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Abstract: Infertility is a common problem across the world. Infertility distribution due to male factors
ranges from 40% to 50%. Existing artificial intelligence (AI) systems are not often human interpretable.
Further, clinicians are unaware of how data analytical tools make decisions, and as a result, they
have limited exposure to healthcare. Using explainable AI tools makes AI systems transparent and
traceable, enhancing users’ trust and confidence in decision-making. The main contribution of this
study is to introduce an explainable model for investigating male fertility prediction. Nine features
related to lifestyle and environmental factors are utilized to develop a male fertility prediction model.
Five AI tools, namely support vector machine, adaptive boosting, conventional extreme gradient
boost (XGB), random forest, and extra tree algorithms are deployed with a balanced and imbalanced
dataset. To produce our model in a trustworthy way, an explainable AI is applied. The techniques
are (1) local interpretable model-agnostic explanations (LIME) and (2) Shapley additive explanations
(SHAP). Additionally, ELI5 is utilized to inspect the feature’s importance. Finally, XGB outperformed
and obtained an AUC of 0.98, which is optimal compared to existing AI systems.

Keywords: explainability techniques; extreme gradient boosting (XGB); SMOTE; male fertility

1. Introduction

Pregnancy is a natural process that succeeds within three months to the end of 1 year
after conception [1]. In previous decades, couples failed to conceive due to impaired
reproduction, singly or with a partner. The World Health Organization (WHO) suggested
that about 48.5 million couples are affected by infertility, and 40 to 50 percent of cases occur
due to male-related factors [2,3]. Environmental, occupational, and lifestyle factors are
profound causes that may be the reason for increasing male infertility [4]. Key lifestyle
factors include smoking, liquor intake, advanced paternal age, stress, food habit, caffeine
consumption, mobile usage, and lack of sleep. These factors are easily modified and are the
utmost reason for concern [5]. Several studies have been performed to examine the effects
of these factors, and their negative impact may well be mostly overcome. Hence, more
awareness and early prediction are potential solutions for male reproductive disorders.

AI systems have significantly contributed to different healthcare areas such as genetics,
urology, radiology, oncology, and many more. Reproductive medicine is not different,
where predictive systems are helpful for problem analysis [6,7]. However, the sheer volume
of iterations and hyperparameters make AI systems challenging to evaluate and grasp.
They are initially evaluated depending on their performance on the dataset under study,
which must be more compelling for medical professionals and patients. As a result, it is
restricted to the technical community. Because of this, we refer to such tools as ‘black boxes’
regardless of their performance quality compared to decision-making processes used in a
medical setting. In other words, without medical implications, trust does not exist [8,9].
Due to these reasons, AI systems need to be comprehensible and interpretable to analyze
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data and make judgments that would enhance patient care [10,11]. With the help of these
systems, we can enhance our ability to discover new biological phenomena [12,13].

