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Abstract: In the modern world of digitalization, data growth, aggregation and sharing have escalated
drastically. Users share huge amounts of data due to the widespread adoption of Internet-of-things
(IoT) and cloud-based smart devices. Such data could have confidential attributes about various
individuals. Therefore, privacy preservation has become an important concern. Many privacy-
preserving data publication models have been proposed to ensure data sharing without privacy
disclosures. However, publishing high-dimensional data with sufficient privacy is still a challenging
task and very little focus has been given to propound optimal privacy solutions for high-dimensional
data. In this paper, we propose a novel privacy-preserving model to anonymize high-dimensional
data (prone to various privacy attacks including probabilistic, skewness, and gender-specific). Our
proposed model is a combination of l-diversity along with constrained slicing and vertical division.
The proposed model can protect the above-stated attacks with minimal information loss. The
extensive experiments on real-world datasets advocate the outperformance of our proposed model
among its counterparts.

Keywords: business intelligence; privacy-preserving data publication; high-dimensional data;
l-diversity; constrained slicing

1. Introduction

With the advent of cloud computing, Internet-of-things (IoT) and smart devices, there
has been a drastic uplift in data growth, aggregation and sharing. Large amounts of
data are shared over various applications daily, e.g., social media, emails, cloud-based
systems, and smart devices. These smart devices are very helpful in collecting and sharing
electronic health records (EHRs) [1–3]. These shared data are very useful for researchers
or data users to perform various types of statistical analysis, decision and policy making,
conducting surveys, extensive research and general learning. The data researchers or
users can be a simple reader to a medical doctor, a pharmaceutical expert, a governmental
organization or any other entities seeking the data. In the context of a shared healthcare
dataset, the data are attributed to various individuals who are known as data owners. The
hospital which aggregates the data is known as the data holder. The shared healthcare
dataset may contain different attributes of the data owners’ data, e.g., name, age, zip
code, gender, disease, diagnosing criteria, physician, treatment, etc. Certain above-stated
attributes are sensitive in nature and the data owners would less likely intend to get them
published or revealed, e.g., disease, diagnostic criteria, physician, treatment, etc. The
insecurity of data owners about the sensitive attributes’ disclosures is completely [4,5]
genuine because these attributes’ disclosures may somehow cause privacy leakage and
discrimination. Therefore, the privacy preserving of such data has emerged as a vital need
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of the modern digitalized world. However, if the data are made more private, the utility
of the data reduces. Privacy-preserving data publication aims at setting an acceptable
trade-off between data privacy and data utility. So, the high utility data may be published
with acceptable privacy. These datasets consist of various types of attributes of data owners,
e.g., explicit identifiers (name, patient ID, etc.), quasi-identifiers (age, gender, zip code,
etc.) and sensitive attributes (disease, symptoms, treatment, etc.). The sensitive attributes
contain highly sensitive and personal information related to the data users, which can
be breached by some potential adversary. Due to their sharing process, security risks
also arise during data transformation. However, security and privacy preservation is an
essential part of the data sharing of individuals. The adversary with prior knowledge
can relate certain attributes of published data (see Figure 1) with externally available
datasets to target a victim. Therefore, data privacy has evolved as an inevitable need to
the modern digital world. An authenticated survey indicated that 87 percent of the US
population was vulnerable by mapping their different types of records with externally
available datasets [6]. For protecting this sensitive data, many cryptographic techniques
and models [7–10] have been proposed so far. However, the cryptographic models and
techniques are generally computationally expensive. Apart from this, due to the sharing of
keys to a limited number of known stakeholders, cryptographic models and techniques
are not suitable for stakeholders at large (for example data publication for large and
unknown stakeholders). On the other hand, the anonymization-based privacy-preserving
data publication models and techniques are computationally inexpensive and suitable for
data publication to large stakeholders. In recent and past decades, a plethora of privacy-
preserving data publication models and techniques has been proposed [6,11–15]. The
existing literature and models are not adequate to deal with high-dimensional data. As the
number of nodes increases, the utility of anonymized high-dimensional data decreases and
as the number of attributes increase, the chance of adversarial attacks also increases. In [16],
the author presented a state-of-the-art privacy-preserving model for high-dimensional data.
However, the proposed model resulted in a loss of information due to local recordings.
We have focused on this flaw and improved the model in this work. The current work
presents a novel privacy-preserving model, using l-diverse constrained slicing, to preserve
the privacy of high-dimensional data publications with minimum or no loss of data. The
proposed model vertically fragments the high-dimensional data on the basis of gender and
applies l-diversity on either fragment to achieve anonymity. It improves the existing local
recording approach and the utility of the data is preserved.

Figure 1. An overview of privacy-preserving data publication and adversarial attack.

The rest of the paper is organized as follows. Section 2 presents the literature review
of the domain. Section 3 puts forward the preliminaries, problem setting and revisits the
existing privacy model for high-dimensional datasets and its limitations. Section 4 presents
our proposed model, its algorithms, methodology and protection analysis. Section 5
discusses the experimental evaluation based on evaluation matrices and finally, the paper
is concluded in Section 6.

