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Abstract: Generally, the action recognition task requires a vast amount of labeled data, which
represents a time-consuming human annotation effort. To mitigate the dependency on labeled data,
this study proposes Semi-Supervised and Iterative Reinforcement Learning (RL-SSI), which adapts
a supervised approach that uses 100% labeled data to a semi-supervised and iterative approach
using reinforcement learning for human action recognition in videos. The JIGSAWS and Breakfast
datasets were used to evaluate the RL-SSI model, because they are commonly used in the action
segmentation task. The same applies to the performance metrics used in this work-F-Score (F1) and
Edit Score-which are commonly applied for such tasks. In JIGSAWS tests, we observed that the
RL-SSI outperformed previously developed state-of-the-art techniques in all quantitative measures,
while using only 65% of the labeled data. When analysing the Breakfast tests, we compared the
effectiveness of RL-SSI with the results of the self-supervised technique called SSTDA. We have
found that RL-SSI outperformed SSTDA with an accuracy of 66.44% versus 65.8%, but RL-SSI was
surpassed by the F1@10 segmentation measure, which presented an accuracy of 67.33% versus 69.3%
for SSTDA. Despite this, our experiment only used 55.8% of the labeled data, while SSTDA used
65%. We conclude that our approach outperformed equivalent supervised learning methods and is
comparable to SSTDA, when evaluated on multiple datasets of human action recognition, proving
to be an important innovative method to successfully building solutions to reduce the amount of
fully labeled data, leveraging the work of human specialists in the task of data labeling of videos,
and their respectives frames, for human action recognition, thus reducing the required resources to
accomplish it.

Keywords: deep learning; human action recognition; data annotation; semi-supervised learning;
action segmentation

1. Introduction

The development of artificial intelligence techniques, more specifically Deep Learning
(DL), allows several applications to be used as facilitators or as support for the solution of
common everyday problems. Some of these problems may be related to the recognition of
human actions, such as instructions to perform a task, or the detection of faulty movements
in activities that require precision. In computer vision, the term “action recognition” is often
treated as a pattern recognition problem with an additional time dimension to recognize
human actions in videos [1].

The studies in the area of action recognition involve the analysis of images, under-
standing that each image is a frame under a temporal approach (the sequence of the frames,
a determining factor for action recognition), which can portray different contexts (such as
a person performing karate or fixing a car) and classes (in the karate context, each move
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performed by the person is a class). There are also models capable of automatically learning
the steps necessary to perform a task based on videos with narration and subtitles.

The action recognition task is part of the modernization and adoption of intelligent
systems in various sectors of society, in the context of Industry 4.0. There are a lot of
applications, such as surveillance [2,3], video retrieval [4,5], entertainment [6,7], human-
robot interaction [8,9], and autonomous vehicles [10,11].

These applications require large datasets to validate their effectiveness. So, the de-
velopment of several datasets, such as the COmprehensive INstructional Video Analysis
(COIN) [12] dataset, consisting of 11,827 videos and 180 tasks related to everyday life orga-
nized in a hierarchical structure (the contexts and their respective classes) with descriptive
annotation of actions and temporal boundaries. Another example is EPIC-KITCHENS [13],
a dataset consisting of 100 h of first-person videos, which depict various activities in the
context of cooking and are annotated based on the narrations of the participants.

The data present in these datasets can be classified into two groups: unlabeled and
labeled. Unlabeled data consists of samples without the presence of data containing
information (label) that defines its meaning. On the other hand, labeled data has this
information that classifies the data [14]. For example, an image of a kitchen sink is an
unlabeled data, but when we write data for this image with the information “sink”, it
becomes characterized as labeled. To construct labeled data, it is necessary to manually
map these features, which makes this process expensive for a human activity [15].

On the other hand, manual video labeling needs precise frame-by-frame labeling of
actions, which makes the process time-consuming and challenging [16]. Ref. [17] states
that manual video labeling isn’t feasible for large sets because it is expensive and requires
a domain expert (e.g., to annotate a karate video, you need an expert who understands
exactly what the moves are in order to correctly identify them in classes).