In the last few decades, various studies have used different types of data, either image
or behavioral/lifestyle, and environmental factors. For example, Ma et al. [14] recently
performed a study to develop a model for predicting seminal quality where data balancing
and classification were a prime concern. The ESLSMOTE approach is used to handle data
balancing along with BPNN, ADA, and SVM classifiers. The maximum accuracy of 97% was
reported (using ADA). Yibre and Kocer [15] developed a model based on a feed-forward
neural network to predict male fertility. The authors reported that the proposed model
had achieved accuracy and AUC of 97.50% and 97%, respectively. In addition, SMOTE
technique is used to overcome data imbalance issues. Dash and Ray [16] performed the
comparative study using eight classifiers: soft voting, DT, NB, LR, DT bagged, RF, and
ET. The maximum accuracy of 90.02% was achieved by ET. Ahmed and Imtiaz [17] used
the NB classifier for predicting male fertility and reported an accuracy of 87.75%. Engy
et al. [18] conducted a comparative analysis using five AI techniques: ANN, ANN-GA,
DT, SVM, and ANN-SWA for male fertility detection, and their reported accuracies were
90%, 95%, 88%, 95%, and 99.96%, respectively. Candemir et al. [19] used four Machine
Learning (ML) techniques, such as MLP, SVM, DT, and FRBF, to detect male fertility. Of all,
the FRBF classifier outperformed, and 90% accuracy was reported. Soltanzadeh et al. [20]
performed a comparative analysis among four algorithms: NB, NN, LR, and Fuzzy C-
means. The authors have used a filtering method and compared performance before and
after that application. Simfukwe et al. [21] used NB and ANN to predict male fertility. In
total, a 97% training accuracy was reported for both algorithms during the training phase.
Palechor et al. [22] used classification and clustering methods to identify male fertility.
J48, SMO, NB, and lazy IBK algorithms were considered for classification, whereas the
simple K-means algorithm was used for clustering. The authors used TP and FP to identify
model performance. Rhemimet et al. [23] developed individual systems for detecting male
fertility using regression, classification, and clustering methods. DT and NB have been
used for classification with 61.36% and 88.63% accuracy. Similarly, K-means and O-means
have been applied to make a cluster, and the reported accuracies of 100% and 50% were
noted. Finally, GLM and SVM were used for regression, and 12.34% and 15.08% accuracy
were reported. Bidgoli et al. [24] used four methods: optimized MLP, NB, DT, and SVM,
and the models obtained an accuracy of 93.3%, 73.10%, 83.82%, and 80.88%, respectively.
Sahoo and Kumar [25] experimented to identify the importance of the feature selection
method along with five algorithms. DT, MLP, SVM, SVM-PSO, and NB were used as
classifiers, and they performed relatively similarly. The maximum accuracies of 89%, 92%,
91%, 94%, and 89% were reported using feature selection. Girela et al. [26] used the ANN
model to detect seminal quality, and 97% accuracy was reported on the training dataset.
Gil et al. [27] used three ML algorithms, such as SVM, MLP, and DT, to identify sperm
concentration and morphology. The authors reported 86%, 86%, and 84% accuracies for
sperm concentration, whereas 69%, 69%, and 67% accuracies were reported for sperm
morphology. Wang et al. [28] used a clustering-based decision forest to predict the seminal
quality. The authors compared the proposed model performance with SVM, MLP, and LR.
Of all, the CBDF algorithm outperformed with an AUC of 80.5%. Roy and Alvi [29] used
four AI tools, KNN, SVM, LR, and DT, to detect male fertility. They reported that KNN
performed well, with an accuracy of 90%.

In the literature mentioned above, authors have worked on male fertility detection by
considering only improvement accuracy level and imbalanced dataset handling [14–29].
Unless the previously developed systems for predicting male fertility performed well, the
articles in which system explainability issues are discussed have yet to be identified. As a
result, most AI systems are not accepted in the healthcare setting. Very briefly, many authors
not only used modifiable factors, but sperm images were also taken into consideration.
For both cases, sperm concentration and morphology are gold standards in male fertility
prediction. It is prudent to comprehend which factors are critical and determine their
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impact on changes in developed systems. For this reason, explainability is a fundamental
tool to gain insights into the model.

This paper presents an explainable AI (XAI) system for prediction analysis of male
fertility for early-stage diagnosis using modifiable factors (lifestyle/environment). Our
prime objective is to comprise a fertility risk predictive system for males. In this study,
the explainability of AI system enables the discovery of risk factors which contribute
to transparent and traceable explanations for decision-making criteria using AI. To the
best of our knowledge, this is the first article where explainability techniques are used
for predictive analysis of male fertility. This explanation provides significant benefits
for patients and clinicians to understand the ways in which each feature contributes
to the prediction. In line with the above-mentioned rigorous literature review, the key
contributions in this research are summarized as follows:

• To detect male fertility, a conventional XGB-SMOTE-based generalized AI system is
proposed;

• Hold-out and five-fold cross-validation schemes are utilized for system testing;
• Benchmarking of the interpretability of the proposed system is performed via imple-

mented XAI tools;
• To assess the performance of the proposed system, a comparative analysis is performed

with existing AI systems.