2. Literature Review

The privacy of the data belonging to data owners is a serious concern of today’s
digital world. On the other hand, the utility of the data is highly needed by data users and
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researchers to make policies, analysis and decisions. An increase in one causes degradation
in the other. Therefore, establishing a reasonable trade-off between enhanced utility and
better privacy is a serious concern. Privacy-preserving data publishing is aimed at ensuring
the provision of anonymized data to the data users. Several privacy-preserving models
have been proposed so far in this regard. As discussed earlier, data have various types
of attributes. Explicit identifiers are the types of attributes that identify the data owner
uniquely and explicitly, e.g., ID, name, roll number, patient number, etc. Quasi-identifiers
are the general attributes, e.g., age, zip code and gender, that may not help in identifying
the specific data owner, although a combination of various quasi-identifiers (age = 20 years,
zip code = 11,370, gender = male) may be exploited to identify the data owner. Sensitive
attributes are the most confidential attributes that a data owner does not want to reveal, e.g.,
a disease. Initial researchers in privacy preservation removed the explicit identifiers from
the publishable datasets so privacy could be achieved. However, an adversary could launch
a linking attack on a group of quasi-identifiers with some externally available datasets
(e.g., census or election voters’ list). To overcome such privacy disclosure, the k-anonymity
model was proposed [6], in which the concept of a quasi-identifiers group (QID-group)
and equivalence class was presented. According to k-anonymity, each record in any of
the QID-group is indistinguishable from other k− 1 records in the same QID-group. The
main issues with k-anonymity were a utility loss due to generalization and the possibil-
ity of background knowledge and homogeneity attacks (a whole QID-group sharing the
same sensitive attributes, e.g., dyspepsia). In [7], the authors addressed the homogeneity
attacks and mitigated it by proposing l-diversity, which ensured the occurrence of l differ-
ent sensitive attributes in a QID-group. However, the skewness and similarity attacks (a
whole QID-group sharing the same type of sensitive attributes, e.g., gastroenterological
like dyspepsia, acid reflux, stomach ulcer, etc. To overcome such issues, some researchers
proposed [12] the t-closeness model, which ensured the distribution of sensitive attributes
over the data bounded by a threshold t. However, this model was computationally ex-
pensive and somehow impractical to achieve. The above-mentioned privacy-preserving
data publishing models were proposed to ensure data privacy with enhanced utility. How-
ever, the above-mentioned models and techniques are not applicable to high-dimension
datasets, where sparseness of the data is huge [13,14]. There are two main reasons behind
the inability of existing models to deal with high-dimensional data. First, the anonymiza-
tion of high-dimensional datasets causes a huge information loss, which results in utility
degradation [17]. Basically, the increase in the dimensions of the data means a higher
occurrence and availability of associated attributes for the adversary to launch a correlation
or linking attack. The second reason is that designing a suitable privacy-preserving solution
for high-dimensional data with some prespecified requirements may not be possible. In
the literature, it has been observed that some privacy-preserving generalization-based
models [18–20] rely on the ambiguity between various data points within the specified
spatial locality. As the sparseness of the data points increases, the distance between the
points become less distinctive [21].

Some privacy-preserving models have been proposed to cater to the dimensionality
issues. In [21], the author presented an LKC-privacy model for high-dimensional data.
In the model, the author assumed that the adversarial prior knowledge was less than a
threshold L. The above model assured that the maximum length of a set of quasi-identifier
attributes would be published by at least k records. The model deals with L values in
each iteration instead of potential quasi-identifier attributes. The problem with this model
is its inability to handle large L values. In [22,23], techniques of feature selection and
transformation were presented, respectively. These techniques have been widely used in
dealing with high-dimensional data in data science. These techniques may not directly
be applicable to the scenarios of privacy-preserving data publication because the data
publishers are not aware of which attributes would be needed by the data users. Therefore,
the selection of certain features may lead to a loss of data utility. It can be said that both
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of the above-mentioned techniques usually result in transformed attributes with poor
interpretability.

In [24], the author presented a state-of-the-art generalization-based privacy model
for high-dimensional data. The model mitigated the risk of information loss caused by
feature selection techniques through vertical partitioning of the data into two disjoint
subtables. After vertical partitioning (classification), the author applied a heuristic method
based on local recording on either subtable to ensure privacy. The smaller disjoint data
tables were supposed to be anonymized separately in a more effective manner compared
to high-dimensional data as a whole. If the anonymized data were published, the data
users/researchers would be able to use part or all of it as per their requirements. Apart from
this effectiveness, the main issue with this model was that the underlying local recording
technique caused information loss due to generalization that could be mitigated by using
some better privacy technique. A summarized overview has been illustrated in Table 1.

Table 1. An overview of previously proposed approaches.

Ref. Privacy Model Techniques Attacks

[6] k-anonymity
Generalization

+ suppression

Background knowledge
+ homogeneity

[11] l-diversity Domain generalization Similarity
+ Skewness

[12] t-closeness
Generalization
+ suppression
+ SA-value distribution

Similarity

[13] p-sensitive k-anonymity Generalization
+ clustering

Homogeneity
+ similarity
+ linkage

[14] p+sensitive k-anonymity Generalization Homogeneity + linkage

[14] (p/p+, α) sensitive
k-anonymity Generalization Background knowledge

+ homogeneity

[15] Balanced p+sensitive k-anonymity Generalization Skewness attack

[16] High-dimensional data publishing via
k-anonymity Generalization Attribute disclosure

+ high information loss

3. Preliminaries

As a base for the upcoming discussion, we present some basic and conceptual defini-
tions being used in the rest of the paper.

