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Abstract: The Internet of Things (IoT) generates vast amounts of data from numerous applications.
However, since wireless channels are the primary means of communication, IoT networks are
vulnerable to several security threats, which can compromise their security and privacy. To address
these issues, various user authentication protocols have been proposed. Thus, it is still a challenge
to provide multi-granularity verifications for different authentications of the IoT. In this paper,
we propose a multi-granularity formal framework of user authentication for the IoT (MFF-IoT).
Our framework builds different formal models (specification language HLPSL models, process
algebra CSP models, Timed CSP models, and timed automata) to complete multi-granularity formal
verification. By using both coarse-grained and fine-grained modeling, we can balance the tradeoff
between model complexity and verification accuracy. Specifically, our fine-grained models provide a
more detailed representation of the framework’s behavior and enable us to perform timing-related
probability analysis. As these formal models can be implemented by model-checking tools (AVISPA,
PAT with C#, and UPPAAL), important properties and features can be analyzed and verified. We also
propose several algorithms for better formal model building and evaluate our framework with a case
study to show its practicality and effectiveness.

Keywords: formal verification; IoT; user authentication; AVISPA; CSP; PAT with C#; UPPAAL

1. Introduction

The Internet of Things (IoT) is composed of a large number of devices that can connect
and exchange data with each other over the Internet or other communication networks.
IoT devices are growing at an unprecedented rate, and they are involved in many fields,
including homes, offices, transportation, healthcare, etc. Although this situation provides
tremendous convenience to our lives, it provides insufficient security due to the immaturity
of the technology. As more devices are connected to the Internet, adversaries have more
opportunities to use them to launch large-scale attacks [1,2]. Therefore, securing IoT devices
is an increasingly serious challenge for manufacturers and consumers. Authentication
frameworks and mechanisms [3,4] have been proposed in response to this challenge.

User authentication is an important part of the authentication framework. If there are
security holes in user authentication, the risk of being invaded is very serious. Attackers
can exploit these holes to carry out malicious activities, such as stealing sensitive data,
tampering with device settings, etc. Therefore, verification is required to ensure that
the implementation of the authentication framework for IoT satisfies the requirement (or
specification) of security. Common methods for the verification process include simulating,
testing, or formal verification (e.g., model checking). Formal verification is a method that
can describe the system and its requirements formally. It mathematically proves whether
the system meets these requirements. Model checking is one of the most popular formal
verification techniques, which can automatically verify finite-state machines. Therefore,
formal verification is recommended for user authentication in IoT applications.
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As model checking helps to avoid manual testing and save time, it is suitable for
modeling the authentication framework [5]. However, model-checking-based methods are
still not widely used in the IoT. One reason is that it is very difficult for users to build a multi-
granularity support model. Although some researchers have conducted formal verification
of their schemes [6,7], there is a lack of methods to evaluate performance in a multi-grained
way. To solve this problem, a formal verification method should generate multi-granularity
formal models from the authentication framework as automatically as possible.

1.1. Contribution

As discussed above, our motivation is to provide a multi-granularity formal frame-
work of user authentication for the IoT (MFF-IoT) that consists of one coarse-grained formal
verification and two fine-grained formal verifications. Formal verification is a methodology
that employs mathematical techniques to ensure that a system satisfies a predetermined
set of properties. Model checking is one such technique, which involves verifying a for-
mal model of the system against a set of formal specifications or properties. The formal
verification technique we used is model checking, specifically using the model checkers
AVISPA [8], PAT [9] and UPPAAL-SMC [10]. In model checking, the formal model is
typically expressed in a formal language such as CSP or Timed CSP, and the model checker
systematically explores all possible states of the model to verify whether the specifications
hold for all possible system executions. Granularity refers to the level of detail at which
the formal model is constructed. In coarse-grained formal verification, some aspects of
the authentication framework’s behavior are abstracted away, while in fine-grained for-
mal verification, all aspects of the authentication framework are modeled explicitly. We
introduce two kinds of fine-grained models; the second fine-grained formal verification
places a greater emphasis on timing-related probability analysis than the first fine-grained
formal verification.

Figure 1 (Page 3) presents the overall architecture of MFF-IoT, and Figure 2 (Page 3)
illustrates a flow chart of MFF-IoT. In the coarse-grained formal verification, we constructed
the authentication framework as HLPSL [11] models, which are fed to the AVISPA tool to
complete basic security verification. In the first fine-grained formal verification, we use
formal language to describe the authentication framework, resulting in corresponding CSP
models and Timed CSP models, which are then implemented using the model checker
PAT with C#. The CSP models and Timed CSP models are checked against linear temporal
logic (LTL) properties. In the second fine-grained formal verification, we construct timed
automata in the UPPAAL-SMC tool for several components in the authentication framework
to verify time-related security probabilistic properties, thus obtaining observable statistics
in several different probability settings.

Moreover, we use the gateway-based two-factor authentication (G2F) framework [12]
as a case study to show the practicality and effectiveness of MFF-IoT. We propose an
algorithm for coarse-grained formal verification to construct HLPSL models for the entities
in the G2F framework. We also design two algorithms for the entity’s CSP model building
and Timed CSP model building in the first fine-grained formal verification. For the second
fine-grained formal verification, our idea is to model key actions using timed automata in
the G2F framework from the perspectives of the involved entity (user or intruder).
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Figure 2. Flow chart of MFF-IoT.