This restriction is even more significant for deep learning and artificial neural networks
(ANN) techniques, since they are mostly supervised, and require a large amount of labeled
data for training and subsequent image recognition [18]. As an example, to apply a
technique for recognizing actions performed in car maintenance tasks, each frame in a set
of videos must be labeled, identifying each maintenance context and class, substantially
increasing the difficulty in preparing datasets of videos to develop a machine learning
model for a specific task, since an extensive effort is required for annotation, considering
the amount of frames per second in a video, and its duration. So, in this research we aim
to provide an innovative approach that reduces the reliance on labeled data, commonly
required in supervised learning approaches, to build machine learning models to recognize
human actions in videos, based on the hypothesis of creating solutions with reduced
need for fully labeled data, thus mitigating this problem and advancing in the current
state-of-the-art.

In this context, this study proposes the Semi-Supervised and Iterative Reinforcement
Learning (RL-SSI), which adapts a supervised approach that uses 100% labeled data as part
of a semi-supervised and iterative approach using reinforcement learning for human action
recognition in videos.

In this way, the main contributions to the literature of this research are:

• to provide an innovative approach that reduces the reliance on having a large amount
of labeled data, commonly required in supervised learning approaches, to build
machine learning models to recognize human actions in videos;

• to adapt a supervised learning approach to a semi-supervised and iterative learning,
using the reward strength in reinforcement learning;

• to compare and assess the approach with equivalent learning methods with publicly
available datasets of human action segmentation, aiming at having similar or even
better performance, but with less annotated data.

This paper is organized into four parts. Section 2 presents related works, Section 3
outlines the methods used, Section 4 details our findings, and Section 5 presents our final
considerations and recommendations for future investigations.
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2. Basic Concepts

ANN are algorithms designed to model the structure or function of biological neural
networks, simulated computationally by programming. In short, they are a processor that
operates in parallel and a distributed manner through processing units that are neurons,
which have the propensity to store experimental knowledge (learning) to be used in the
desired application. During the learning process, there is an orderly modification of the
synaptic weights of the network [19].

Thus, the goal of an ANN is to acquire learning from patterns for existing problems.
That is, there must be some initial information so that the ANN can build and generate
patterns from that data [19]. In this sense, there are four forms of learning: supervised,
unsupervised, semi-supervised, and reinforcement learning, described briefly below:

• Supervised learning

To understand how supervised learning occurs, one can take as a reference the work of
a teacher: the teacher has the knowledge of the environment, but the neural network does
not. So, the teacher provides the knowledge so that the neural network can learn it and, in
the end, applies a test to check if there was learning [19]. In this approach, the existence of
the teacher is crucial, which in practice means that the input data must be properly labeled.
This is because, during the training process, there will be an expected output and, if the
output of the ANN does not match what is expected, the weights will be updated so that it
can learn the data patterns.

• Unsupervised learning

In this approach there is no teacher, that is, the input data is not labeled and there is
no expected output. As such, unsupervised learning entails an analysis of the structures
present in the data, the goal of which may be to reduce redundancy or to group similar
data [19]

• Semi-supervised learning

This approach resembles unsupervised learning because it looks for innate patterns in
the data. However, this method relies on a certain amount of labeled and unlabeled data
to complete its learning. In other words, it is an approach that uses concepts from both
supervised and unsupervised approaches [20].

• Reinforcement learning

Reinforcement learning (RL) is a computational approach to decision-making for
goal-defined problems [21], in which an artificial agent learns its choice policy from interac-
tions with the environment. At a given time interval, the agent observes the state of the
environment and selects an action, which, as far as it is concerned, affects the environment.
The agent earns a numerical reward for each action and updates its policy to maximize
future rewards. This sequential decision-making process is formalized as a MDP M: = (S,
A, P, R, γ) [21], where:

• S represents a finite set of states
• A represents a finite set of actions
• P: S × A × S →[0, 1] denotes state transition probabilities
• R: S × A → R denotes a reward function for each action performed in a given state
• gamma ∈ [0, 1] is the discount factor that balances the immediate and long-term

rewards.

The agent improves with experience to optimize its policy pi: S × A → [0, 1], usually
stochastic (random origin). The goal is to maximize the future reward with a cumulative
discount from the current step to the end of the learning episode [22]. In some ways, this
approach is similar to methodologies used in the process of animal training.