3.1. Basic Concepts

The raw microdata table (that is supposed to be published after anonymization) may
be represented as T. In this notation, T has n number of person-specific records and m
attributes. The m attributes can be categorized as follows on the basis of different degrees
of openness.

• Explicit identifier: These are the attributes that may uniquely identify an individ-
ual/data owner in published information. The examples for explicit identifiers are ID,
name, license number, social security number, etc.

• Quasi-identifying (QID) attributes: These are the general social attributes that can be
used in a group (not independently) by an adversary to launch a privacy attack. The
examples for quasi-identifiers are age, gender, height, weight, zip code, etc.

• Sensitive attributes: These are the attributes a data owner does not want to disclose or
reveal publicly. A clear privacy leakage of someone’s sensitive attribute may lead to
discrimination, job issues, social embarrassment, or even life threats. The examples for



Electronics 2022, 11, 1257 5 of 21

sensitive attributes are disease, salary, diagnostic criteria, symptoms, income, profit,
loss, etc.

3.2. Formal Definitions

Definition 1. (QID-groups) In a microdata table T, a QID-group refers to the group of records
that share the same QID values. Alternatively, it is also known as EC. A table contains one or more
QID-groups.

Definition 2. (Fragmentation) In the context of data science, fragmentation refers to a vertical
partitioning of the publishable microdata table T into two or more disjoint subtables. Each subtable
may be called a fragment.

Definition 3. (k-anonymity (k)) A microdata table T may be known as k-anonymous if and only if
each record in the QID-group of T is indistinguishable by k− 1 other records in the same QID-group.
Therefore, the probability of correct identification is at most 1/k.

Definition 4. (l-diversity (l)) A microdata table T may be known as l-diverse if and only if all the
records in the QID-groups of T are l-diverse.

Definition 5. (Slicing) A sliced table of a microdata table T is given by the tuple partition (see
Definition 6) and attribute partition (see Definition 7).

Definition 6. (Tuple partitioning) For a table T having attributes t, the tuple partitioning com-
prises various subsets of t in such a manner that each tuple belongs to exactly one subset.

Definition 7. (Attribute partitioning) For a table T having tuples A, the attribute partitioning
comprises various subsets of A in such a manner that each tuple belongs to exactly one subset.

3.3. Revisiting a State-of-the-Art Privacy Approach for High-Dimensional Data

In [16], the author proposed a state-of-the-art privacy approach for high-dimensional
datasets. The privacy approach had two phases: fragmentation and anonymization. The
work handled the sparseness of the high-dimensional data by applying a straight vertical
partitioning over them. The vertical partitioning referred to the process of fragmentation
(see Definition 2). After fragmentation of the high-dimensional data, the author transformed
them into two disjoint subtables called fragments. Each fragment was comprised of a
smaller number of attributes having the same number of records. The second phase was
the application of k-anonymity over the fragments to anonymize them. Through this,
the burden of handling high-dimensional data decreased, while k-anonymity ensured
classification accuracy. Apart from its effectiveness, this technique still faced attribute
disclosure. Let us take the raw data in Table 2 and assume the application of these phases.
The fragmentation phase divided the raw data table (Table 2) into fragment 1 and fragment
2. Afterwards, the k-anonymity was applied on each fragment. Tables 3 and 4 depict the
anonymized fragments (fragment 1 and fragment 2, respectively). By relating the attributes
of Tables 3 and 4, we may observe the attribute clerk in fragment 2, ID = 9, and ID = 9 in
fragment 1 is working 36 h and has a marital status of married, is studying in junior sec.
and their gender is female. The fragment 1 and fragment 2 tables clearly show that this
scheme only restricts record linking attacks, not the attribute linkage attack.
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Table 2. High-dimensional raw data.

ID Age Gender Education Race Marital
Status

Family
Members

Working
Hours Job Class

1 40 M Grad school W Married 3 46 Engineer Y
2 43 F Bachelors A Unmarried 6 55 Writer N
3 36 M Senior sec. W Unmarried 2 48 Engineer N
4 58 F Junior sec. B Married 7 36 Clerk N
5 32 F Senior sec. W Unmarried 3 48 Writer N
6 39 M Grad school W Married 5 46 Engineer Y
7 26 F Grad school A Unmarried 5 60 Writer N
8 27 M Grad school W Divorced 2 48 Engineer Y
9 45 F Junior sec. W Married 6 36 Clerk N
10 24 F Senior sec. B Unmarried 4 36 Clerk N

Table 3. Anonymized fragment 1 (satisfying 2-anonymity).

ID Age Race Family
Members

Working
Hours Class

1 [27, 40] W [2, 5] [46, 48] Y
6 [27, 40] W [2, 5] [46, 48] Y
8 [27, 40] W [2, 5] [46, 48] Y
2 [26, 43] A [5, 6] [55, 60] N
7 [26, 43] A [5, 6] [55, 60] N
3 [32, 36] W [2, 3] [46, 48] N
5 [32, 36] W [2, 3] [46, 48] N
4 [24, 58] * [4, 7] 36 N
9 [24, 58] * [4, 7] 36 N
10 [24, 58] * [4, 7] 36 N

* undefined data.