The remaining article is structured as follows: Section 2 describes the model develop-
ment process for male fertility prediction. It also includes an overview of the XGB and XAI
approaches. Section 3 describes the experimental setting, concentrating on the dataset and
assessing the effectiveness of the suggested strategy. The model’s testing and comparison
to alternative strategies are shown in Section 4 of the article. The final concluding remarks
are provided in Section 5.

2. The Model Development

In this article, an ML-assisted XGB-SMOTE algorithm for predicting male fertility has
been proposed.

The dataset is represented as D = {(xm, ym), i = 1, 2, . . . , N}, where xm = [”xm1, xm2, . . . ,
xmp”], and xm is a row vector of input features having real values.

The output or target class is represented as ym ∈ {0, 1}. This means that it is a binary
classification problem that can generate a system, y = f (x), depending on training data
points. Now, for prediction (ŷk = f (xk), we can apply the system to the test data points, and
the predicted output is ŷk, which is the same as yk. The first challenge in AI model design
is the data processing and classifier selection. We are dealing with imbalanced data and a
small number of samples. In other words, imbalanced data is a common issue, particularly
in medical datasets. Hence, our prime objective is to balance our dataset and then predict
patient classes with an ML classifier that can predict male fertility. Figure 1 depicts the
prediction of male fertility using the proposed XGB-SMOTE method. Additionally, XGB
also ensures the explainability of processing, resulting in reliable tools.

Numerous approaches are listed in the literature for dealing with imbalanced data and
classifier selection. Each has unique advantages and disadvantages, and not one appears
to be the best all-around. We looked for a suitable approach for our specific application
of male fertility analysis and screening simulation. Finally, the following techniques are
chosen, as discussed below.
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Figure 1. Methodology of the proposed system via XAI.

2.1. Synthetic Minority Oversampling Technique (SMOTE)

Oversampling techniques, such as SMOTE, are utilized to increase the number of
samples in the minority class. According to previous research, Ma et al. [14] and Yibre and
Kocer [15] used ESMOTE and SMOTE techniques to increase the number of samples in the
minority class.

We assume that pc and kc represent the number of majority and minority class in-
stances. The imbalance ratio of pc and kc is represented as zc. Now, after the application
of oversampling technique, the total data are computed using the following equations:
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total instances = pc + kc + k′c and k′c = (1− zc) ∗ kc, where k′c denotes the number of
synthetically generated instances.

In this study, oversampling (i.e., SMOTE) technique is utilized because it has provided
the best outcome in the field of healthcare [30–32].

2.2. XGB Algorithm

XGB is an ML classifier that is scalable and efficient. It is used to solve classification,
regression, and ranking problems. In 2016, Chen and Guestrin popularized this algo-
rithm [33]. A gradient-boosting decision tree, a boosting mixture of many decision trees,
is the foundation of the original XGB model. Each tree is built using gradient boosting
to lower the residual of the preceding model. The term “residual” refers to the discrep-
ancy between the actual and predicted values [34]. The model has been trained until the
threshold’s allotted number of decision trees has been reached. This method accommodates
both regression and classification [35]. By 2015, XGB had completed 17 of the 29 ML tasks
posted on Kaggle.

2.3. XAI

Black box AI and ML models do not provide explainable decisions. Explainable AI
(XAI) approach is used to convert this black box to a glass box system that helps understand
the AI system’s prediction report [36]. Explainability is the degree to which humans can
understand the AI decision [37], provide insights into the AI system, and discuss the
logic behind the decision. Application of XAI has three main benefits: (a) provides a
transparent interpretation and boosts trust in the designed model; (b) enables model
troubleshooting; (c) specifies the source of the system basis. Explainability and efficacy are
two distinct aspects that should be maintained while designing AI systems. In contrast,
efficiency needs to explain their decisions coherently and vice versa. Classification of XAI
techniques includes global and local methods. Global explainability helps comprehend
system behaviour and feature effects on prediction labels. Local explainability provides
transparency in the decision of the model for individual instances [38–40]. The interpretable
system is critical to translate the output decision into human-understandable language,
especially in healthcare.