1.2. Related Work

As a promising method for security assurance, formal verification can apply different
kinds of mathematical and logical methods to verify the correctness of designs. It is used in
many systems that require safety and security properties. Formal verification also has a
variety of applications in the IoT, such as authentication and communication protocols.

Shkarupylo et al. [5] proposed an approach to check the interoperability between
the components of IoT systems. Using Temporal Logic of Actions (TLA), TLA+ and
PlusCal formalisms, as well as the corresponding TLC (model checker for TLA), the MQTT
application IoT protocol is analyzed as a case study. Hofer-Schmitz and Stojanovic [13]
reviewed formal methods for a large variety of protocols used in the IoT environment,
such as ZigBee, Z-Wave, 6LoWPAN, Sigfox, and Narrowband-IoT. Aziz [14] modeled and
analyzed the MQ Telemetry Transport version 3.1 protocol based on a timed message-
passing process algebra. They found some potential vulnerabilities and suggested an
enhancement. Mohsin et al. [15] introduced a formal framework called IoTSAT using
SMT logic. The framework can create a satisfiable (SAT) answer, which carries the threat
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resilience and presents the potential threat vectors. Mahadewa et al. [16,17] presented
an approach that checks the security of the implementations of IoT systems by extracting
the abstract specification of the application-layer protocol and internal behaviors. They
discovered twelve security vulnerabilities in three IoT systems. Aktas and Astekin [4]
proposed a run-time formal verification mechanism to support self-healing IoT applications
that can detect faulty running behavior in IoT devices. These studies provided a variety
of verifications for specific IoT authentication but failed to provide a general verification
supporting multi-granularity. Our work introduces the verification of various security
properties in a multi-grained way.

The rest of this paper is organized as follows. Section 2 presents the related background.
Section 3 provides the architecture of our methodology. Section 4 applies MFF-IoT in a case
study. Finally, Section 5 concludes the paper and discusses future work.

2. Background

In this section, we present process algebra CSP and Timed CSP. Model-checking tools
AVISPA, PAT, and UPPAAL are also introduced. A case study for MFF-IoT is also presented.

2.1. CSP and Timed CSP

As one of the most mature formal methods, communicating sequential processes
(CSP) [18,19] is tailored to describe the interaction between concurrency systems via mathe-
matical theories. Because of its well-known expressive ability, CSP has been widely used
in many fields [20,21]. CSP processes are constituted by primitive processes and actions.
We use the following syntax to define the processes in this paper, where P and Q represent
processes, and α(P) and α(Q) indicate the sets of actions that processes P and Q can take,
respectively. Hence, a and b denote atomic actions, and c represents a channel.

P,Q ::= ... | SKIP | a→ P | c?x→ P | c!e→ P | P‖Q | P; Q

where SKIP is process that only terminates successfully. a→ P first performs action a, then
behaves like P. c?x→ P receives a message from channel c and assigns it to variable x, then
implements the subsequent behavior like P. c!e→ P sends a message (e) through channel c,
then performs P. P ‖ Q shows the parallel composition between P and Q. P;Q represent
the execution of P and Q, respectively.

Timed CSP [22] is an extension of CSP with a time concept. It is defined as follows.

P,Q ::= ... | WAIT t | P Bt Q

where WAIT t is a delayed form of Skip and only terminates after the specified time (t). The
notation P Bt Q indicates that if process P is not executed within a certain time interval of t
time units, process Q will be executed at time t. In other words, PBt Q specifies a constraint
on the maximum duration of the execution of process P, and if this constraint is violated,
process Q is activated to perform a recovery action or to initiate a new activity. It is useful
in modeling real-time systems in which processes need to be completed within specific
time constraints.

2.2. AVISPA, PAT, and UPPAAL

The Automated Validation of Internet Security Protocols and Applications (AVISPA)
tool [8] provides a modular and expressive formal language for specifying protocols
and security properties. It integrates different back ends that implement a variety of
automatic protocol analysis techniques. It can also automatically translate the High-Level
Protocol Specification Language (HLPSL) [11] specification into an equivalent specification
written in the rewrite-based formalism (Intermediate Format IF), then obtain the checking
results. AVISPA has been successfully employed in some classic and familiar protocols and
schemes [8,23].
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As a model-checking tool, the Process Analysis Toolkit (PAT) [9] was designed as an
extensible and modularized framework based on CSP, which can also support Timed CSP.
Different model-checking techniques are implemented in PAT, supporting many assertions,
such as deadlock freeness and reachability [24]. With advanced optimization techniques
implemented in PAT, it can achieve satisfactory performance.

UPPAAL is an integrated tool for the modeling, simulation, and verification of real-
time systems [10]. It is appropriate for verifying systems that can be modeled as a collection
of non-deterministic processes with finite control structures and real-valued clocks, commu-
nicating through channels or shared variables. UPPAAL-SMC is an extension of UPPAAL
that can reason on networks of complex real-time systems under natural stochastic seman-
tics, which is based on the idea of statistical model checking (SMC). UPPAAL has achieved
fruitful results in industry [25] and achieves satisfactory performance in protocol verifica-
tion [26]. Therefore, these three powerful tools can effectively support our multi-granularity
formal verification method.

