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Abstract: Deep-learning-based segmentation methods have achieved excellent results. As two main
tasks in computer vision, instance segmentation and semantic segmentation are closely related and
mutually beneficial. Spatial context information from the semantic features can also improve the
accuracy of instance segmentation. Inspired by this, we propose a novel instance segmentation
framework named partial atrous cascade R-CNN (PAC), which effectively improves the accuracy of
the segmentation boundary. The proposed network innovates in two aspects: (1) A semantic branch
with a partial atrous spatial pyramid extraction (PASPE) module is proposed in this paper. The
module consists of atrous convolution layers with multi-dilation rates. By expanding the receptive
field of the convolutional layer, multi-scale semantic features are greatly enriched. Experiments shows
that the new branch obtains more accurate segmentation contours. (2) The proposed mask quality
(MQ) module scores the intersection over union (IoU) between the predicted mask and the ground
truth mask. Benefiting from the modified mask quality score, the quality of the segmentation results
is judged credibly. Our proposed network is trained and tested on the MS COCO dataset. Compared
with the benchmark, it brings consistent and noticeable improvements in the case of using the
same backbone.

Keywords: convolutional neural network; instance segmentation; partial atrous spatial pyramid
extraction; mask quality

1. Introduction

Convolutional neural networks (CNNs) [1,2] have rapidly developed, leading to a
series of methods in the fields of object detection [3], semantic segmentation [4], instance
segmentation [5], etc. From the development of the state-of-art methods in these tasks, we
can observe that some of these methods are generic and interacting. For example, excellent
approaches [6–8] in object detection tasks provide precise bounding boxes, which are also
widely used in instance segmentation tasks. Similarly, we try to use semantic features to
achieve accurate and robust instance segmentation.

Instance segmentation emphasizes the semantic understanding of the scene. The
image-level spatial context information in a semantic network promotes explicit pixel-wise
prediction, which is also one of the core tasks of instance segmentation. In addition, the
semantic segmentation task does not require high-level features to distinguish different
instances, so the spatial size of its feature map is relatively large. The feature map from
semantic segmentation can produce high-quality segmentation results, especially at the
boundary of the segmentation. However, in most methods, the semantic features are
underutilized. This is undoubtedly inappropriate for a task that needs to distinguish
various objects at the pixel level. Roughly adding a semantic branch consisting of a simple
combination of convolution layers is unreasonable and only brings limited gain in terms
of mask average precision (AP) and box AP. An important reason for the large gap is the
ignorance of spatial information. The methods roughly unify the pyramidal feature maps
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to the same size, and use the same size of convolutional layer. This is bound to damage the
multi-scale segmentation ability of the semantic branch.

To bridge this gap, we strive for a sophisticated design to extract as much spatial
context information as possible. We note that the atrous convolution effectively improves
the receptive field and propose partial atrous spatial pyramid extraction (PASPE), a module
using atrous convolution with multi-dilation rates. Atrous convolution is a popular and
efficient architecture, which increases the receptive field of the convolution kernel and
avoids losing information in the process of pooling. On the basis of the encoder–decoder
network, we redesign the entire semantic branch, which employs a PASPE module with
the encoder–decoder structure. The features of the branch output are maintained at a high
resolution, which supplements the loss of detail caused by the down-sampling in high-level
features. The feature maps of the semantic branch are used in both the box branch and the
mask branch. For the bounding box, the output feature is used to guide the distinction of
the instances. For mask prediction, the pixel-level segmentation of the semantic branch
encodes contextual information of the entire picture. The high-resolution feature maps
especially benefit the boundary of the segmentation.