3. Experimental Setting

To felicitate the fast development of our model, we use the Python language on the
windows operating system. This section describes the dataset, feature importance, and
performance evaluation metrics.

3.1. Dataset

Based on WHO guidelines, Gil et al. [27] investigated the factors that may impair male
seminal quality. The study was carried out at the University of Alicante in Spain. A total of
123 young, healthy volunteers between the ages of 18 and 36 took part in the study and
were required to refrain from having sex for a period of 3 to 6 days. Due to incomplete
information from some participants, only 100 people were available at the end. The sperm
examination was completed within 60 min of the sample collection. This dataset, available
in the UCI databases, is used in this study. The dataset contains nine input attributes related
to lifestyle and environmental factors. Table 1 summarizes the dataset information where
the data values are normalized under the following rules.
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Table 1. Features with their detailing.

Features. No Feature’s Name Values Range Normalized

f1 Season winter, spring, summer, and fall (−1, −0.33, 033, 1)

f2 Age 18–36 (0, 1)

f3 Childhood Disease yes or no (0, 1)

f4 Accident /Trauma yes or no (0, 1)

f5
Surgical
Interventional yes or no (0, 1)

f6 High Fever less than 3 months ago, more
than 3 months ago, no (−1, 0, 1)

f7 Alcohol Intake
several times a day, every day,
several times in a week, and
hardly ever or never

(0, 1)

f8 Smoking Habit never, occasional, and daily (−1, 0, 1)

f9 Sitting Hours/day 1–16 (0, 1)

f10 Target Class normal, altered (1, 0)

This dataset comprises 12 samples which belong to altered, and 88 are normal. Due to
unequal distribution, this dataset nature is imbalanced, where most instances are fertile.

3.2. Feature Importance

A dataset is a collection of information typically presented in a tabular manner. A
dataset consists of input features and output or target class. Each feature has its own rele-
vance and is essential for the development of any ML model. These features have directly
affected the model’s performance. There are two main processes, feature selection and
engineering, considered to be the primary steps to build an effective model. The benefits of
feature selection are an optimized dataset, low memory consumption, and improved model
performance. Similarly, feature engineering helps to reduce overfitting and underfitting
issues. Under feature selection, most of the researchers used Pearson’s correlation to iden-
tify the significant features from the dataset which have a high impact on input features.
Similarly, under feature engineering, normalization and standardization approaches are

always considered. The Pearson’s correlation is calculated by r = ∑(xi−x) (yi−y)√
∑((xi−x)2 ∑(yi−y)2

.

3.3. Performance Evalutaion

The accuracy, sensitivity, specificity, and f1-score of a designed model are typically
used to estimate its performance. These measures are determined using fundamental terms.

True positive (TP) refers to the modified instances the classifier labels correctly.
True negative (TN) refers to the normal instances the classifier labels correctly.
False positive (FP) refers to normal occurrences that have been mislabeled as altered.
False negative (FN) refers to altered instances incorrectly labelled as normal.
Accuracy (ACC) is an AI system metric that determines the proportion of a specific

class that is correctly predicted over the total number of samples. It can be calculated as
(TP+TN)

(TP+TN+FT+FN)
.

Sensitivity (SEN) is the ratio of correctly predicted ill cases to the total number of ill
cases, and it is calculated as TP

TP+FN .
Specificity (SPEC) is defined as the ratio of correctly predicted healthy cases to total

healthy cases, and it is calculated as TN
TN+FP .

F1-Score is calculated as 2 ∗ PREC∗SEN
PREC+SEN , where precision (PREC) is defined as the ratio

of correctly predicted ill cases to the total predicted ill cases, and it is calculated as TP
TP+FP .
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The area under the ROC curve is defined as the Area Under Curve (AUC). AUC is the
sum of measured performance across all classification thresholds.