Table 1 displays the main characteristics and differences of each of the learning approaches.
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Table 1. Summarization of learning approaches.

Supervised
Learning is obtained based on the labeled data that is
presented to the RNA. Requires fully labeled data.

Semi-supervised
Part of the learning is obtained from the labeled data
and part from the innate analysis of the data. Requires
partially labeled data.

Unsupervised

Learning is achieved by analyzing the structures
present in the data, the goal of which may be to
reduce redundancy or to group similar data.
There is no need for labels.

Reinforcement
Learning

This approach is focused on the agent’s interaction
with the environment. With each action of the agent
in the environment, a feedback is generated, which
can be negative or positive. The goal of RL is to model
the reward, so that correct actions in the network have
a positive feedback and incorrect actions have negative
feedback. Requires a well-defined application context
such as states, actions, policy, and the reward.

3. Related Works

Action segmentation is a task linked to action recognition that aims to identify and
specify where each action present in a video starts and ends [16]. The Temporal Convolu-
tional Network (TCN) [23] is an action segmentation technique, which uses a hierarchy of
temporal convolutions to perform granular action segmentation or detection. The TCN uses
pooling and upsampling to efficiently capture long-range temporal patterns. Furthermore,
ref. [23] proves that TCN can capture action compositions and segment durations.

The Self-Supervised Temporal Domain Adaptation (SSTDA) [16] has reformulated the
task of action segmentation in view of cross-domain problems with domain discrepancy
caused by spatio-temporal variations, i.e., when there is a difference in action performance
because it is performed by multiple persons. The SSTDA contains two self-supervised
auxiliary tasks (binary domain prediction and sequential domain predictions), which work
cooperatively to align cross domains that have integrated spatial features with local and
global temporal dynamics features. This study has performed two experiments: one with
part of the labels for training (65% of the labels) to learn the adaptive features of each
temporal domain, and another with 100% of the labels.

The work of [22] has related the task of segmenting surgical gestures (when a gesture
starts and when it ends) and assigning a label to untrimmed videos (long videos that have
several classes in a single video with some data category specifying them). The innovation
of their approach is in sequential decision-making, where an intelligent agent is trained
using reinforcement learning. In other words, the agent interacts with the environment
(which, in this case, means the videos) and makes decisions (actions), which are related
to the temporal aspect and its classification. These actions receive positive or negative
feedback, according to the expected response, which characterizes it as a supervised
technique. Ref. [22] further argues that this methodology is integrated with temporal
consistency, which allows it to reduce excessive segmentation (when segmentation creates
many insignificant boundaries), which is common in the gesture segmentation task. In
short, the approach works in two steps: (i) use of TCN [23] to extract temporal features and
(ii) sending of these features to a Reinforcement Learning Network (RLN) modeled so that
positive and negative rewards are given according to expected output (ground-truth).

In this work, we present a technique that advances the state of the art by developing
a model that adapts a supervised approach to a semi-supervised and iterative approach
from a methodology applied to reinforcement learning. Among the techniques described
above, the methodology presented by [22] is considered fruitful for this proposal, given the
use of reinforcement learning and its potential of reward strength to measure the quality
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of the proposed labels. In addition, the model of [22] is supervised, which provides us
with an important basis of comparison to ascertain whether our proposed adaptation was
successful in achieving similarity or was superior by using only part of the labels.

4. Materials and Methods

The RL-SSI was applied to the model of [22] to be able to run the ensemble iteratively
with a reduced number of labels so that, at each completed iteration, valid labels are
generated. The methodology applied to Reinforcement Learning (RL) allows labels with
the highest degree of confidence, as measured through the reward function, to be moved to
training in the next iteration. In this way, the supervised nature of the approach described
by [22] is overcome, thus enabling a solution that requires less labeled data. To run the
RL-SSI, the dataset had to be split into three parts:

• Training part: it contains the original labels from the dataset for the training step in
the first iteration. In the following iterations it receives the best labels generated in the
flexible data part.

• Flexible data part: it contains predicted data, and from this predicted data the best 25%
will be moved to the training part in the next iteration. The criterion used to obtain
the top 25% best labels is based on the strength of the RL reward.

• Testing part: it contains a fixed dataset on which the evaluation metrics will be measured.