Table 4. Anonymized fragment 2 (satisfying 2-anonymity).

ID Gender Education Marital Status Job Class

1 M Grad school Married Engineer Y
6 M Grad school Married Engineer Y
8 M Grad school Married Engineer Y
2 F University Unmarried Writer N
7 F University Unmarried Writer N
3 * Senior sec. Unmarried * N
5 * Senior sec. Unmarried * N
10 * Senior sec. Unmarried * N
4 F Junior sec. Married Clerk N
9 F Junior sec. Marriage Clerk N

* undefined data.

4. Proposed Model

Our proposed model consists of two phases. In the first phase, we separated the raw
data on the basis of gender. Afterward, we divided the separated raw data into small
subsets of fragments using vertical partitioning. In the second phase, we applied the
l-diversity with constrained slicing over the fragmented data. The detailed overview of our
proposed model is as follows.

4.1. Vertical Fragmentation

In our proposed model, we are dealing with high-dimensional data. A plethora of
recent work has shown that generalization results in information loss of a considerable
amount, especially in the case of high-dimensional data. To reduce the dimensionality
problem, we performed data fragmentation to get two smaller and disjoint fragments of
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high-dimensional data. For this purpose, we took the raw data and divided them into
different fragmented tables, while each fragment table maintained an equal proportion of
attributes. Our partition metric considered the information required by the classification
analysis. We made these fragments to enhance privacy and applied slicing in a more sophis-
ticated manner. Fragmented tables contained similar attributes, such as the placement of
QID attributes in the same fragmented table, while the placement of sensitive attributes was
in the second fragmented table. Thus, the information that was required for classification
should contain the high predictability of the sensitive attribute from attributes in each
fragment. In our proposed model, first of all, we divided the raw data table into two parts.
The division was done on the basis of gender (one table contained the males’ data while
the other contained the females’ data) denoted by Tm and Tf , respectively. Afterward, we
took male and female data tables and applied fragmentation. Fragmentation was done on
the basis of the similarity and correlation of QID and SAs attributes. We treated the entire
non-identifier attributes as the QID attributes. The information l2 was defined to control
the proportion of attributes in each fragment, denoted by W, which allocated attributes to
each fragment. l2 could also be treated as the weight of Ci. It is worth noting that the value
of l2 resided between 0 and 1; we should also limit the value of l1 to the same range such
that l2 could be effective in balancing the QID attribute across fragments.

Therefore, if an attribute Ai was assigned to a fragment Fj , the score of that assignment
could be computed as:
Compute

(Ai, Fj) = (1− Pj)× (Ci −Mij) (1)

where,
l1 = (1 − Pj)
l2 = (Ci −Mij)
Pj: Proportion of attributes in Fj
Ci: Correlation between Ai and cls
Mij = Average between Ai and all attributes in Fj

Pj =
Nj

Nasi

Ci = I(Ai, cls)

Mij =
1
|Fj|
× ∑

A∈Fj

I(Ai, A)

(2)

where
Nj: number of attributes in Fj;
Nasi: number of attributes assigned;
l(x, y): Correlation between attributes x and y
|Fj|: number of attributes in Fj.

At the start of the raw data partition, we assigned the class attribute to each fragment.
Two attributes containing the highest value of correlation among them were selected as
seeds and placed in the same fragments, such as F1 and F2. Then, we found the best
iteration assigned at each fragment, described in Algorithm 1, whereby by repeating this
process, we divided each fragment into multiple subfragments.
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Algorithm 1 Fragmentation of the raw data.

Require: D: raw data
A: attributes A1, A2 . . .
Cls: class attribute in raw data
S: set of attributes in raw data D

Ensure: F: fragmentation of raw data; divide into two fragments based on gender
1: for Genderdivision(Cls) do
2: F1 has males’ data and F2 has females’
3: F1 ←(Cls)
4: F2 ← (Cls)
5: end for
6: F1 ← F1 U (Seed1)
7: F2 ← F2 U (seed2)
8: while S 6= 0 do
9: for (f’ ∈ (F1, F2) do

10: cur score score (Ai, Fi’)
11: if curscore > max score t then
12: A’ ← Ai
13: F’ ← Fi
14: F ← F1, F2
15: end if
16: end for
17: end whileF