4. Numerical Results and Analysis

The results are shown in both visual and numerical formats. We used the correlation
function for data analysis (see Section 4.1). Then, we presented the results of all classifiers
with imbalanced and balanced datasets (see Section 4.2). Following that, we discussed the
explainability of the proposed AI system (see Section 4.3). Python packages and libraries
were used to design our model because they are free and open-source.

4.1. Analysis for Dataset

This study uses normalization to scale the data from 0 to 1. The normalized value
of the dataset is presented in Table 1. After normalization, we used Pearson’s correlation
coefficient to comprehend the strength of the linear relationship between two variables. The
coefficient value can determine the relationship strategy in terms of positive and negative
values. Figure 2 depicts the correlation matrix heat map for the male fertility dataset.

Figure 2. Correlation coefficient interpretation.

The r lies between −1 to 1, where −1 indicates a perfect negative correlation, and
+1 signifies a positive correlation. In Figure 2, the orange color indicates positive relation,
and dark violet indicates negatively correlated features.

4.2. Performance Evalutaion

The total experiment was performed in multiple steps. In the first step, we deal with
the original dataset, and the hold-out validation approach is considered. The original
dataset consists of 100 samples (normal—88 and 12—altered). This dataset has training
and testing modules, where 80% of the data is used for training and 20% for testing. Many
ML algorithms are currently being used for disease diagnosis. Here, we have selected
the conventional XGB algorithm, and 80% of the training data is used to train the model.
After training, 20% of the data is used to evaluate the model performance. In the next
step, SMOTE is applied to the training dataset, and we generate synthetic data to sample
the minority classes (altered). Now, the training module contained 140 samples which
are balanced (normal—70 and altered—70), whereas the testing module has 20 samples
(normal—18 and altered—2). Finally, Table 2 provides the performance metrics, including
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ACC, SEN, SPEC, F1 score, and AUC using XGB with hold-out. Table 2 shows that
90.00% and 94.05% accuracies are obtained by XGB with original and balanced datasets,
respectively. Therefore, the algorithm performed well in terms of accuracy and provided a
good AUC value. At that point, XGB is chosen to proceed with further investigation.

Table 2. Performance analysis using XGB using hold-out cv.

Algorithm
Performance (in %)

ACC SEN SPEC F1-Score AUC

XGB 90.00 86.12 84.93 90.06 91.49

XGB-SMOTE 94.05 91.79 90.02 95.97 97.00

In this stage, a comparative study is performed along with the most popular algo-
rithms, SVM and ADA. Based on the literature survey, these two algorithms provided
optimal performance with SMOTE technique. The same experimental strategy we followed
is discussed above. All the performance matrices values are listed in Table 3. The maximum
accuracy of 94.05% is obtained by XGB, which is better than SVM and ADA. Hence, XGB
performed best under SMOTE technique and hold-out cv (after comparison with Table 2).

Table 3. Performance of popular AI systems using hold out cv.

Algorithms
Performance (in %)

ACC SEN SPEC F1-Score AUC

SVM 84.28 87.04 82.91 82.75 81.90

SVM-SMOTE 85.71 87.47 86.96 86.63 83.89

ADA 88.57 83.45 87.45 86.12 89.60

ADA-SMOTE 90.8 88.31 86.98 89.26 88.43

For a fine selection of the final algorithm, again, we have selected two ensemble
algorithms, RF and ET, previously used in male fertility analysis. The experimental results
are shown in Table 4, followed by the same experimental strategy. From Table 4, we can
observe that RF and ET have achieved accuracies of 91.17% and 84.09%, respectively, for
imbalanced datasets. Similarly, 92.45% and 85.87% accuracies were obtained by RF and
ET with SMOTE. In both cases, RF and ET provide satisfactory accuracy, whereas AUC is
fair at 71% to 86%. From Table 2, we obtained the AUC for XGB, which is better than ET
and RF. After performing all these experiments in different stages, we selected XGB as our
primary classifier and proceeded to the next level of the experiment.

Table 4. Performance of existing ensemble AI systems using hold-out cv.