Meanwhile, we note the problem that the mask quality is a mismatch with the classifi-
cation score. In most instance segmentation methods, classification score is used as the mask
quality score directly. However, the box-level classification confidence is inappropriate to
represent the pixel-level mask quality, especially when the object is partially blocked or
overlaps with another object. As shown in Figure 1, the instance segmentation method hy-
brid task cascade (HTC) [9] infers classification and detection results with high confidence,
but the corresponding segmentation results are unsatisfactory. The mismatch between the
mask score and the actual mask quality not only leads to inaccurate supervision during
training, but also results in suboptimal segmentation during inference. Considering the AP
metric of the COCO dataset, we propose mask quality (MQ) module to calibrate the mask
score. To unify the output and the evaluation metric, the MQ module is trained to regress
the intersection over union (IoU) between the predicted mask from the mask head and the
ground truth.
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Figure 1. Score corrected by MQ module. For the mask with poor prediction results, such as part
of the person’s torso in (a), the zebra’s limbs and head in (b) and the person in (c), HTC has a high
score. Our score is lower but more reliable. For the case of a high quality prediction result, such as
the sheep in (d), the MQ module maintains a high score.

The partial atrous cascade R-CNN (PAC) is easy to implement and can be trained in
an end-to-end manner. To verify the superiority of our method, we trained and tested it on
the MS COCO dataset [10]. The results show that it achieved 1.4% and 0.4% higher than
the hybrid task cascade (HTC) [9] baseline in mask AP and box AP, respectively. The main
advantages of our approach can be summarized as follows:

(1) We introduce the feature from the semantic branch into the instance segmentation
task to exploit the accuracy improvement.

(2) We propose a partial atrous spatial pyramid extraction (PASPE) module that strength-
ens spatial context information and the boundary resolution. The semantic branch
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integrated with the PASPE module accounts for discriminating objects from the clut-
tered background.

(3) We design a mask quality (MQ) module that calibrates the scores of masks. By
regressing the IoU between the mask and the ground truth, the quality of the mask is
correctly assessed. At the same time, appropriate mask quality evaluation improves
segmentation performance.

2. Related Work
2.1. Instance Segmentation

Instance segmentation tasks are required to recognize objects of interest at the pixel-
level. Generally speaking, the usual pipelines of instance segmentation can be categorized
into two types: one is detection-based, the other is segmentation-based.

Detection-based methods pursue the goal of state-of-the-art performance. A major
feature of this type of method is that region proposals need to be reported. The R-CNN [3]
structure is widely applied in this regard. Unlike object detection tasks, instance segmen-
tation requires instance discrimination at the pixel-level. Based on the target detection
method Instance FCN [11], fully convolutional instance-aware semantic segmentation
(FCIS) [12] fuses position-sensitive maps and inside/outside scores to perform end-to-end
instance segmentation. Mask R-CNN [13] retains the basic framework of the detection
method [8], and adds an mask branch to achieve mask prediction. RoI Align is proposed
to improve the quantization accuracy of the feature maps. HTC [9] introduces the classic
architecture of the cascade [14] into instance segmentation. HTC redesigns the hybrid
cascade architecture to facilitate the information flow between multi-tasks. Mask Scoring
R-CNN [15] points out the contradiction about the mask quality measurement standard.
To solve the problem of the actual quality misjudgment, mask scoring is proposed. Refine-
Mask [16] uses fine-grained features from the semantic branch to compensate for the loss
of segmentation details. The boundary-aware refinement (BAR) strategy is also proposed
to predict the boundary accurately. Look Closer to Segment Better [17] also focuses on
boundary refinement. The patches extracted from the boundary are refined by boundary
patch refinement (BPR). BCNet [18] considers the influence of occlusion between instances.
A graph convolutional network (GCN) is used to decouple the boundaries of the occlud-
ing and occluded instances, and the interaction between the two is performed during
mask prediction.

Segmentation-based methods balance performance and speed. The methods usually
involve parallel processing of pixel-level category prediction and instance distinction. Since
there is no need to regress the bounding box, the calculation is more efficient. YOLACT [19]
refers the basic structure of the detection model RetinaNet [20]. The two modified parallel
branches are used to generate prototype masks and mask coefficients of each instance. The
subsequent version YOLACT++ [21] optimizes the mask evaluation criteria and convolu-
tion layer settings. PolarMask [22] contours based on the polar coordinate. Instance center
classification and dense distance regression are used to complete the instance segmenta-
tion. Segmenting objects by locations (SOLO) [23] proposes an instance category, which
meshes the input picture and sends it to different branches for category prediction and
mask prediction.