2.3. Case Study: Gateway-Based Two-Factor Authentication (G2F)

Lou et al. [12] introduced a secure user authentication for IoT management called G2F.
The whole authentication scheme is based on the Universal Second Factor (U2F) protocol
proposed by the FIDO Alliance. G2F can prevent malicious activity on IoT devices hosted
on cloud servers, which also helps protect IoT devices from malicious attacks. It is an
efficient, secure, and flexible user authentication solution for IoT-based smart homes, which
makes it a suitable case study. Our proposed framework can also be applied to other user
authentication schemes, such as those used in IoT-based healthcare [27]. The G2F system
consists of five components:

• IoT Server: The IoT Server offers various IoT services, such as remote control and
configuration of IoT devices;

• U2F Server: The U2F server works in coordination with the hardware token to facilitate
registration and authentication processes. It is responsible for storing crucial security
elements related to the hardware token, including public keys, key handles associated
with public keys, etc;

• Gateway Node (GWN): The GWN serves as a bridge connecting IoT devices to a cloud
server. Its main function is to gather data from IoT devices and transmit them to the
cloud server for processing. Additionally, the GWN is equipped with a USB interface,
which allows for the insertion of a hardware token;

• Hardware Token: The hardware token is a highly secure component held by the user
and designed to be tamper-proof. It contains private keys and other security ele-
ments and communicates with the GWN through a USB interface. When registration
or authentication requests are made, users can respond by pressing the button on
the token;

• IoT Device: IoT devices are owned by the user and are managed through the IoT
Server. They connect to the GWN wirelessly to access network services. The client
GUI of the IoT server allows users to perform operations on their IoT devices.

The G2F system is comprised of three levels: the cloud server, the gateway node, and
the user. The U2F server and IoT server belong to the cloud server level, while the hardware
token and GWN belong to the gateway node level. The IoT device and the client belong to
the user level.

The G2F framework includes the registration phase and authentication phase. We
only introduce the authentication phase because most attacks occur in this phase, and our
work mainly analyzes this part. User authentication is needed when the user wants to start
operations on the IoT device through the IoT server. A detailed description of the G2F
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authentication phase is presented in Table 1, with explanations of the notations that appear
in the authentication phase.:

Step 1. IoT Server→ GWN : notify GWN to start authentication;

Step 2. GWN→ U2F Server : submit authentication request;

Step 3. U2F Server→ GWN : {handle, app_id, challenge};
Step 4. GWN : verify app_id;

Step 5. GWN→ Hardware Token : {handle, app_id, challenge, origin, channel_id};
Step 6. Hardware Token : find Kpriv linked with h; counter=counter + 1;

Step 7. Hardware Token→ GWN :

{counter, [app_id, challenge, origin, channel_id, counter]Kpriv};
Step 8. GWN→ U2F Server : {counter, challenge, origin, channel_id, signature};
Step 9. U2F Server : verify signature using Kpub linked with handle;

verify origin, channel_id, counter;

Step 10. U2F Server→ IoT Server : feed back the result;

Step 11. IoT Server : check whether authentication is passed;

Step 12. IoT Server→ IoT Device : operation on the IoT device.

Table 1. Explanations of notations in the authentication phase of the G2F framework.

Notation Explanation

app_id The identity of the IoT application

challenge A random number created by the U2F server

channel_id The identity of the transport-layer security (TLS) channel

origin The uniform resource identifier (URI) of the U2F server

kpri, kpub The private key and public key generated by the hardware token

counter The counter counting authentication times

handle The key handle created by the hardware token

signature The signature itself or the signing operation produced by the hardware token

If the IoT server is informed to start an operation, it tells the GWN to send an authenti-
cation request to the U2F server; then, GWN sends an authentication request to the U2F
server (steps 1–2). The U2F server replays {handle, app_id, challenge} to the GWN; then, the
GWN checks app_id and sends {handle, app_id, challenge, origin, channel_id} to the hardware
token (steps 3–5). The counter is increased when a signature is generated (i.e., the hardware
token signs {app_id, challenge, origin, channel_id, counter} by kpri), and kpri can be obtained
based on handle (step 6). Then, the hardware token transmits {counter, signature} to the
GWN (step 7). The GWN sends this message, together with the message it previously
received from the hardware token, to the U2F server (step 8). The U2F server verifies the
signature using the public key kpub (step 9). The verification result is returned to the IoT
server (step 10). If the user authentication is successful, the IoT server allows the operation
on the IoT device (steps 11–12).

2.4. Threat Model

As all communication channels are unencrypted, attackers can obtain all messages.
While they cannot obtain the hardware token, they can conduct a hardware token faking
attack using their own public and private keys to forge signatures. Attackers can perform
both single and persistent multiple attacks. In a single attack, they execute the hardware
token faking attack only once within a designated time frame, assuming there are no normal
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user operations that need to be executed during this period. In a persistent multiple attack,
they continuously execute hardware token faking attacks within a designated time frame,
assuming there are normal user operations that need to be executed during this period.

3. The Architecture of Our Methodology

In this section, we introduce MFF-IoT, as illustrated in Figure 1, including coarse-
grained formal verification, a first fine-grained formal verification, and a second fine-
grained formal verification. Figure 2 shows a flow chart of MFF-IoT.