4.2. l-Diverse Constrained Slicing

Slicing is a novel technique for privacy-preserving data publishing. There are various
advantages of slicing compared to generalization. It gives more utility than generalizing
data. Slicing maintains more attribute correlations with the SAs. In slicing, we make
columns having more than one attributes for a clear separation of QID and SAs. We
used constrained slicing after fragmentation instead of generalization. In constrained
slicing, we used random permutation. In this process, we created buckets by horizontal
partitioning based on different ages. Moreover, we created columns having more than one
attribute to reduce the dimensionality of the data. Membership disclosure and gender-
based attacks were prevented using constrained slicing. In each subset, the authors placed
the equivalence classes in one group, a process named bucketization, and then records
were randomly shuffled to preserve the privacy in each bucket. We used l-diversity in
replacement of k-anonymity to mitigate the information loss. The proposed approach was
evaluated by using hospital-based datasets, and experiments showed that our l-diverse
slicing model prevented the high-dimensional data from membership disclosure and
gender-based attacks. We introduce a term known as constrained l-diverse slicing; this
ensures that the privacy of the sensitive value of any individual with a probability greater
than 1

l is protected from the adversary.
Handling of bucketed/sliced data: in bucketization, as well as in slicing, attributes

are split into two or more than two columns. For a bucket that contains t tuples and c
columns, we generated m tuples as follows: We first randomized the values in each column.
Then, we generate the ith tuple by linking the ith value in each column. We applied this
procedure to all buckets and all of the tuples from the bucketed/sliced table. This procedure
produced a linkage between the two columns randomly. From these tables, we are going
to illustrate an example of slicing. First, we take the raw data (Table 5) from the cardio
dataset after dividing the raw data based on gender. Table 6 contains the males’ data
and Table 7 consists of the females’ data. Afterward, we fragment the males’ data into
two fragments by vertical partitioning: fragment one has quasi-identifiers (Table 8) and
fragment two (Table 9) is related to sensitive attributes. Table 9 contains five QID attributes;
gender, height, DOS, age and SCP-codes. Table 9 also has five sensitive attributes: weight,
validated by human, HAXIS, hospital and the SCP- codes. Tables 10 and 11 have bucketed
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data tables of males’ fragment tables. We apply l-diversity and slicing on the bucketed
data tables (Tables 10 and 11). l-diversity requires that every bucket has at least l sensitive
values that are “well-represented” to ensure that each bucket contains at least l distinct
values of the sensitive attributes. The increment of distinct, frequency values decreases the
chances of a probabilistic attack Algorithm 2.

H(n) = −∑
s∈S

p(QID, s)log(p(QID, s)) ≥ log(l) (3)

where s is known as a sensitive attribute, P(QID, s) is the fraction of records in a QID-group
possessing the sensitive value s. The left-hand side is known as the sensitive attribute’s
entropy, which possesses the property of sensitive group values that are equally distributed
to produce large values. Hence, a larger threshold value indicates less certainty of inferring
especially sensitive values in a group. It is noticeable that the inequality is not dependent
on the selection of the log base. Assuming p(s− t, B) as the probability that t takes sensitive
value s provided that t is in bucket B, as explained by the law of total probability, the
probability p(t, s) is:

p(t, s) = ∑
B

p(t, B)p(s|t, B) (4)

Table 5. High-dimensional raw data.

Age Gender Height DOS Weigh T Hospital Heart-Axis SCP-Codes Validated by Human

64 F 160 4/12/1994 74 1 MID NORM TRUE
68 M 180 4/12/1994 86 1 LAD IMI TRUE
66 M 170 3/12/1994 89 1 MID NORM TRUE
76 M 163 3/12/1994 51 1 LAD ASM TRUE
51 M 168 8/3/1995 72 4 MID NORM FALSE
80 M 177 8/3/1995 66 2 MID NST TRUE
75 M 158 9/8/1995 48 1 ALAD ASMI FALSE
64 M 165 9/8/1995 93 1 ALAD NDT TRUE
65 F 155 8/4/1996 70 1 RAD INJALLA TRUE
50 M 167 8/4/1996 75 8 RAD ASMI TRUE
55 F 170 3/5/1998 73 7 NORM ASMI FALSE

Table 6. Males’ data table.

Age Gender Heigh DOS Weight Hospital Heart-Axis SCP-Codes Validated by Human

68 M 180 4/12/1994 86 1 LAD IMI TRUE
51 M 168 8/3/1995 72 4 MID NORM TRUE
64 M 165 9/8/1995 93 1 ALAD NDT TRUE
66 M 170 3/12/1994 89 1 MID NORM TRUE
80 M 177 8/3/1995 66 2 MID NST TRUE
76 M 163 3/12/1994 51 1 LAD ASM TRUE
75 M 158 9/8/1995 48 1 ALAD ASMI TRUE
50 M 167 8/4/1996 75 8 RAD ASMI TRUE

Table 7. Females’ data table.

Age Gender Height DOS Weight Hospital Heart-Axis SCP-CODES Validated by Human

64 F 160 4/12/1994 74 1 MID NORM TRUE
55 F 170 3/5/1998 73 7 NORM ASMI FALSE
65 F 155 8/4/1996 70 1 RAD INJALLA TRUE
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Table 8. QIDs of male data.

Age Gender Height DOS SCP-Codes

74 1 MID NORM TRUE
86 1 LAD IMI TRUE
89 1 MID NORM TRUE
51 1 LAD ASM TRUE
72 4 MID NORM TRUE
66 2 MID NST TRUE
48 1 ALAD ASMI TRUE
93 1 ALAD NDT TRUE
70 1 RAD INJALLA TRUE
75 8 RAD ASMI TRUE

Table 9. Sensitive attributes of males’ data.