2.2. Semantic Segmentation with Atrous Convolution

Semantic segmentation segments different types of targets without distinguishing
instances. Modern semantic segmentation methods are developed from fully convolutional
networks (FCNs) [24]. Many novel methods have been proposed to improve segmentation
accuracy, such as the encoder–decoder architecture [25]. This approach proved to be ef-
fective in the medical field [26,27]. Atrous convolutions also bring considerable progress.
The pooling layer is replaced by atrous convolution, which reduces information loss due
to pooling. Hybrid dilated convolution (HDC) [28] proposes a design standard for atrous
convolution, which solves the problems of the gridding effect and long-range/short-range
information relevance. Atrous spatial pyramid pooling (ASPP) in DeepLab [29] processes
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each scale with an independent branch. Multi-scale information extraction is achieved
by using atrous convolutions of multiple dilation rates in a parallel manner. The method
extracts multi-scale semantic information with a small amount of calculation. Subsequent
improved versions such as DeepLab v3 [30] and v3+ [31] further optimize the ASPP mod-
ule and network architecture, which take advantage of the full convolutional network to
achieve efficient and accurate segmentation. The proposed shared decomposition convolu-
tion (SDC) and boundary reinforcement (BR) in [32] relieve the grid artifact problem and
enhance the spatial information. Benefiting from its small amount of calculation and multi-
scale information extraction ability, atrous convolutions are widely used in lightweight
semantic segmentation, such as ENet [33] and ESPNet [34].

Unlike these methods considering instance segmentation and semantic segmentation
independently, we are committed to feature supplementation and fusion. The features from
our semantic branch are merged with the RoI feature, which brings spatial context and
boundary information. The mismatch between mask score and mask quality is corrected
by the additional MQ module. The network can be aware of the quality of the instance
mask during training, and the mask score is more reliable during inference.

3. Method
3.1. Motivation

In this work, we propose partial atrous cascade R-CNN (PAC), a new framework
of two-stage instance segmentation, as shown in Figure 2. The region proposal network
(RPN) [3] is still used in the first stage, which proposes candidate instance bounding boxes.
In the second stage, aiming at the absence of spatial context information, a new designed
semantic branch is proposed to extract semantic features. As a supplement to image-level
information, the outputs of the semantic branch contain a wealth of category-related seman-
tic features. It is very helpful to distinguish segmentation targets. The proposed semantic
branch is connected with the multi-task cascade branch in parallel. The information flow is
designed to join each stage of the cascade branch, so that each stage can enjoy the bene-
fits of semantic features. The multi-task cascade branch performs proposal classification,
bounding box regression and mask prediction. In addition, in order to decouple the mask
score with the bounding box score and independently evaluate the segmentation quality, an
additional mask quality (MQ) module is integrated to judge the quality of the segmentation.
The MQ module is arranged after the cascade branch, which revises the mask score using
instance features and predicted masks. We present the details of the framework in the
following sections.

S

RPN

Fuse

B1

M1

Fuse

B2

M2

Fuse

B3

M3

Fuse

MQ

P3、P5

Backbone+FPN

++
ROIAlign ROIAlign

+
ROIAlign ROIAlign

Fuse

Figure 2. Network architecture of our method. S represents the semantic branch, Bn represents the n
stage of the box branch, Mn represents the n stage of the mask branch and MQ represents the mask
quality module.
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3.2. Semantic Branch

The semantic branch aims to strengthen spatial context information and help the net-
work to further distinguish foreground objects from background, especially the boundary
regions where object confidence is hesitant. At the same time, benefiting from the large-
scale semantic feature map, occluded pixels are also supplemented with information from
other locations. Unlike the previous methods that unify feature maps and use the same
kernel size convolution layers, our proposed branch introduces atrous convolution into the
semantic branch.