3.1. Representation of the Authentication Framework

In the process of modeling, whether at a coarse-grained or fine-grained level, it is
necessary to model the entities of the authentication framework (F ) and specifically model
the actions performed by these entities. In F , most actions involve communication, while
a small portion involves processing. The former often involves sending information,
including signatures, to another entity, while the latter involves processing counters or
performing signature-related behaviors. As an example of communication action, in coarse-
grained modeling, keywords such as RCV and SND from communication protocols can
be used to describe the corresponding receiving and sending of transmitted content. In
fine-grained modeling, channels can be used for message transmission and reception.

3.2. Coarse-Grained Formal Verification in AVISPA

In the coarse-grained formal verification, we propose the use of the HLPSL algorithm
to model the entity role in any authentication framework using the AVISPA tool. The
overall steps can be roughly summarized as follows:

1. Divide the roles according to the entities in the authentication framework;
2. Define local variables;
3. Set different transition states;
4. For transmission actions, the actions in the transition are defined as assignment,

sending, and receiving.

Further details can be found in Algorithm 1. After applying Algorithm 1 to generate
the HLPSL model of each entity in the authentication framework, we adopt the homologous
OFMC tool in AVISPA to verify the authentication property between entities and provide a
general but coarse-grained conclusion as to whether a basic intrusion is detected, which
indicates which element is most likely to cause intrusion.

3.3. First Fine-Grained Formal Verification in CSP and Timed CSP

In the coarse-grained formal verification, we only focus on the knowledge domain of
the intruder and pay no attention to attack types. To solve this problem, we propose the
first fine-grained formal verification. Algorithm 2 can be applied to build the CSP model of
each entity. By combining different CSP models of entities with the parallel composition
operator, the overall model for the authentication framework can be described.

Then the CSP models can be implemented in PAT and C#. Because PAT is extended
based on CSP, the channel output/input in PAT can also be used to implement message
sending and receiving in CSP. Meanwhile, functions should be implemented to complete
the functional actions in the CSP model. As it is difficult to write complex functions in PAT,
PAT allows for the use of C# code for libraries. C# classes are built as DLL and imported
into the PAT model when the functions are used. As a result, we choose to implement
our functions in the C# language. To convert the CSP model to the PAT model, the PAT
model calls the C# functions, which have implemented processing actions, completing the
integration of C# into PAT to support modeling and verification.

After the CSP models are implemented in PAT and C#, we can verify some properties,
such as the deadlock property and the property indicating whether digital signatures can
be verified under attacks. These properties can be described as linear temporal logic (LTL)
formulations and verified using PAT. To support the verification of single attacks and
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persistent multiple attacks, we update the overall CSP model in the overall Timed CSP
model. As a result, the CSP model of the entity involving time can be updated to the Timed
CSP model using Algorithm 3. A renaming operation is used to support the description
of the intruder. The WAIT operator in timed CSP can simulate the waiting time. With the
help of this operator, the overall Timed CSP model can be constructed. The subsequent
verification is still conducted in PAT in the same way, which is also able to detect single
attacks and persistent multiple attacks.

Algorithm 1 Entity’s HLPSL Model Building Algorithm

Input: entity name e, entity’s key set K,
entity’s local known elements set E, entity’s steps list S.
the sequence number of the steps list of this entity N

Output: string of entity’s HLPSL model p.
1: Extract messages in S into message set M and communication entity set M’
2: p← “role role_”+e+“(”+e+“:agent”+

elements in E separated with “:text,”
3: if K /∈ ∅ then
4: p← p+elements in K separated with

“:public_key,”+“SND, RCV:channel(dy))”
5: else
6: p← p+“SND, RCV:channel(dy))”
7: end if
8: p← p+“played_by HardwareToken”
9: p← p+“def =local State:nat,”+

elements in M separated with “:text,”+
elements in S separated with “:agent”

10: Choose the relevant sequence number of the steps to assign to the transition state
11: p← p+“init State:=”+choose the relevant number Ni in N
12: Find the elements changed in M to form M’
13: p ← p+“transition”+choose the relevant number Nj in N + “. State=Ni ∧

RCV(”+elements in S with “ ’ ”+e+“.”+messages in M-M’ separated with “ ’ ”+“)
= | >”+“State’:=”+choose the relevant number Nk in N + elements in M’ with
“ ’ ”+“:=new()”

14: if we need to verify the authentication property between e and the entity in S then
15: Define the authentication property auth
16: p← p+“∧ witness(”+e+“,”+elements in S +

“,” + auth + “,” + elements in M’ with “ ’ ”+“)”+
“∧ SND(”+e+“.”+elements in S with “ ’ ”+“.”+
elements in E+“.”+elements in M’ with “ ’ ”+
“_inv(”+elements in K+“)) end role”

17: else if we request to check the authentication property between e and the entity in S
then

18: Define the authentication property auth
19: p← p+“∧ request(”+e+“,”+elements in S +

“,” + auth + “,” + elements in M’ with “ ’ ”+“)”+
“∧ SND(”+e+“.”+elements in S with “ ’ ”+“.”+
elements in E+“.”+elements in M’ with “ ’ ”+
“_inv(”+elements in K+“)) end role”

20: else
21: p← p+“∧ SND(”+e+“.”+elements in S with “ ’ ”+

“.”+elements in E+“.”+elements in M’ with
“ ’ ”+“_inv(”+elements in K+“)) end role”

22: end if
23: return p
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Algorithm 2 Entity’s CSP Model Building Algorithm

Input: entity name e, channel names set C,
entity’s local known elements set E, entity’s steps list S.

