which can be processed in less time,
and requires much smaller computing platforms and resources.

Table 5. Comparison of the results with similar ML solutions.

Research ML Input Precision Platform Inference Time Functional at Night

[50] Camera image 62.3% Artificial intelligence
server 173 ms Yes

[59] Camera image -
Raspberry Pi 3–1 GB RAM,

CPU: 4× ARM
Cortex-A53, 1.2 GHz

5–8 s No

[68] RGB-D
camera image

IOU ≥ 80%, indoor
precision = 89.7 outdoor

precision = 88.73

Smartphone—4 GB RAM,
Qualcomm Snapdragon

820 CPU 2.0 GHz
249 ms Yes

Our
Work LiDAR data 92.2%

Smartphone—4GB RAM,
Octa-core (4 × 2.3 GHz

Mongoose M2 &
4 × 1.7 GHz

Cortex-A53)—EMEA CPU

0.9 ms Yes

6. Conclusions and Future Work

Visual impairment and blindness are among the most incapacitating disabilities,
and we know very little about the experiences of visually impaired and blind people.
The number of individuals with visual disabilities are expected to increase due to aging
populations, and many chronic diseases that cause deterioration in visual and other human
functions. Therefore, the demand for assistive devices will grow.

It is usually impossible for visually impaired people to orientate themselves in large
spaces and navigate an unfamiliar area without external assistance. The white cane is
the most common tool for visually impaired people, which assists them to help navigate
their environments; however, it has several disadvantages. Smart wearable technologies
are creating many new opportunities to improve the quality of life for everyone. Several
technologies have been proposed and commercialized for visually impaired people to help
them navigate their environments.

In this paper, we developed a pair of smart glasses called LidSonic that uses machine
learning, LiDAR, and ultrasonic sensors to identify obstacles. The LidSonic system com-
prises an Arduino Uno device located in the smart glasses and a smartphone app that
communicates data using Bluetooth. Arduino collects data and manages the sensors on
the smart glasses. It also detects objects using simple data processing and provides buzzer
warnings to visually impaired users. The smartphone app receives data from Arduino
and uses machine learning for data processing, detects and identifies objects in the spatial
environment, and provides verbal feedback about the object to the user. We provided a
detailed description of the system hardware and software design and its evaluation using
nine machine learning algorithms. The data for the training and the validation of machine
learning models are collected from real spatial environments.



Electronics 2022, 11, 1076 30 of 34

We trained and evaluated the dataset with a variety of classifiers. The Kstar classifier
scored 92.2% precision. The accuracy can be improved with the continued use of the device
due to the availability of more data for classifier training. This is the first prototype of our
proposed system; further research will likely improve the performance of machine learning,
for instance, by investigating preprocessing, featuring engineering methods or adjusting
the parameters of the classifiers. Another direction we plan for potential improvements is
comparing measurements of different angles from the LiDAR readings and adding more
obstacle classes to be identified. We also need further studies on the voice feedback system,
to understand how to notify the user in a convenient way. The device can be miniaturized
and can be mounted to any eyeglass frame as a small device.

We developed the complete system, LidSonic, using off-the-shelf inexpensive sensors
and a microcontroller board costing less than USD 80. The intention was to provide an
inexpensive, miniature, lightweight, easy-to-use, and green (in terms of computing and
communications) design, for a device that can be built into, or mounted on, any pair of
glasses or even a wheelchair to assist visually impaired people. Devices based on simple
sensors are unable to provide advanced functionalities. The majority of machine learning-
based existing solutions contain a computer vision approach that requires large storage and
computational resources including large RAMs to process large volumes of data containing
images. This could require substantial processing and decision-making times, and would
consume energy and battery life. It is important to develop simple approaches for the
purpose of providing faster inference and decision making, using relatively low energy
with smaller data sizes. This has been achieved in this work through our novel approach
of using LiDAR data to train the machine learning algorithm. Smaller data sizes are also
beneficial in communications, such as those between the sensor and processing device, or
in the case of fog and cloud computing, because they require less bandwidth and energy,
and can be transferred in relatively shorter periods of time.

In this work, we have developed the first prototype of our LidSonic system. The
prototype is built and tested by the team. We also sought help from four other people aged
between 18 and 47 years (they were not visually impaired) to test and evaluate the LidSonic
system. The time taken to explain the workings of the device to the selected users took a
few minutes, though it varied depending on the user’s age and digital affinity. The testing
exercises were conducted in both indoor and outdoor environments, including the King
Abdulaziz University campus. The focus of this paper was to test the machine learning
and other technical capabilities of the system. Future work will consider testing the device
with visually impaired users to give more details on the usability and human training and
testing aspects of the LidSonic system.

The lack of necessary assistive technologies for visually impaired people makes them
reliant on family members. Assistive technologies and devices could enable richer life
experiences for visually impaired and blind people and allow them to interact with the
communities that are fortunate to be sighted. The design space for assistive technologies
for the visually impaired is complex, involving many design parameters. More research
efforts and proposals are needed to bring innovation, smartness, and user satisfaction
to this important problem domain. Increased research activity in this field will encour-
age the development, commercialization, and widespread acceptance of devices for the
visually impaired. One area that we wish to investigate for smart glasses, which could
extend their abilities in the future, is that of cloud, fog and edge computing, and big data
analytics [80–83]. We believe the work presented in this paper will open new directions in
smart glasses design using open software tools and off-the-shelf hardware.
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ETA Electronic Travel Aids
SDK Software Development Kit
GDK The Glass Development Kit
GPS Global Positioning System
RGB-D RGB-Depth
AR Augmented Reality
CNN Convolutional Neural Networks
SLAM Simultaneous Localization and Mapping
SONAR Sound Navigation and Ranging
BLE Bluetooth Low Energy
RSSI Received Signal Strength Indication
RFID Radio-Frequency Identification Reader
UWB Ultra-Wideband Radar
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