The advantage of atrous convolution is that the size of the convolution kernel can
be flexibly changed without increasing the amount of calculation. On the one hand, a
large-size convolution kernel avoids the loss of spatial features caused by pooling. On
the other hand, a flexible convolutional layer size captures spatial context features at a
flexible scale. To make full use of that, we designed the partial atrous spatial pyramid
extraction (PASPE) module with multiple dilation rates, atrous convolution layers and
global pooling layers. As shown in Figure 3, the PASPE module consists of 5 convolution
layers, including 3 atrous convolution layers and 2 normal convolution layers. The size
of the atrous convolution layers is 3, the dilation rates are {6, 12, 18} and the output size
is 256. Such large-sized and different-level dilation convolution kernels enrich semantic
features. The sizes of the normal convolution layer are {1, 3} and the output size is 256. Such
small-sized convolution kernels supply the local detailed features. The average pooling
layer is equal to a convolution kernel of infinite size, which maintains global information.
The features from the pooling layer are interpolated to the same size as others. In this way,
the semantic branch not only has an excellent ability to extract global features, but also
maintains the detailed information.

1×1 Conv

Concat 3×3 Conv

1×1 Conv

PASPE

Sementic Feature

1×1 Conv

Segmentation Prediction

1×1 Conv

3×3 Conv

Rate 6

3×3 Conv

Rate 12

3×3 Conv

Rate 18

Image

Pool

1×1 Conv

3×3 Conv

Rate 6

3×3 Conv

Rate 12

3×3 Conv

Rate 18

Image

Pool

3×3 Conv

1×1 Conv

3×3 Conv

Rate 6

3×3 Conv

Rate 12

3×3 Conv

Rate 18

Image

Pool

3×3 Conv

4× up

FPN P5

FPN P3

Figure 3. Architecture of the semantic branch. We introduce the PASPE module into the semantic
branch to produce high-resolution feature maps that are rich in spatial context information.

The semantic branch in our network adopts the architecture of a fully convolutional
network, and the main architecture is shown in Figure 3. Considering that the sixth stage
feature map (P6) of FPN is the down-sampling result of P5, we choose P5 as a high-level
semantic feature input of PASPE. The outputs of PASPE are fused between channels by
convolution layers with the kernel size of 1. The low-level features contain richer spatial
details, which is precisely what high-level features lack. Therefore, the PASPE features
are down-sampled and concatenated with the feature map from FPN P3. There are two
parallel convolution layers at the end of the semantic branch. One of them is responsible
for semantic features. The features have the same channel as FPN to facilitate feature
superposition (default 256), which is shared with other branches. The other channel
performs semantic segmentation prediction and calculates the loss.

3.3. Mask Quality Module

The mask score and the classification score of the instance segmentation method usu-
ally share the same data. However, the box-level classification score irrelevantly represents
pixel-level mask quality, especially when the instance is partially occluded by other objects.
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As a result, a low-quality mask may maintain a high classification score. As shown in
Figure 1, the conflict between high classification score and low mask quality is harmful to
the task of segmentation that requires subdivision evaluation. During the training process,
the network is inclined to prioritize classification over segmentation. In the inference
process, the network selects the proposal with better classification results rather than better
segmentation results. We propose a mask quality (MQ) module to unify the actual quality
and the score of the mask. We can express the mask prediction task as sscore. As we men-
tioned earlier, sscore regresses the IoU between the predicted mask from the mask head and
the ground truth. Meanwhile, sscore should remain positive for the ground truth category,
and be close to 0 for other categories. As illustrated in Equation (1), we can divide the
prediction sscore into two subtasks: classify the mask, and regress the IoU between the mask
and the ground truth. It is easy to obtain siou, which has been estimated in the classification
branch. Furthermore, we utilize mask quality (MQ) to fit the IoU between the real mask
and our evaluated one.

sscore = scls · siou (1)

The details of the MQ module are shown in Figure 4. The module concatenates feature
maps from the fused features and predicted mask of M3. Only the dimension of the ground
truth class of stage 3 (M3) is chosen. To obtain a uniform feature map space size, a max-
pooling layer with the kernel size of 2 and stride of 2 is used to pool the M3 mask. The
feature map is further processed by 4 convolutional layers and 3 fully connected layers.
Figure 4 shows the parameters of the convolutional layers and the fully connected layers.
The output of the final FC layer is set to the number of classes, so we adopt the ground-truth
class of the output as siou. With sscore and siou, smask can be calculated by Equation (1).