Output: string of entity’s CSP model p.
1: Extract messages in S into message set M
2: p← e+“(”+

elements in E separated with commas+“) =df”
3: while s ∈ S do
4: if s is a transferring action between e and entity e’ then
5: Find channel c in C connecting e and e’
6: Find message m in M corresponding to s
7: end if
8: if s is a sending action then
9: Add ’ suffix to elements in m not belong to E

10: p← p+c+“?”+m+“→”
11: else if s is a receiving action then
12: Add “ ’ ” suffix to all the elements in m
13: string p← p+c+“!”+m+“→”
14: else
15: Create n as processing action’s name of s.
16: p← p+n+“→”
17: end if
18: end while
19: p← p+“SKIP”
20: return p

Algorithm 3 Entity’s Timed CSP Model Building Algorithm

Input: string of entity’s CSP model p, times t1 and t2.
Output: string of entity’s Timed CSP model tp.

1: Divide p into process head ph and process body pb by searching for a pattern which is
“=df”.

2: if there are operations in pb that need to be executed within time t1 then
3: Divide pb into two disjoint parts pb1 and pb2, where pb1 has no time limit for execution

and pb2 has a time limit for execution.
4: pb← pb1+“→”+ “(”pb2+Bt1+“SKIP)”
5: end if
6: if pb needs to wait for time t2 before executing then
7: pb←“WAIT t2; (”+pb+“)”
8: end if
9: tp← ph+“ =df”+pb

10: return tp

3.4. Second Fine-Grained Formal Verification in UPPAAL-SMC

The first fine-grained formal verification is used to analyze important security proper-
ties, which can help to detect security vulnerabilities. However, different time parameters
may lead to different results, and the first verification may not be able to further analyze
more details. If further probability analysis is needed, we propose a second fine-grained
formal verification, which is supported by UPPAAL-SMC. The second verification focuses
on situations in which an entity may receive messages from both an intruder and the other
entity and involves analysis of the complex interactions between different components to
detect security vulnerabilities that may arise due to these interactions.

Specifically, we focus on a situation in which an entity may receive messages from both
the intruder and the other entity. According to the action being performed by the entity in
the situation, multiple automata are built. They generally simulate the key behaviors of
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the current entity, the user, and the intruder. The characterization of probability and time
is added to the automaton so that UPPAAL-SMC can be applied to verify the properties
of the probability-related attacks, which occur in the form of cost-constraint temporal
logic formulations.

We chose different verification schemes based on the specific aspects that we want
to verify. For example, the coarse-grained formal verification scheme only focuses on the
knowledge domain of the intruder. However, for more detailed aspects such as counter
changes and timing, the first fine-grained formal verification scheme is necessary. Addition-
ally, if we want to analyze the probabilities of time-related events, the second fine-grained
formal verification scheme becomes indispensable. The AVISPA tool is not suitable for
capturing the details of element changes, so we use CSP and timed CSP, which provide
support for time and element changes, and UPPAAL-SMC, which supports the analysis of
time-related probabilities.

4. Application of MFF-IoT in the G2F Framework

In this section, we apply MFF-IoT in the G2F framework. By modeling the G2F frame-
work in HLPSL models, CSP models, Timed CSP models, and timed automata, security
properties are described and verified. We also analyze and discuss the verification results.

4.1. Coarse-Grained Formal Verification for G2F

We provide the coarse-grained formal verification for the G2F framework. The AVISPA
tool is used to model the authentication phase of the G2F framework. The security of this
phase is analyzed below.

4.1.1. Modeling the G2F Framework in AVISPA

The authentication phase of G2F involves five entities: the hardware token, GWN,
U2F server, IoT server, and IoT service. Henceforth, we model this phase based on these
five entities’ roles. In addition, an entity role intruder is added to our HLPSL model, which
knows all the messages except the hardware token. Here, we also only provide the HLPSL
model of the hardware token in AVISPA as an example, which is shown in Table 2. In this
phase, the hardware token can communicate with the entity role GWN so that the input
in Algorithm 1 can have the entity name HardwareToken. Similarly, we can provide other
content of the input. Hence, the model of the entity role HardwareToken shown in Table 2
illustrates that it has one state to be changed. We also add an intruder into the model and test
all the kinds of the knowledge domain. Finally, we know that if we can protect the security
and privacy of the hardware token, the safety of the phase can also ensured, no matter what
other messages the intruder knows. Please refer to the website (The full implementation in
AVISPA can be found in https://github.com/asunafy/MFF/tree/main/AVISPA (accessed
on 28 March 2023)) for full implementation in AVISPA.

Table 2. The HLPSL model of the hardware token.

role role_HardwareToken(HardwareToken : agent, Counter : text, K : public_key, SND, RCV : channel(dy)) (1)
played_by HardwareToken (2)
def = (3)

local (4)
State : nat, ChanID : text, Challenge : text, Handle : text, AppID : text, Origin : text, SSS : text, GWN : agent (5)

init (6)
State := 0 (7)

transition (8)
4. State = 0∧ RCV(GWN’.HardwareToken.Handle’.AppID’.Challenge’.Origin’.ChanID’) = | > (9)

State’ := 1∧ SSS’ := new() ∧witness(HardwareToken, GWN, auth_1, SSS’)∧ (10)
SND(HardwareToken.GWN’.Counter.{SSS’}_inv(K)) (11)

end role (12)

https://github.com/asunafy/MFF/tree/main/AVISPA
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4.1.2. Security Verification

We adopt the AVISPA tool to verify the security of the authentication phase, and its
analysis result is presented in Figure 3. We enable OFMC (on-the-fly model checker) in
AVISPA to verify the identity authentication between the GWN and the hardware token
as the goal in order to verify the security of the G2F framework design. The statistics
presented in Figure 3 show that the state search time during the entire verification process
is 1.23 s, with 648 visited nodes and a depth of 11 plies, and the summary is safe.