BID (Age, Gender, Height) (DOS,SCP-Codes)

1

(31, M, 180) (4/12/1994, IMI)
(35, M, 168) (8/3/1995, NORM)
(33, M, 165) (9/8/1995, NDT)
(34, M, 170) (3/12/1994, NORM)

2

(56, M, 177) (8/3/1995, NST)
(57, M, 163) (3/12/1994, ASM)
(60, M, 158) (9/8/1995, ASMI)
(58, M, 167) (8/4/1996, ASMI)

Table 10. l-diverse sliced males’ QIDs table.

Weight Hospital H-Axis SCP-Code Validated

86 1 LAD IMI TRUE
72 4 MID NORM TRUE
93 1 ALAD NDT TRUE
89 1 MID NORM TRUE
66 2 MID NST TRUE
51 1 LAD ASM TRUE
48 1 ALAD ASMI TRUE
75 8 RAD ASMI TRUE

Table 11. l-diverse sliced males’ SAs table.

BID (Weight, Hospital, H-Axis) (SCP-Codes, Validated)

1

(86, 1, LAD) (IMI, TRUE)
(72, 4, MID) (NORM, TRUE)

(93, 1, ALAD) (NDT, TRUE)
(89, 1, MID) (NORM, TRUE)

2

(66, 2MID) (ASMI, TRUE)
(51, 1, LAD) (NST, TRUE)

(48, 1, ALAD) (ASMI, TRUE)
(75, 8, RAD) (ASM, TRUE)
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Algorithm 2 Fragmentation of the raw data

1: Procedure
2: Input: D: raw data
3: A: attributes A1, A2, ...
4: Cls: class attributes in raw data
5: S: set of attributes in raw data D
6: Output: F: Fragmentation of raw data

/*divide a class on gender-base into two fragments*/
7: for GenderDivision(Cls) do
8: F1 is males’ data and F2 is females’data
9: F1 ←− (Cls)

10: F2 ←− (Cls)
11: end for

/*func two attributes having the maximum correlation Seed1, Seed2*/
12: F1 ←− F1

⋃
(Seed1)

13: F2 ←− F2
⋃
(Seed2)

14: while(S 6= 0) do
/* A’ is used to store the highest accurate attribute in each fragment.*/

15: for(A ∈ S) do
/*F’ is for best fragment and represent F1, F2*/

16: for(F′ ∈ F1, F2) do
17: cur score()
18: if cur score > max score t then
19: A′ ←− A1
20: F′ ←− F1
21: F ←− F1, F2
22: Return F
23: end if
24: end for
25: end for
26: end while
27: end Procedure

Definition 8. Considering table T(j), a QI is a subset of the tuples in T(j). A part of T(j) consists
of disjoint QI groups whose union equals T(j). Every QI group is allocated an ID which is unique
in the partition. For every tuple t in T(j), t.QI(j) denotes the QI group that contains t.

Definition 9. The anonymize version T∗(j) of T(j) is calculated based on a division of T(j), and
has several characteristics:

1. T∗(j) contains a column Cg called “GID” and all tuples in T(j) except Cid.
2. Each tuple t ∈ T(j) has tuple t∗ ∈ T ∗ (j) such that t∗[Cs] = t[Cs], t[Cg] is the ID of the

hosting group of t in T(j), and t∗[Ciqi](1id) is an interval covering t[Ciqi]. The value of
t∗[Ciqi] also proves Property 4.

3. For each QI, quasi identifier of T(j), T∗(j) might contain any tuples t∗ such that t∗c[Cg] is a
value in the domain of Cs, t∗/c[Cg] equal to the GID of QI, and t ∗ [Ci//qi] (1 ≤ i ≤ d) is an
interval to Property 4.

4. All attributes in T∗(j) with the similar Cg have an similar value on QI attribute. These tuples
make a quasi-identifier group in T∗(j) whose ID is the Cg value in the group.

4.3. Protection Analysis

In this subsection, a protection analysis of our proposed model is performed to evaluate
the protection level against adversarial threats and the chances of occurrences of sensitive
attributes’ disclosures. The section explains how local bucketization acts in accordance with
l-diversity without causing any huge information losses. Afterwards, the section proves
that the local generalized and bucketized tables would also satisfy l-diversity by fulfilling
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the necessary conditions. Initially, we prove the protection against the identity disclosures
in a locally generalized table with the following lemma and corollary. l-diversity without
causing huge information losses. Afterwards, we shall prove that the local generalized
and bucketized tables would also satisfy l-diversity by fulfilling the necessary conditions.
Initially, we prove the protection against the identity disclosures in a locally generalized
table with the following lemma and corollary:

Lemma 1. For a locally bucketized table T; having tuples t ∈ T, the occurrence probability of
identity disclosures may be maximum as 1

GLE(t)
, where GLE(t) is the local equivalence group having

t tuples.

Proof. As per the Definitions 1 and 4, all the tuples in a same GLE(t), share the same QIDs
attributes values that are l-diverse. Therefore, an adversary would have to know at-least
GLE(t) possible tuples after linking QIDs values, then the probability of occurring identity
disclosure would be maximum 1

GLE(t)
.

Corollary 1. A locally bucketized table may be l-diverse, if and only if every GLE(t) has at least
l-diverse tuples.