Concat
×3

28×28×1

14×14×256

14×14

×257

14×14

×256

7×7

×256
1024 1024 C

M3

Fuse

Figure 4. Architecture of mask quality (MQ) module. The parameters of all feature maps are marked
in the figure. The feature map from M3 is max-pooled with the kernel size of 2.

3.4. Training Strategy

Our method can be trained in an end-to-end manner, and the overall loss function can
be expressed in the form of multi-task learning as in Equation (2). Here, Lrpn is the loss of
the RPN, which is combined with two terms Lcls and Lreg. As shown in Equation (3). The
former classification loss adopts cross-entropy loss and the latter regression loss adopts
smooth L1 loss. Lt

bbox is the loss of the bounding box predictions at stage t of the box branch,
which is also combined with Lcls and Lreg, as shown in Equation (4). Lt

mask is the loss of
mask predictions at stage t, which adopts the binary cross-entropy loss. Lseg is the semantic
branch loss in the form of cross-entropy loss. Lmq is the loss of the MQ module, which
adopts L2 loss. Hyperparameters α, β and γ are used to balance the loss ratio of different
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branches and stages. We follow the hyperparameter settings in HTC. By default, we set
α = [1, 0.5, 0.25], T = 3, β = 1 and γ = 1.

L = Lrpn +
3

∑
t=1

αt(Lt
bbox + Lt

mask) + βLseg + γLiou (2)

Lrpn(p, p̂, t, t̂) = Lcls(p, p̂) + Lreg(t, t̂) (3)

Lt
bbox(ct, ĉt, rt, r̂t) = Lcls(ct, ĉt) + Lreg(rt, r̂t) (4)

During inference, the feature maps from the backbone and semantic branch are in-
tercepted by RoIAlign. They are concatenated as the input of the box branch and mask
branch to obtain box results and mask results. The MQ module is used to calibrate the
classification score generated from the box branch. We follow the standard HTC inference
procedure, and the top-k masks are fed into the MQ module to predict siou. The calculated
sscore is used for instance selection.

4. Results
4.1. Datasets and Evaluation Metrics

Datasets: To verify the effectiveness of the method, we performed experiments on
the MS COCO dataset. We followed COCO settings of the 2017 version with 80 object
categories. A total of 115 k training images were used to train the model, 5 k validation
images were used for validation and 20 k test images were used for the test. Typical instance
annotations were used to supervise box and mask branches, and the semantic branch was
supervised by stuff annotations.

Evaluation Metrics: We use the average precision (AP) metrics of COCO-style to report
the result, which averages APs using IoU thresholds from 0.05 to 0.95 with an interval of
0.05. For the mask, we report AP50, AP75, and APS, APM, APL.

4.2. Implementation Details

We maintained a 3-stage cascade box and mask branch. We chose ResNet-18 [35] for
ablation studies, and ResNet-50/ ReNeXt-101 [36] for comparing our method with other
baseline results. FPN was used in all backbones. Our method was implemented with
PyTorch and mmdetection. We trained detectors with 4 GPUs. The initial learning rate
was 0.02 in the case of the 16 batch size and was linearly adjusted according to the change
in batch size. Our model was trained for 20 epochs. The learning rate was decreased by
1/10 after 16 and 19 epochs. The input images were resized to 1333 pixels for the long
edge and 800 pixels for the short edge. Synchronized SGD was used while optimizing. As
in HTC, bounding boxes were refined progressively by box branches of different stages
during inference. The boxes that scored higher than a threshold (0.001 by default) were
used for the mask branch and MQ module.