In particular, we assume that both intruders and normal entities can ensure the normal
operation of the function. According to the analysis result, we believe that as long as the
hardware token is not leaked, even if the intruder knows all other information and has
public and private keys to intervene, the security of this protocol can still be guaranteed.
That is to say that the hardware token is held by the user, so we can infer that the design of
the G2F framework for the authentication phase is secure. Thus, we can conclude that the
G2F framework is capable of resisting hardware token faking attacks, assuming that the
signature content is not taken into consideration and the hardware token has not been lost.

% OFMC

% Version of 2006/02/13

SUMMARY

   SAFE

DETAILS

   BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

    /home/AVISPA/Authentication.hlpsl

GOAL

    as_specified

BACKEND

     OFMC

COMMENTS

STATISTICS

    parseTime: 0.00s

    searchTime: 1.23s

    visitedNodes: 648 nodes

    depth: 11 plies

Figure 3. Analysis result of authentication phase in AVISPA.

4.2. First Fine-Grained Formal Verification for G2F

In the coarse-grained formal verification, we only focus on the knowledge domain
of the intruder and pay no attention to attack types and signatures. Our first fine-grained
formal verification supports the discussion provided in this section. Specifically, we provide
the CSP models of entities to build the system and update them into the Timed CSP model
to discuss the performance of the G2F framework under a single attack and persistent
multiple attacks. They are also implemented in PAT and C#. Finally, the model-checking
tool PAT is applied to verify security properties (deadlock freedom, signature verification,
and intruder success).

4.2.1. Modeling the G2F Framework in CSP

To simplify the model, we focus on the steps involving the transmission of key in-
formation in the authentication phase of the G2F framework, which are shown in Steps
3–9. There are three entities involved in this process: the hardware token, GWN, and U2F
server. The related CSP models are built by Algorithm 2. Then, we can obtain the overall
model (G2F_Auth()) with the parallel composition operator. We then study a hardware
token faking attack in which the hardware token is replaced by a fake token. Its CSP model
is G2F_Auth_S(), which is almost the same as G2F_Auth(), except that the parameter of the
signature is replaced by a fake parameter.

We explain the CSP model of the hardware token (HT_Auth()) as an example, which
is illustrated in Table 3. This process describes the behaviors of the hardware token when
communicating with the GWN in the authentication phase. It first obtains handle, app_id,
challenge, origin, and channel_id from the GWN (step6). Through the action Increase_Counter
and Generate_Signature, it increases the counter and creates signature using the private key
included in handle (step7). Finally, it transmits counter and signature to the GWN (step8).
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Table 3. The CSP model and Timed CSP model of the hardware token.

HT_Auth(counter, signature) =d f (1)
ComGH_U?msgauth.handle’.app_id’.challenge’.origin’.channel_id’→ (2)
Increase_Counter→ Generate_Signature→ (3)
ComGH_U!msgauth.counter.signature→ SKIP (4)

HT_Auth’(counter, signature) =d f (5)
WAIT t; (ComGH_U?msgauth.handle’.app_id’.challenge’.origin’.channel_id’→ (6)
Increase_Counter→ Generate_Signature→ (7)
ComGH_U!msgauth.counter.signature→ SKIP) (8)

4.2.2. Updating CSP Models to Timed CSP models

To discuss the performance of the G2F framework under a single attack and persistent
multiple attacks [12], we upgrade the CSP model to the Timed CSP model to support
appreciably finer-grained formal verification. Table 3 also shows the Timed CSP model
of the hardware token (HT_Auth’()). We also verify two properties (deadlock freedom
and intruder success) under the two attacks for the new models (G2F_Auth_Single() and
G2F_Auth_Multiple()).

In the single attack and persistent multiple attacks, intruders request that IoT servers
perform a malicious operation. Whether step 7 and the subsequent steps are performed
depends on whether the user presses the button on the hardware token. In a single attack,
we assume that the user does not press the button within the time consumption of the
authentication phase. For persistent multiple attacks, the user may submit a legitimate
request during the period during which the intruder continues to send malicious operation
requests. Then, the user presses the button for his legitimate request, which may cause the
malicious operation request to be passed. Equipped with Algorithm 3, we complete the
conversion from the CSP models involving time to Timed CSP models.

4.2.3. Property Verification

We implemented CSP models and Timed CSP models in the PAT tool (The full imple-
mentation of the CSP models in PAT and C# can be found in https://github.com/asunafy/
MFF/tree/main/PAT (accessed on 28 March 2023)). The implementation capability of PAT
for data processing is limited, and using its C# interface would be beneficial to perform
additional actions, such as making signatures. Moreover, C++ provides better support for
random number generation, so we can import C++ functions into C# code. Specifically,
to implement the steps belonging to processing actions, we introduce one C++ function
and five C# functions. The C++ function is built as DLL, then imported into the C# class.
The six functions implement random number generation, type conversion, file storage, file
reading, signature generation, and signature verification, respectively. We provide three
properties to be verified in Table 4.