The decision to move 25% of the generated labels per iteration, was an empirical choice
based on experiments because since the experiment is run in iterations, it is important to
move a portion of the best-generated labels to be able to iterate again in cycles.

Figure 1 illustrates the operation of the parts of RL-SSI over the course of iterations.
As can be seen practically, Part 1 increases by absorbing the 1st quartile of Part 2 over the
iterations, i.e., the 25% best labels generated and ranked by the reward function. As far as
it is concerned, Part 3 will always be the same for evaluating metrics across all iterations.

Figure 1. RL-SSI Data Structure.
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In Figure 2 it is possible to visualize the standard execution flow of the RL-SSI applied
to the model proposed by [22]. As can be seen, our proposal does not change or modify the
TCN and RLN of the original model. However, our methodology RL-SSI exploits the reward
strength of RL by using it as a criterion to select the top 25% of labels in each iteration.

Figure 2. RL-SSI standard execution flow.

By establishing the three-part structure, we can see that the training part grows by
absorbing the labels from the flexible data part over iterations, i.e., the 25% best labels
generated and ranked by the reward function. As far as we are concerned, the testing
part will always be the same to evaluate the metrics in all iterations. The standard RL-SSI
execution flow does not alter or modify the TCN and RLN of the original model—that is,
they function as independent blocks in the flow. However, the methodology proposed
by the RL-SSI exploits the strength of reward of the RL by creating an iterative loop that
changes the technique to a semi-supervised approach. As the experiment was designed to
run cyclically and iteratively, a stopping condition needed to be developed to terminate
the execution. This condition is reached when there is no improvement in up to three
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consecutive runs, since the experiment loses the ability to present good results when
subsequent iterations receive incorrect labels. In each interaction, three steps take place:
(1) training of the TCN and RLN modules; (2) generation of valid labels; (3) a testing step
where the iteration metrics are measured and the stopping condition is tested. When the
stopping condition is not met in the testing step, the next iteration is started and the best
labels from the generated flexible data are incorporated into the next training step.

4.1. Datasets

This research chose to use two datasets from the action segmentation task: the JIG-
SAWS and the Breakfast sets. The JIGSAWS is composed of visual data (videos), sensor
data from the robotic hands (position, velocity, and angle), and manual annotation. It was
collected using the Vinci Surgical System, operated by eight surgeons of different levels of
experience load (hours of surgery already performed). For this reason, although the images
depict robotic hands, it is possible to consider that the videos show human actions since
they are reproducing and mimicking the movements performed by surgeons.

The footage features three elementary surgical activities which are Suturing, Needle
Passing, and Knot Tying and the dataset has a total of 15 classes not necessarily present in
the three activities [24]. There are a total of 103 videos with about 2 min long in average,
totaling about three hours of recording. This set was used in the work of [22], making it
the primary target of this research, since the proposed adaptation, to be described in the
following sections, will be applied to it. The model presented in the work by [22] used only
the Suturing context, thus the experiment developed by this research will use the same
context to maintain the same comparison basis.

Breakfast is the largest dataset of human action segmentation tasks, with 77 h of record-
ings, more than four million frames and 10 contexts (Coffee, Milk, Juice, Tea, Cereals, Fried
Eggs, Pancakes, Salad, Sandwich, and Scrambled Egg), totaling 48 classes not necessarily
present in all contexts. The videos were recorded by 52 people in 18 kitchens, shot by three
to five cameras. To reduce the size of the data, the videos were resized to 320 × 240 pixels
with 15 FPS [25].

Because it is the largest dataset for human action segmentation tasks, it makes it
possible to perform a large amount of experiments. Moreover, it is used by other researchers
on the same task (segmentation), providing this research with a rich base of comparison of
results. For these reasons this set was selected for the experiments.