Algorithms
Performance (in %)

ACC SEN SPEC F1-Score AUC

RF 91.17 96.00 100.00 98.00 79.67

RF-SMOTE 92.45 95.00 83.00 91.00 86.79

ET 84.09 90.00 80.00 83.00 71.35

ET-SMOTE 85.87 88.00 83.00 84.00 76.85

After selecting the primary classifier, we have applied k-fold cv and evaluated the
XGB model with the default parameter setting. In this situation, the data is divided
into training and testing samples by k value. Based on the previous literature, most
researchers have taken the value of k as 5. Hence, in our study, we have chosen a five-fold
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cv technique. With the help of this validation, we can understand the statistical robustness
of our proposed system.

Table 5 depicts the outcome of our model in terms of ACC, SEN, SPEC, F1-score,
and AUC in each fold with their mean (µ) and standard deviation (σ). In this context, it
is identified that our proposed model has achieved mean accuracy of 93.22% using five-
fold cross-validation, which is lesser as compared to the hold-out validation outcome. In
addition to this analysis, the obtained AUC value is 0.98, which is remarkable compared
to other existing AI systems. Hence, our AI system provides satisfactory results for male
fertility prediction.

Table 5. Average ACC in %, SEN, SPEC, F1-Score, and AUC using five-fold cv with XGB-SMOTE.

Dataset Fold ACC SEN SPEC F1-Score AUC

F-1 92.91 0.89 0.91 0.93 1.0

F-2 94.05 0.91 0.90 0.95 0.97

F-3 93.78 0.98 0.96 0.89 1.0

F-4 91.55 1.0 0.98 0.91 0.96

F-5 93.81 0.98 1.0 0.93 1.0

µ 93.22 0.95 0.95 0.92 0.98

σ 0.92 0.04 0.03 0.02 0.01

4.3. Explainability of Male Fertility Prediction

An approach known as the XAI technique is applied to unboxing the AI system.
Each XAI method identified local and global explainability for further research. To test
our system’s explainability, we located 11 libraries. These libraries have good documen-
tation, explanations, and tabular data for XAI. However, we have chosen the ELI5 and
SHAP libraries to explain the proposed model’s global explainability. Similarly, for local
explainability, LIME and SHAP were identified.

• Global explainability

Numerous libraries using various feature significance metrics were located. These tech-
niques rely on scoring input features according to the predictive value they contribute to
the system. Our overview focused on global system explainability and showcasing explain-
ability outcomes. Two libraries, ELI5 and SHAP, have been utilized for in-depth analysis.

ELI5 tool is used to identify special features via permutation importance. It allows for
extraction and visualization of features that help to identify the contribution towards the
system as global explanations. A tabular list view of the features and their weights provided
a framework for the visualization. Table 6 depicts the ELI5 library’s implementation of
feature importance by score. This tabular data shows that the high fever in the last year
( f6) is the most critical feature. On the other hand, no features have a negative score, which
signifies that each feature positively influences the proposed system.

The SHAP library allows for global model analysis and provides an interpretation
of the AI system. The system interpretation has been performed by calculating feature
importance concerning feature influence on a prediction about the input data (shown in
Figures 3 and 4). The importance of features is shown along the x-axis; the most significant
features are listed at the top. From Figures 3 and 4, we can conclude that age ( f2) is the
most important determinant, and childhood diseases (polio, measles, and pox) have little
impact on male seminal quality. Similarly, SHAP provides a global interpretation for
specific classes. The contributions of specific features are plotted along the x-axis, which
can positively or negatively affect the prediction of this class. Each data point stacked
vertically within this visualization represents the contribution of a specific instance. The
color gradient encodes the raw values, with blue and red representing the lowest and
highest values, respectively.
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Table 6. Feature weights and their impact on the proposed model.

Weights Features

0.2861 f6

0.1758 f4

0.1697 f7

0.0929 f8

0.0846 f5

0.0706 f1

0.0587 f9

0.0475 f2

0.0143 f3

Figure 3. Global visualization of the impact of different features in the proposed model.