4.3. Semantic Branch Optimization Results

During the entire semantic branch design, we tried to keep the branch efficient and
considerable. The proposed semantic branch fuses feature maps of multi-levels. Here we
specifically output semantic segmentation results to comparatively analyze the optimization
effect. As shown in Figure 5, since the semantic branch ultimately contributes to object
detection and instance segmentation, we can focus on the instance segmentation quality
in the image. It can be seen from the comparison of the same group of pictures that the
segmentation quality of different types of instance has been improved. Especially for the
boundary part, the segmentation becomes clear and firm. Such performance serves for
more credible detection of bounding boxes and more accurate foreground segmentation.
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(a)
 

(b)

Figure 5. Semantic branch optimization results. The first picture of each group is the original picture,
the second picture is a semantic prediction of HTC and the third picture is a semantic prediction
of our method. Comparing the right part of the building in (a) and the legs of the skier in (b), the
accuracy is improved in our method.

4.4. MQ Module Optimization Results

Benefiting from the MQ module, the score of the prediction mask has a strong relation-
ship with mask quality. The MQ module effectively corrects the problem that the actual
quality of the mask mismatches with the classification score. We choose experimental
results here to verify the effect. As shown in Figure 1, for the same mask of the object, the
scores before and after correction have been marked. It can be seen that for the mask with
poor prediction results, HTC still predicts a high score while the score corrected by the MQ
module is more reliable. The error between score and quality is calibrated. For the mask
with an appropriate prediction result, the corrected score is still high. The score reflects the
actual quality of the mask. The design correctly guides the optimization orientation of the
training process and filters out the mask of low quality during inference.

4.5. Quantitative Results

We compared our method with different backbone networks including ResNet-18/50
and ResNeXt-101. The results are shown in Table 1. We used mask AP to represent instance
segmentation results and box AP to represent object detection results. The experiment
was divided into 3 parts: network with our proposed semantic branch, with network MQ
module and network with both optimizations above. As can be seen from the results of the
semantic head group, our proposed semantic branch has an effect on both the box branch
and the mask branch. The box AP is increased by 0.5% and the mask AP is increased by
0.2%. It can be seen from the result that the MQ module has an optimization effect on
the mask branch, and that the mask AP increases by about 0.7%. Our method deploys
both optimizations at the same time. We treated HTC as the benchmark. From the result
in Table 2, our proposed semantic branch and MQ module significantly improves the
performance to 39.5% (1.4% improvement) and 41.5% (1.2% improvement) with backbone
ResNet-50 FPN and ResNeXt-101 FPN, respectively. The visualization of the segmentation
results of our method is shown in Figure 6.
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Table 1. Experimental results for MS COCO. The object detection and instance segmentation results
are reported, corresponding to the box AP and mask AP in the table. The results without any Xare
those of HTC, with Xunder MQ being those that add the MQ module, with Xunder SH being those
that apply our proposed semantic branch, and with Xunder MQ and SH at the same time being those
of our method PAC.

Backbone SH MQ Mask AP AP50 AP75 Box AP AP50 AP75

ResNet-18 FPN
34.0 53.8 36.6 38.3 56.2 41.5

X 34.5 54.9 36.8 38.8 57.4 41.9
X 35.0 53.7 37.6 38.3 55.5 41.6

ResNet-50 FPN

38.1 59.4 41.0 43.2 62.1 46.8
X 38.3 59.8 41.2 43.7 62.8 47.3

X 38.9 58.9 42.0 43.0 60.8 46.7
X X 39.5 60.3 42.6 43.6 61.9 47.2

ResNeXt-101 FPN

40.3 62.2 43.5 46.1 65.3 50.1
X 40.3 62.5 43.6 46.2 65.6 50.2

X 41.1 62.1 44.5 45.8 63.8 49.8
X X 41.5 62.6 44.9 46.2 65.4 50.2

Table 2. Comparison with other instance segmentation methods for MS COCO dataset.