4.2. Experiment Settings

To ascertain whether the proposed adaptation of the supervised model to a semi-
supervised and iterative technique does not negatively impact the results, experiments
were developed with two datasets—the JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) [24] and the Breakfast [25]. Furthermore, the purpose of using two datasets is
to gauge whether the RL-SSI performs well with data from different application areas (in
this case, surgical gestures and breakfast preparation). Our interest in the JIGSAWS stems
from the fact that it is the dataset used in [22], so it is possible to directly compare the gains
and losses of applying the RL-SSI methodology to the supervised technique by making it
semi-supervised and iterative. It is important to point out that only the Suturing context
was used, totaling 39 videos. On the other hand, Breakfast was chosen for being the largest
dataset mapped to the action segmentation task, which guarantees numerous experiments,
besides being used by several references in the state of the art, which allows us to have
concrete bases to compare the results of the RL-SSI. Thus, experiments were performed
with all the contexts in the dataset, that is, 1989 videos. The experiments performed
with Breakfast used, on average, 55.8% of the original labels reserved for training, while
the JIGSAWS experiments used 65%. The execution of the experiments was performed
individually by each context of the Breakfast and the Suturing of the JIGSAWS, for a total
of 11 experiments. Each experiment was run with an NVIDIA Tesla P100- SXM2 video card
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and the average execution time for each experiment (training, inferences in all iterations)
was approximately three days.

4.3. Implementation

“For the implementation of the RL-SSI, some hyperparameters were established.
The target metric used to test the stopping conditions of the experiment was F-Score
(F1), with a threshold of 10%, reached when there are three consecutive lower values
in the iterations. The work of [26] has introduced this metric to the stock segmentation
task because it is efficient in classification and segmentation tasks with three important
features: it penalizes excessive segmentation errors; it does not penalize small temporal
changes between predictions and expected responses, given the variability that can occur in
processes with different human annotators (for example, one annotator may consider that
the beginning of the action takes place in frame 50, while another annotator may consider
that this same beginning occurs in frame 53); and scoring depends more on the number of
actions, not their size. Furthermore, ref. [26] states that the F1 values of the segments are
better represented qualitatively.

A significant element for this choice is that it is the most relevant metric in segmenta-
tion challenges, such as the Davis Challenge [27], which uses it to rank the best works in the
domain of multiple object segmentation in videos. Since the RL-SSI exploits a methodology
applied to RL of the model itself without changing it internally, the parameters originally
used in [22] have been kept. The TCN has 300 epochs, a learning rate of 0.00001, a batch
size of 1, and a weight decay of 0.0001. The RLN, on the other hand, was implemented
with the Python programming language and the OpenAI Baselines library [28]. The policy
network Trust Region Policy Optimization (TRPO) is of a hidden layer with 64 hidden
units, and the time steps of TRPO were set to a value of 500,000. The discount factor gamma
and the reward weight alpha were kept as 0.9 and 0.1, respectively.

Another important parameter of [22] is the step type, which can be short (ks) or long
(kl). The RLN will classify a number of frames depending on the steps set. This binary
strategy enables the agent to change the step size based on confidence in the label of the
action to be made. The agent can adopt the smaller step when the state is not discriminative
enough, or the larger step otherwise. In each action of the agent, k frames are labeled with
the same class, explicitly enforcing temporal consistency.

However, the values of the ks and the kl needed to be recalculated, since they were
defined as the size of the smallest action in the context and the shortest average action
length for each class, respectively. The values calculated for each context of a dataset can
be seen in Table 2.

Table 2. RLN Steps Values.

Datasets Contexts Short Step Long Step

Breakfast

Coffee 2 81

Milk 29 128

Juice 25 80

Tea 33 104

Cereals 20 80

Fried Eggs 16 83

Pancakes 10 82

Salad 8 110

Sandwich 30 94

Scrambled Egg 19 88

JIGSAWS Suturing 4 21
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5. Results and Discussion

Table 3 highlights the best results of the RL-SSI metrics for the experiment with
JIGSAWS (the best results are in green). Since the model of [22] has two modules, one
from TCN and one from RLN, we can benchmark the results produced in both. We can
observe that RLN generated good results, although TCN performed even better for both
accuracy and segmentation metrics. This highlights that, in the proposed adaptation,
TCN has better benefits from the iterative semi-supervised process on this dataset. Even
with this performance for TCN, RLN is critical in the proposed adaptation given that the
applied methodology exploiting reward strength is crucial for the iterative process to be
semi-supervised, and in this model under study this occurs after the action of the TCN.