Figure 4. Global visual explanation of proposed system via SHAP.
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• Local explainability

Global explainability elaborates in detail on the ways in which an AI system works,
but local explainability does not try to do the same. It shows the way in which the
system outcome changes as the values of certain features change within given intervals.
For this reason, the user gains the trust of individual predictions and the whole system.
Additionally, globally essential features may be insignificant locally and vice versa. The
two most frequent approaches, LIME and SHAP, are utilized for local interpretation. LIME
is an innovative approach that describes any AI system’s prediction process and provides
insights into the prediction strategy and feature correlations. On the other hand, SHAP
offers a force plot for explaining the local interpretation of the model. This plot helps to
visualize each feature’s effect on the prediction model for a given observation.

Figure 5 shows the local feature importance using SHAP values which explains in-
dividual prediction. Red color indicates the higher value of a feature, and blue indicates
a lower value of a feature, along with its magnitude. Five features, the number of sitting
hours per day, age, alcohol intake, fever, and smoking, have higher values. Four features, ac-
cident, surgical intervention, season, and child diseases, have lower values. Other features,
such as smoking habit and child disease, have the same positive value. Figure 6 provides
the local explanation of black box prediction outcomes where the most significant features,
such as age, alcohol intake, and the number of sitting hours in a day, have been moved
towards the positive class. The remaining three features, accident, surgical intervention,
and season, move towards the negative class. All features compete against each other;
finally, the highlighted value is a prediction for that observation.

Figure 5. Local visual explanation of the proposed system using SHAP.

Figure 6. Local visual explanation of the proposed system.

We have applied LIME to enhance the interpretability of our proposed system. Figure 7
shows the outcome of the LIME approach for the XGB-SMOTE system. The result reflects
the contribution of each feature to the instance prediction as follows:
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Figure 7. Local visualization of the proposed system.

LIME visualization is divided into three parts: a class description with an accurate pre-
diction for each class, a plot showing the impact of features, and a table with actual values
in the instances. The prediction probabilities are displayed in the section on the left. There
are two colors for two-class classification tasks: orange (altered semen quality/infertile)
and blue (normal semen quality/fertile). The middle part summarizes the crucial aspects.
The impact of features assists the user in determining which feature values support class
prediction (left side). Figure 7 shows that features such as surgical intervention, child
disease, and smoking habit, supporting (positive) in relation to an instance, are predicted
as normal. At the same time, the orange bar indicates the contradicting (negative) scores in
relation to the prediction.

In this study, we have used SHAP, LIME, and ELI5 libraries under the XAI approach.
A comparison study is a must to comprehend each process overview in terms of global
and local explainability since there are three distinct XAI processes. Three criteria can
be used in global explainability: computational overhead, implemented visualization,
and interactivity.

From the perspective of computational overhead, ELI5 provides the most lightweight
solution, implemented visualization, and interactivity. Feature importance alongside other
implemented functionality of ELI5 can be convenient during the model development pro-
cess. Similarly, increased interactivity and visualization options come with the additional
computational overhead in the SHAP library.

Next, in terms of local explainability, the SHAP and LIME approaches yield different
results. SHAP outperformed the others regarding computational resources and provided
an interactive way to explore the various model predictions. The SHAP force plot is
advantageous if focuses on exploring the features, providing more refined explainability
and analytical experience. In other words, LIME has its speed advantage and provides an
intuitive example explanation.

4.4. Comparision with Existing Systems

Table 7 compares our results with existing approaches in the literature for further
assessment of the performance of the proposed XGB-SMOTE system. In previous research,
Multilayer perceptron (MLP), SVM, support vector machine-particle swarm optimization
(SVM-PSO), decision tree (DT), Nave Bayes (NB), Clustering based decision forest (CBDF),
ESLSMOTE-BPNN, ESLSMOTE-ADA, and ESLMOTE-SVM were used for male fertility
prediction. Table 7 shows that feature selection and data balancing approaches significantly
impact accuracy. As a result, XGB-SMOTE is a better solution for detecting male fertility.
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Table 7. Comparative study between proposed AI system to existing predictive systems on UCI
dataset (according to year).