• Deadlock freedom property (in Table 4(1)): All the CSP and Timed CSP models should
have no deadlock. “deadlockfree” is the reserved keyword of PAT. Here, System()
refers to all models. The valid verification results of the deadlock freedom property
presented in Figure 4a and Table 5 indicate that no deadlock appears in our models.
In model checking, only models without deadlocks can be further analyzed.

• Signature verification property (in Table 4(2–4)): In the coarse-grained verification, by
default, all signatures can be successfully verified by the U2F server, so the signature
verification property is not considered. Here, we verify the signature verification
property in the CSP model (G2F_Auth() and G2F_Auth_S()). The property of signature
verification is described in the LTL formula, which illustrates a linear-time property.
PAT supports the LTL formula by using #assert P() |= F to check whether system
P() satisfies the LTL formula F. Using the “eventually” operator (<>) in LTL, we
describe a situation in which the U2F server checks the signature successfully. As the
G2F_Auth_S() introduces signature-faking attacks, the signature verification property
can effectively detect these attacks. As shown in Figure 4b, the valid verification

https://github.com/asunafy/MFF/tree/main/PAT
https://github.com/asunafy/MFF/tree/main/PAT
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result of G2F_Auth() indicates that the G2F framework can successfully verify the
signature under normal operation, and the invalid verification result of G2F_Auth_S()
means that our methodology is able to detect illegal signatures to protect the user’s
legal authentication. Therefore, we can conclude that G2F can effectively identify the
signature of a hardware token forged by an intruder.

• Intruder success property (in Table 4(5–7)): The intruder success property checks
whether our model can be invaded under single attacks and persistent multiple at-
tacks and is expressed as reachability. Because Timed CSP models G2F_Auth_Single()
and G2F_Auth_Multiple() introduce single attacks and persistent multiple attacks,
respectively, with the reserved keywords “reaches”, PAT can check whether the system
reaches a state at which some given condition is satisfied. For G2F_Auth_Single(), the
four invalid results presented in Table 5 indicate that the G2F framework can prevent a
single attack under each of the four cases. For G2F_Auth_Multiple(), different verifica-
tion results appear under different cases in Table 5, indicating that the G2F framework
cannot always prevent persistent multiple attacks and that intruders cannot invade
successfully every time. Therefore, we can conclude that once introduced into an un-
certain environment, there is a possibility that G2F may encounter an intrusion when
the timing of an attacker sending intrusion data is close to the timing of user usage.

Table 4. Properties in PAT.

#assert System() deadlockfree; (1)
#define SignatureCheck (signaturecheck == true); (2)
#assert G2F_Auth() | =<> SignatureCheck; (3)
#assert G2F_Auth_S() | =<> SignatureCheck; (4)
#define IntruderSuccess (intrudersuccess == true); (5)
#assert G2F_Auth_Single() reaches IntruderSuccess; (6)
#assert G2F_Auth_Multiple() reaches IntruderSuccess; (7)

********Verification Result********

The Assertion (G2F_Auth() deadlockfree) is VALID.

********Verification Setting********

Admissible Behavior: All

Search Engine: First Witness Trace using Depth First Search

System Abstraction: False

********Verification Statistics********

Visited States:12

Total Transitions:12

Time Used:0.0232854s

Estimated Memory Used:8888.48KB

********Verification Result********

The Assertion (G2F_Auth_S() deadlockfree) is VALID.

********Verification Setting********

Admissible Behavior: All

Search Engine: First Witness Trace using Depth First Search

System Abstraction: False

********Verification Statistics********

Visited States:12

Total Transitions:12

Time Used:0.022277s

Estimated Memory Used:8880.184KB

********Verification Result********

The Assertion (G2F_Auth_S() |= <> SignatureCheck) is NOT valid.

A counterexample is presented as follows.

<init -> InitialU2F -> InitialGWN -> InitialHT -> ComUG_U.[22, 33].1.78 -> CheckApp_id -> 

ComGH_U.[22, 33].1.78.1.1 -> IncreaseCounter -> CreateSignature -> ComGH_U.1.[1, 78, 1, 1, 

1] -> ComUG_U.1.78.1.1.[1, 78, 1, 1, 1] -> CheckSignature -> terminate>

********Verification Setting********

Admissible Behavior: All

Search Engine: Loop Existence Checking - The negation of the LTL formula is a safety property!

System Abstraction: False

********Verification Statistics********

Visited States:13

Total Transitions:12

Time Used:0.021493s

Estimated Memory Used:8870.128KB

********Verification Result********

The Assertion (G2F_Auth() |= <> SignatureCheck) is VALID.

********Verification Setting********

Admissible Behavior: All

Search Engine: Loop Existence Checking - The negation of the LTL formula is a safety property!

System Abstraction: False

********Verification Statistics********

Visited States:11

Total Transitions:11

Time Used:0.0237536s

Estimated Memory Used:8859.888KB

(a) The verification results of property deadlock freedom

(b) The verification results of property signature verification

Figure 4. The verification results of properties for CSP models.
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Table 5. The verification results of properties for Timed CSP models.