Table 4 compares the model of [22] with the RL-SSI (the best results are in green). We
can observe that RL-SSI obtained better results in the metrics Edit Score and F1@10,25,50,
losing only in Accuracy to the results of the reference technique [22]. However, similarly to
our prior findings, the best results of the iterations occurred in TCN and, in this case, RL-SSI
outperformed in all quantitative metrics the model of [22]. Both RL-SSI and the model
of [22] used the Suturing context of JIGSAWS, but [22] is a supervised approach using
100% of the labels, while RL-SSI used only 65% of them. Therefore, we conclude that the
RL-SSI accomplishes its goal, that is successfully adapting a supervised technique to a semi-
supervised and iterative technique, and it outperforms the results of the base technique on
all quantitative metrics in the TCN results and on three of the four RLN metrics.

Tables 5–14 summarize the results of the RL-SSI in each Breakfast context (the best
results are in green). We can observe that, unlike the JIGSAWS experiment, RLN was
predominantly better than TCN in relation to the accuracy metrics and always better in
relation to the segmentation metrics. In some cases such as in the context of Coffee, Tea,
and Fried Egg the accuracy of TCN was slightly better as the differences were no more than
two percentage points.

The best values varied between the first and third iteration, while the maximum
amount of iterations of the experiments varied from four to six. Another notable pattern is
that the best experiment was always the third, counting inversely from the last iteration.
The Juice context obtained the best accuracy results and the Cereals context obtained the
best results in relation to the segmentation metrics. The standard deviation for the accuracy
metric was 6.37, which is lower than that of the Edit Score and F1@10,25,50 segmentation
metrics, which were 14.28 and {14.21, 15.69, 15.05}, respectively. This highlights a greater
variation with the segmentation metrics with respect to accuracy. Table 15 presents the
result of each context with its best iteration, maximum amount of iterations, the arithmetic
mean, and the standard deviation of all contexts to consolidate the comparative results of
RL-SSI in the experiments with the Breakfast dataset.

Table 16 presents the comparison of the results of SSTDA [16] and RL-SSI (the best
results are in green). As a result, RL-SSI outperformed SSTDA by obtaining an accuracy
of 66.44% versus 65.8% and F1@50 of 63.19% versus 62.9%. However, RL-SSI was outper-
formed by SSTDA in the Edit metrics by obtaining 60.36% versus 69.0%, F1@10 of 67.33%
versus 69.3%, and F1@50 of 47.86% versus 49.4%. When visualizing the standard deviation,
it is possible to see that there was little variation in all metrics when values are below one,
except for the Edit Score that obtained 4.32.

Table 3. RL-SSI in the JIGSAWS Dataset.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 86.13 99.0 97.32 96.27 89.42 76.56 92.67 93.34 90.63 84.46
2 87.59 98.13 97.99 94.72 92.77 76.78 92.73 91.87 90.86 85.82
3 87.57 99.0 99.49 95.40 87.68 77.53 92.15 92.75 91.01 85.73
4 88.09 99.0 98.43 95.40 91.34 77.51 92.48 93.29 90.61 85.82
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Table 4. Comparison of [22] and RL-SSI.

TCN RLN

Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
Liu e Jiang 81.71 86.63 91.0 89.5 82.0 81.43 87.96 92.0 90.5 82.2

RL-SSI 87.57 99.0 99.49 95.40 87.68 77.53 92.15 92.75 91.01 85.73

Table 5. RL-SSI in the Coffee context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 66.07 64.03 70.92 68.26 58.07 64.19 68.78 75.83 74.21 59.16
2 63.22 57.86 66.51 64.58 52.44 63.34 63.12 70.49 68.83 55.18
3 64.13 56.41 64.29 59.94 51.03 64.15 66.35 72.04 69.78 57.56
4 64.78 47.52 56.49 55.59 49.19 63.28 59.22 66.61 65.98 57.32

Table 6. RL-SSI in the Juice context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 78.35 48.54 59.33 56.88 48.48 78.85 67.38 73.91 72.52 60.78
2 76.7 49.5 58.9 56.59 48.37 76.94 64.77 72.79 71.54 58.76
3 77.94 46.4 56.03 52.53 43.37 78.06 62.31 71.08 68.74 56.34
4 79.42 46.38 56.23 54.85 46.57 79.33 66.28 73.41 72.37 63.75

Table 7. RL-SSI in the Milk context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}