Method Backbone Box AP Mask AP AP50 AP75 APS APM APL

Mask R-CNN [13] ResNet-50 FPN 39.2 35.4 56.4 37.9 19.1 38.6 48.4
Mask R-CNN [13] ResNeXt-101 FPN 42.2 37.8 59.6 40.6 19.8 41.4 51.9
MS R-CNN [15] ResNet-50 FPN 38.8 36.3 56.1 39.2 18.8 39.3 50.8
MS R-CNN [15] ResNeXt-101 FPN 41.8 38.7 59.3 41.9 20.8 42.3 52.9
BPR [17] ResNeXt-101 FPN - 39.2 - - - - -
BCNet [18] ResNet-50 FPN - 38.4 59.6 41.5 21.9 40.9 49.3
BCNet [18] ResNet-101 FPN - 39.8 61.5 43.1 22.7 42.4 51.1
HTC [9] ResNet-50 FPN 43.2 38.1 59.4 41.0 20.3 41.1 52.8
HTC [9] ResNeXt-101 FPN 46.1 40.3 62.2 43.5 22.3 43.7 55.5
RefineMask [16] ResNet-50 FPN - 38.2 - - - - -
RefineMask [16] ResNeXt-101 FPN - 41.0 - - - - -
PAC ResNet-50 FPN 43.6 39.5 60.3 42.6 21.1 42.8 55.0
PAC ResNeXt-101 FPN 46.2 41.5 62.6 44.9 23.1 45.3 57.3
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Figure 6. Examples of instance segmentation results for our method.

5. Ablation Study

In this part, ResNet-18 with FPN was used for all ablation studies. The model was
trained for 12 epochs.

5.1. The Architecture of the MQ Module

We studied the design of the MQ module input and the convolution layer setting. The
design choices are shown in Figure 7 and explained as follows.

Mask information flow: Considering that mask information flow performs well in
the mask branch, we try to introduce the mask information flow into the MQ module.
Following similar principles, we introduce an information flow between the mask branch
and MQ module by feeding the mask features of mask branch stage 2 to the MQ module.
The design is shown in Figure 7a.

Architecture simplification: Considering that a large number of convolution layers in
the mask branch have played a feature extraction role, we appropriately reduce the number
of convolution layers in the MQ module to reduce the amount of calculation. The design is
shown in Figure 7b.
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Figure 7. Different design of MQ module architecture: (a) shows the different design of the input,
(b) shows the simplified architecture.

The results are shown in Table 3. We focus on the first four lines. Compared with
the benchmark, we can see that all the versions of the MQ module design can bring
performance improvements in mask AP, and the original MQ module design has the most
significant improvement. Thus, we take it as the default design.

5.2. The Architecture of the PASPE Module

The atrous convolution of the ASPP module takes into account instances of different
scales. However, we found that the module has low segmentation accuracy for small
targets because of lacking small-size convolution kernels. We chose to add a redesigned
semantic head and PASPE module to enhance the feature extraction capability for the
instance boundary. The details of the design choice are shown in Figure 8.

1×1 Conv

3×3 Conv
Rate 6

3×3 Conv
Rate 12

3×3 Conv
Rate 18

Image
Pool

3×3 Conv

 
Figure 8. PASPE module architecture.

The results are shown in Table 3. We focus on the last two lines. Compared with the
ASPP module, our proposed PASPE module design can bring more accurate results in both
box AP and mask AP.
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Table 3. Results for different design of MQ module and PASPE module architecture.

Design Box AP Mask AP AP50 AP75

HTC baseline [9] 38.3 34.0 53.8 36.6
+MQ module 38.3 35.0 53.7 37.6

+Mask information flow 38.4 34.5 53.5 37.0
+Architecture simplification 38.2 34.9 53.7 37.7

+ASPP [31] 38.8 34.5 54.9 36.8
+PASPE 38.9 34.6 55.0 37.0

6. Conclusions

We have proposed a high-quality instance segmentation framework called partial
atrous cascade R-CNN (PAC) in this paper. The image-level spatial context information
from semantic features is introduced into instance segmentation in our method. PAC
adopts a newly designed semantic branch that utilizes the PASPE module, which accurately
distinguishes different instances and corrects the boundary of the mask. The branch
improves both box and mask prediction. To solve the mask quality misjudgment problem,
a mask quality (MQ) module is introduced to calibrate the mask score. Without bells and
whistles, extensive results show that PAC consistently and obviously outperforms the
benchmark on the MS COCO dataset. The proposed semantic branch and MQ module can
also be applied to other instance segmentation methods to improve performance.
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