Proof. For a given locally bucketized table, in which each has at least l-diverse tuples. This
means that, for any tuple t ∈ T, we have;

GLE(t) ≥ l (5)

where, |GLE(t)| is the size of local equivalence group having t.
Then,

1
GLE(t)

≥ 1
l

(6)

Now as per the Lemma 1, the occurrence probability of identity disclosure against any
tuple t is maximum 1

l . Hence it is proved that the complies with l-diversity.
Moreover, we discuss the level of protection for the sensitive attributes values in the

locally bucketized table. Let’s assume there is an adversary and he is aware of a tuple t’s
occurrence and its QIDs values. He tries to breach the privacy of that tuple by attempting
to infer its sensitive attributes values. Then the adversary would need to match the QIDs
values in the locally bucketized table.

Definition 10. (Linking tuples) For a given locally bucketized table Tbuc and any tuple t, a linking
tuple lt exists such that if it is a linking tuple of t only if each and every QIDs values of t are that of
lt.

Definition 11. (Linking buckets) For a given locally bucketized table Tbuc and any tuple t, a local
bucket lb within the attributes is the linking bucket of t only if there is any linking attribute of t in lb.

We express the probability of exposure of sensitive value ‘sv’ of ‘t’ as p(sv, t) and p(t, buc) as
the probability of t being in the bucket buc. Then the lemma and corollary are as follows.

Lemma 2. For given a locally bucketized table Tbuc having t tuples, the probability of occurring a
sensitive value ‘sv’of t is expressed by following expression.

p(sv, t) =≤∑
lb

p(t, lb)
lb(sv′)

mb
(7)

Where, lb(sv′ is the number of most occurring sensitive value in the linking bucket lb, and |lb|
is the size of lb.
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Proof. For obtaining the sensitive values sv, the adversary needs to calculate the occurrence
probabilities of t in each local bucket and t holding the sensitive values ‘sv’ within each
local bucket. Therefore, the adversary has;

p(sv, t) = ∑
B

p(t, lb)p(sv|t, b) (8)

where, p(sv|t, b) shows the probabilities that t holding the sensitive values ‘sv’ provided
that the tuple ‘t’ is in the local bucket b. The adversary skips the local bucket that does not
hold any linking tuple of t as follows.

p(t, b) = oi f /∈ lt ∈ B (9)

As per accordance with Definition 11, we have,

p(sv, t) = ∑
B

p(t, lb)p(sv|t, b) (10)

The most occurring sensitive value ‘sv′’ in lb is denoted as follows.

p(sv|t, lb) =
lb(sv)

lb
≤ lb(sv′)

lb
(11)

then,

p(t, sv) = ∑
lb

p(t, lb)p(sv|t, lb) ≤∑
lb

p(t, lb)
lb(sv′)

lb
(12)

5. Experimental Evaluation

In this section, we present the experimental evaluation of our proposed model. We
implemented our proposed model on real-world datasets to validate the outperformance
of our model in terms of better privacy and utility. Various evaluation matrices were used
to check the proposed model’s effectiveness concerning data utility and computational
efficiency. In this regard, the results were comparatively analyzed with an existing state-or-
the-art privacy model. The descriptions of the experimental evaluation is as follows.

5.1. Preparation and Setting

We implemented our proposed model in the Java programming language in the
Eclipse internet development environment (IDE) on a machine having a Core i5 processor
with 8 GB of RAM and a 1 TB hard disk. The operating system of the machines used
was Windows 10. In our experimental evaluation, we had no special requirements for
the dataset [25]. We were capable of processing any relational data with numerical and
categorical attributes to check the effectiveness of our model. However, we evaluated
our proposed model over hospital-based cardiology datasets. In our dataset, we collected
the raw data of 21,000 entries. Afterwards, we applied fragmentation and then l-diverse
slicing.

5.2. Evaluation Matrices

Data privacy is used to protect individuals’ information from an adversarial attack.
Several techniques have been introduced to ensure data privacy preservation. During this
process, the actual data are distorted with respect to privacy aims, to secure individuals’
information and to retain data utility. In this regard, we classified our microdata table
into two fragments, already discussed in detail earlier. For the classification, we trained
our classifiers, logistic regression (LR), support vector machine (SVM), and random forest
(RF), using Python with K-fold cross-validation on the proposed dataset. The more similar
and correlated classified data were stored in separate fragments, i.e., fragment 1 and
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fragment 2. We compared the classifiers based on three evaluation metrics: accuracy, K-fold
cross-validation, and ROC curves. The results are shown below.

5.3. Information Loss

Mostly information losses are measured on anonymized and actual datasets. In our
proposed technique, we are not using any generalization to anonymize data. There is a low
chance of information loss.

5.4. Counterfeits

Counterfeits play a vital role in data utility. Most of the existing data privacy tech-
niques used counterfeits or dummy data to ensure data privacy. Our scheme does not use
counterfeits to retain data utility.

5.5. Accuracy

Accuracy is one metric for evaluating classification models. Informally, accuracy is the
fraction of predictions a model gets right.