Authors [Ref]
(Year)

Data
Pre-Processing AI Methods

Performance

ACC (in %) SEN SPEC AUC

Gil et al. [27]
(2012) - SVM, MLP, DT

86, 86 and 84
(sperm

concertation)
69, 69, 67 (sperm

morphology)

0.94, 0.97, 0.96
(Sperm

concertation)
0.72, 0.73, 0.71

(Sperm
morphology)

0.4, 0.2, 0.13
(Sperm

concentration)
0.25, 0.12, 0.12

(Sperm
morphology)

-

Girela et al. [26]
(2013) - ANN1, ANN2 97 (on training

dataset) 0.954, 0.892 0.5, 0.437 -

Sahoo and
Kumar [25]

(2014)

Feature
selection

DT, MLP, SVM,
SVM-PSO, NB 89, 92, 91, 94, 89 - -

0.735, 0.728,
0.758, 0.932,

0.850

Wang et al. [28]
(2014) - CBDF - - - 0.80

Bidgoli et al.
[24] (2015) - Optimize MLP,

NB, DT, SVM
93.3, 73.10, 83.82,

80.88 - - 0.933, 0.81,
0.858, 0.882

Simfukwe et al.
[21] (2015) - ANN, NB 97 (on training

dataset) - - -

Soltanzadeh
et al. [20] (2016) Filtering NB, NN, LR,

Fuzzy C-means - - - 0.779, 0.7656,
0.3423, 0.73

Rhemimet et al.
[23] (2016) - DT, NB 61.36, 88.63 - – -

Palechor et al.
[22] (2016) - J48, SMO, NB,

lazy IBK

100, 100, 98.04,
100 (TP)0, 0, 1.5, 0

(FP)
- - -

Candemir et al.
[19] (2018) - MLP, SVM, DT,

FRBF 69.0, 69.0, 67, 90 0.72, 0.73, 0.71,
0.92

0.25, 012, 0.12,
0.50 -

Engy et al. [18]
(2018) -

ANN,
ANN-GA, DT,

SVM,
ANN-SWA

90, 95, 88, 95,
99.96 0.92, 0.97, 0.83 0.71, 0.70, 0.82,

0.72, 0.99 -

Ma et al. [14]
(2019) ESLSMOTE SVM, ADA,

BPNN 81.6, 95.1, 91.6 - - -

Ahmed and
Imtiaz [17]

(2020)
- NB 87.75 - - -

Dash and Ray
[16] (2020) -

soft voting, DT,
NB, LR

DT, DT bagged,
RF, ET

89, 78, 83, 88
88, 88, 84
(bagged)

78.80, 88.12, 89.07,
90.02

- - 0.66

Yibre and Kocer
[15] (2021) SMOTE Feed forward

neural network 97.50 0.93 1 0.97

Roy and Alvi
[29] (2022) - KNN 90 - - -

Proposed SMOTE XGB 93.22 0.95 0.95 0.98
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5. Conclusions and Future Work

In this study, we have presented an AI system for predicting male fertility. The
proposed model is created using conventional XGB with SMOTE data balancing method.
We obtained 93.22% mean accuracy and 0.98 AUC, which is promising. Furthermore,
the proposed model result has been implemented using XAI approaches. These methods
produce reliable and understandable results for male fertility prediction. Three libraries,
SHAP, LIME, and ELI5, are investigated to explain the global and local explainability
of the XGB-SMOTE system. This investigation is beneficial for physicians or healthcare
experts and patients to understand the decision-making process. Several scopes may be
present for future research, which includes model optimization with the use of hyper-
parameter tuning [41] and comparing the performance with other ensemble AI learners
(CatBoost and LightGBM) [42,43]. Additionally, data balancing can be achieved using
a variety of oversampling techniques [44], and model explainability can be investigated
by different XAI methods. Finally, the presented approach, using publicly available data
and showing the application of XAI, can significantly contribute to human society and
reproductive science.
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