1 63.24 37.56 49.2 43.66 34.79 62.93 65.15 73.03 68.68 54.28
2 63.39 32.6 44.61 40.12 29.48 62.08 67.36 75.51 69.76 50.04
3 63.89 35.18 47.05 40.38 30.31 61.73 65.81 73.67 68.68 49.52
4 59.81 33.97 44.53 40.25 27.78 61.52 65.49 73.2 68.51 49.55
5 64.48 26 38.1 35.2 21.66 65.39 64.64 74.8 70.45 55.12

Table 8. RL-SSI in the Tea context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}

1 64.7 50.05 60.02 57.67 50.79 62.6 67.26 74.43 71.27 57.11
2 63.54 49.28 57.75 54.57 39.95 61.62 67.17 71.97 66.16 53.77
3 65.7 49.09 57.3 53.69 43.72 64.91 71.52 77.79 74.56 58.15
4 65.14 44.16 52.45 49.29 40.33 64.67 67 74.38 70.6 58.76
5 62.97 43.95 53.56 50.28 40.33 61.07 65.31 71.34 68.62 51.49
6 65.09 48.48 58.58 56.68 43.14 62.86 66.77 74.43 70.43 56.15

Table 9. RL-SSI in the Cereals context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 69.8 68.1 73.3 70.30 58.0 69.5 75.6 80.6 76.8 62.4
2 69.0 54.6 63.5 58.35 43.6 69.8 76.1 82.5 78.7 61.5
3 67.4 45.3 54.1 50.56 38.7 68.5 73.1 79.8 76.2 59.8
4 67.3 45.7 54.7 51.38 36.7 68.3 75.3 80.8 76.8 57.5
5 66.7 44.4 53.6 49.64 37.4 67.6 73.9 79.4 74.8 57.7
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Table 10. RL-SSI in the Fried Egg context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 71.38 41.45 51.58 47.09 36.34 70.8 50.19 58.91 54.33 40.11
2 68.95 37.43 46.13 39.54 25 68.52 51.12 58.47 50.63 36.94
3 68.16 30.36 39.84 33.86 25.84 66.79 45.01 54.72 48.82 35.06
4 69.73 31.56 41.1 35.46 24.84 69.81 47.4 56.45 50.91 36.72

Table 11. RL-SSI in the Pancake context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 62.09 31.4 41.13 37.23 24.57 61.29 37.99 47.51 43.44 30.16
2 63.67 29.21 36.04 30.59 20.59 63.62 36.67 43.83 38.89 26.24
3 63.65 28.27 37.04 32.52 24 64.38 35.56 43.63 40.39 29.55
4 61.13 24.87 33.28 30.3 19.83 61.88 34.24 43.3 39.03 27.29

Table 12. RL-SSI in the Salad context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 58.95 35.04 38.52 29.06 17.44 59.61 43.56 46.64 38.02 22.94
2 61.88 37.88 39.06 31.5 18.47 62.05 44.83 44.84 35.87 22.92
3 61.59 32.38 35.89 31.3 17.44 61.9 43.85 46.37 40.32 23.45
4 61.76 32.32 36.17 30.08 16.82 62.86 41.89 44.36 37.92 22.95

Table 13. RL-SSI in the Sandwich context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}

1 71.68 40.52 52.37 49.76 40.67 72.26 53.95 65.73 63.06 50.23
2 70.21 27.14 39.38 37.58 26.05 73.93 52.68 64.91 62.7 53
3 73.4 39.47 49.52 48.89 39.75 73.52 59.18 68.84 66.71 54.79
4 73.65 31.37 43.15 39.74 31.83 74.19 55.96 66.56 62.39 54.47
5 74.08 30.06 42.45 38.29 27.41 75.08 53.38 65.12 62.84 50.19
6 74.41 34.56 44.67 43.56 32.42 75.25 53.1 64.15 61.57 48.97

Table 14. RL-SSI in the Scrambled Egg context.

TCN RLN

Iteration Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
1 56.31 30.56 38.32 33.94 24.46 56.25 42.63 49.19 42.67 32.16
2 57.55 28.25 35.75 31.41 21.73 57.17 39.68 47.57 42.85 31.66
3 53.83 24.85 31.34 24.74 17.13 53.49 37.66 43.43 36.23 26.91
4 57.67 29.13 35.85 30.57 20.6 57.8 37.64 45.68 39.23 26.34
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Table 15. RL-SSI in all breakfast contexts.