H(n) = ∑
s∈S

p(QID, s)log(p(QID, s)) ≥ log(l) (13)

For a binary classification, accuracy can also be calculated in terms of positives and
negatives as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives. Figures 2 and 3 shows the accuracy results of the three classifiers, where the
accuracy of the LR and SVM are almost the same, while the RF performs the best. Table 12
shows the accuracy results of the three classifiers, where the accuracy of the LR and SVM
are almost the same, while the RF has the best accuracy. K-folds: In general, to avoid over
fitting we use cross validation. In standard k-fold cross-validation, we partition the data
into k subsets, called folds.

TPR =
TP

TP + FN
(15)

False Positive Rate (FPR) is defined as follows:

FPR =
FP

FP + TN
(16)
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Figure 2. Comparison analysis of different classifiers over 10 folds.

Figure 3. Cont.
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Figure 3. l-diverse constraint slicing and base paper’s model comparison analysis of different
classifiers (LR, RF and SVM) over 10 folds.

Table 12. Accuracy comparisons of different classifiers.

Classifier Accuracy in (%)

LR 0.941
SVM 0.948
RF 0.992

After that, the algorithm is trained iteratively over k− 1 folds and the remaining fold
is known as test set or holdout fold. Hyper-parameters are allowed to be tuned with the
original training set by cross validation. It keeps the test set as a truly unseen dataset to
choose the final mode. A comparison of these classifiers LR, SVM and RF has been depicted
in Figure 3.
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5.6. K-Fold Cross-Validation

In general, to avoid overfitting. we use cross validation. In standard k-fold cross-
validation, we partition the data into k subsets, called folds. Then, we iteratively train the
algorithm on k− 1 folds while using the remaining fold as the test set (called the “holdout
fold”). Cross-validation allows us to tune the hyperparameters with only our original
training set. This allows us to keep our test set as a truly unseen dataset for selecting our
final model. Figure 2 shows the comparison of classifiers with 10 folds. Figure 3 shows the
l-diverse constrained slicing and base paper model comparison of classifiers with 10 folds.

5.7. Training Test Accuracy of RF

We trained our support vector machine (SVM) and random forest (RF) classifiers
using Python with a K-fold cross-validation on the above dataset to classify data based
on similarity. The more similar and correlated data are put in the separate fragments, i.e.,
fragment 1 and fragment 2. To evaluate the accuracy of the classifiers, the F-score was
adopted. The F-score, also called the F1-score, is a measure of a model’s accuracy on a
dataset. It is used to evaluate binary classification systems, which classify examples into
“positive” or “negative”. The F-score is a way of combining the precision and recall of the
model, and it is defined as the harmonic mean of the model’s precision and recall. The
F-Score formula is:

F1 =
2

1
recall ×

1
precision

= 2× precision× recall
precision + recall

(17)

We have trained our dataset and tried to find the accuracy. Figure 4 shows the result
of our proposed scheme and Figure 5 represents the accuracy graph of our proposed
technique. The graph clearly shows that the accuracy of tested model is almost near to the
trained model. Figure 6 depicts the comparison with our base approach. As can be seen,
due to effective use of constrained slicing, our approach outperforms the base approach in
terms of training and testing accuracy.

Figure 4. ROC curve comparisons of different classifiers.
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Figure 5. RF classification report.

Figure 6. RF classification report—l-diversity constrained slicing graph comparison with base paper
model.

We have trained our dataset and tried to find the accuracy. Table 13 represents the
accuracy graph of our proposed technique. The graph clearly shows that the accuracy of
tested model is almost near to the trained model.

Table 13. Training and test accuracy of RF.

Precision Recall F1-Score

0.97 0.95 0.98
0.95 0.98 0.97

5.8. l-Diverse Effect

As we know, l-diversity is used to protect sensitive attributes from an adversary
attack. As the value of “l” increases, the probability of adversary attack decreases. Figure 7
represents the l-diversity constrained slicing graph comparison with the base paper model.
With the increment of the bucket size, the level of diversity also increases. As the level
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of “l” increases, the probability to infer records decreases. This is where our approach is
well-suited to defend against attribute disclosure attacks.

Figure 7. l-Diverse effect—comparison with base paper.

5.9. Time Cost

Time cost plays an important role in deploying any kind of scheme. To find the
efficiency of a model or scheme, time is the main constituent. Figure 8 represents the time
cost graph of our technique compared with that of the base paper. We notice that the
time cost increases with respect to the data. If the amount of data increases, the time cost
also increases.

Figure 8. Time cost graph and comparison with base paper model.

6. Conclusions

Privacy-preserving data publication has shown widespread adoption in past and
ongoing decades. However, establishing a reasonable trade-off between data utility and
data privacy is still an open research question. Publishing data with high utility and enough
privacy becomes a critical job when we are dealing with data having great sparseness and
high-dimensional data. The anonymization of such high-dimensional data leads to a huge
information loss. A few privacy-preserving techniques and models have been proposed
so far for high-dimensional datasets. A state-of-the-art privacy model performed data
fragmentation and applied local recording to anonymize fragments smaller than the whole
high-dimensional dataset. The privacy model had some basic flaws; it was prone to attribute
membership attack and furthermore, local recording caused a huge information loss. In
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this paper, we mitigated these issues by dividing the high-dimensional data into gender-
based datasets and applied l-diverse slicing instead of k-anonymity. Experimentation on
real-world datasets showed that our proposed model outperformed a previous model in
terms of privacy and utility.
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