Contextos Best Iteration Max. Iteration Accuracy Edit Score F1@{10,25,50}

Coffe 1st 4 64.19 68.78 75.83 74.21 59.16
Juice 1st 4 78.85 67.38 73.91 72.52 60.78
Milk 2nd 5 62.08 67.36 75.51 69.76 50.04
Tea 3rd 6 64.91 71.52 77.79 74.56 58.15
Cereals 2nd 5 69.8 76.1 82.5 78.7 61.5
Fried Egg 1st 4 70.8 50.19 58.91 54.33 40.11
Pancakes 1st 4 61.29 37.99 47.51 43.44 30.16
Salat 1st 4 59.61 43.56 46.64 38.02 22.94
Sandwich 3rd 6 73.52 59.18 68.84 66.71 54.79
Scrambled Egg 1st 4 56.25 42.63 49.19 42.67 32.16
Arith. Mean - - 66.44 60.36 67.33 63.19 47.86
Standard Deviation - - 6.37 14.28 14.21 15.69 15.05

Table 16. Comparison of SSTDA [16] and RL-SSI.

Acc Edit F1@{10,25,50}
SSTDA 65.8 69.0 69.3 62.9 49.4
RL-SSI 66.44 60.36 67.33 63.19 47.86
Standard Deviation 0.32 4.32 0.99 0.15 0.77

Thus, we can observe that RL-SSI outperformed SSTDA with a difference of 0.76%
in accuracy, and with 0.29% for the F1@25 metric. However, it lost performance in the
quality of segmentation with the Edit Score metric by 8.64%, by a difference of 2.03% for
the F1@10 metric, and, for the F1@50 metric, by 1.54%. However, RL-SSI used only 55.8%
of the labeled data, while SSTDA used 65% of them.

The experiments with the Breakfast dataset revealed that the application of the RL-SSI
model applied in the transformation of the supervised approach, based on [22], into a
semi-supervised and iterative one, was also successful in different contexts of human action
recognition, in this way expanding the application of the proposed method. Moreover,
the comparison with the SSTDA technique shows that RL-SSI presents competitive results
using a reduced number of labels. This work advances the state-of-the-art by obtaining
results that are competitive with fully supervised learning techniques, presenting the
important characteristic of creating a solution that does not need to use a large number
of labels.

6. Conclusions

The experiments with JIGSAWS have revealed that RL-SSI, which has successfully
adapted a supervised technique to a semi-supervised and iterative technique, outperformed
in all quantitative metrics the technique of [22] using only 65% of the annotated labels. On
the other hand, the results of the Breakfast experiments show that RL-SSI is also successful
for other action contexts, thus expanding the proposal to other applications. The RL-SSI
proved to be competitive by overcoming the SSTDA with a difference of 0.76% in accuracy
and 0.29% in F1@25. On the other hand, it underperformed in the segmentation quality
with the Edit Score metric by 8.64%, the F1@10 metric by a difference of 2.03%, and F1@50
by 1.54%. However, it is worth noting that RL-SSI used only 55.8% of the labels, while
SSTDA used 65%.

To mitigate the dependence on big amount of labeled data for building machine
learning models for human action recognition, which is an existing gap in the literature, the
experimental results of RL-SSI demonstrate that our approach outperformed equivalent
supervised learning methods and is comparable to SSTDA when evaluated on multiple
datasets, having an important innovative aspect by proving to be successful in its purpose
of building solutions to reduce the need for fully labeled data, leveraging the work of
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human specialists in the task of data labeling, thus reducing the required resources to
accomplish it.

In future research, we envision application of the RL-SSI methodology in other su-
pervised techniques, keeping its basic structure: execution in iterations, division of the
data into three pieces (training, flexible data, and testing), and finally, some mechanism to
measure and move the best-generated labels. As well as the possibility of making changes
to the policy network aimed at optimizing the reward strength in the RLN. Finally, another
recommendation would be to investigate the effect percentages of labeled data, such as
20%, 40%, 60%, and 80% of the original labeled data.
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