Time Parameter Values
Model Verification Results

Deadlock Freedom Property Intruder Success Property

TU TOU TI TOI G2F_Auth_Single() G2F_Auth_Multiple() G2F_Auth_Single() G2F_Auth_Multiple()

4 5 3 5 Valid Valid Not Valid Valid

7 5 3 5 Valid Valid Not Valid Not Valid

10 5 3 5 Valid Valid Not Valid Valid

15 5 3 5 Valid Valid Not Valid Not Valid

4.3. Second Fine-Grained Formal Verification for G2F

According to the verification results of Timed CSP models, the intruder may invade the
G2F framework when persistent multiple attacks happen, but more detailed information is
unknown, such as the probability of being intruded. To further improve the granularity
of our formal verification, we use UPPAAL-SMC to model and verify the G2F framework
under a single attack and persistent multiple attacks.

4.3.1. Building Timed Automata with Probability Distributions

For persistent multiple attacks, we focus on a situation in which the hardware token
receives a notification both from the user and the intruder simultaneously when its button
is pushed. Therefore, the behavior of the G2F framework under persistent multiple attacks
can be simplified to three automata (The full implementation in UPPAAL-SMC can be
found at https://github.com/asunafy/MFF/tree/main/UPPAAL (accessed on 28 March
2023)) (HT automaton, User automaton, and Intruder automaton), as shown in Figure 5. HT
automaton denotes a situation in which the hardware token receives notifications from
the user or intruder, then completes the push-button action. User automaton indicates a
situation in which the user sends a notification to the hardware token. Intruder automaton
represents a situation in which the intruder sends notifications to the hardware token
periodically. Here, we explain some of the functions implemented in HT automaton shown
in Figure 5 as an example. Edges among Idle, PushButton, Invaded, and Safe with the
branch illustrate the user and intruder requests are both received when the user pushes the
button. The second Boolean condition (intruder&&User) means that the hardware token
has received the requests from both the user and the intruder. Meanwhile, the Invaded
branch state is with probability weight i_pro, and the Safe branch state is with probability
weight u_pro.

(a) HT automaton

(for Hardware Token)

(b) User automaton

(for User)

(c) Intruder automaton

(for Intruder)

Figure 5. HT, User, and Intruder automata.

https://github.com/asunafy/MFF/tree/main/UPPAAL
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4.3.2. Probability Property Verification

Timed automata with probability distributions are implemented by UPPAAL-SMC,
which can reason on networks of complex real-time systems under natural stochastic
semantics. User_multiple, Intruder_multiple, and HT_multiple are instantiations of automata
User, Intruder, and HT, respectively, for persistent multiple attacks. At the same time,
Intruder_single and HT_single are instantiations of Intruder, and HT automata, respectively
for a single attack and are included in the system for a single attack. Thus, we can verify
the probability of the G2F framework being safe or being invaded.

The four queries in Table 6 are the properties of security probability. They estimate
the four probabilities that HT_multiple and HT_single will reach a Safe state or Invaded state
before 100 time units.

• Probability properties of single attacks: According to the four different probability
settings shown in Figure 6, the query in Table 6(1) has the same answer [0.901855, 1]
with a confidence of 0.95 in 29 runs. Meanwhile, the query in Table 6(2) has the same
answer [0, 0.0981446] with a confidence of 0.95 in 29 runs. The results indicate that
single attacks fail in most cases. Therefore, we can conclude that in most cases, a single
attack will not pose a threat to the security of the G2F framework.

• Probability properties of persistent multiple attacks: Using the four probability set-
tings in Figure 6, the answers of the query in Table 6(3) are [0.499902, 0.599848],
[0.757374,0.857253], [0.393781, 0.49372], and [0.822723, 0.922673], with 95% confidence
intervals obtained from 398, 254, 397, and 182 runs, respectively. Meanwhile, the an-
swers to the query in Table 6(4) are [0.421586, 0.521483], [0.151334, 0.251058], [0.473541,
0.573489] and [0.0619394, 0.16173], with 95% confidence intervals obtained from 401,
263, 401, and 163 runs, respectively. These results show that HT_multiple has a higher
probability of reaching a Safe state than reaching an Invaded state within the given time
limit, except when probability parameters both_pro and i_pro are too large. That is to
say that persistent multiple attacks can be successful with a certain probability, but the
probability is generally lower than that of an unsuccessful attack. Figure 6 shows the
probability density distribution of the two time-bounded reachability properties, the
abscissa means of which run for a duration in time. Therefore, we can conclude that
in most cases, the probability of entering a safe state is higher than that of entering an
unsafe state. In some cases, the probability of the two states is similar. Thus, the G2F
framework defense mechanism is relatively weak against persistent multiple attacks,
and caution is still needed.

Probability parameters: only_pro=1, both_pro=5,

                                      i_pro=5, u_pro=1

Query: Pr[<=100] (<> HT_multiple.Safe)

Probability parameters: only_pro=5, both_pro=1,

                                       i_pro=1, u_pro=5

Probability parameters: only_pro=1, both_pro=100,

                                       i_pro=100, u_pro=1

Probability parameters: only_pro=100, both_pro=1, 

                                       i_pro=1, u_pro=100

Query: Pr[<=100] (<> HT_multiple.Invaded)

Probability parameters: only_pro=1, both_pro=5,

                                      i_pro=5, u_pro=1

Probability parameters: only_pro=5, both_pro=1,

                                       i_pro=1, u_pro=5

Probability parameters: only_pro=1, both_pro=100,

                                       i_pro=100, u_pro=1

Probability parameters: only_pro=100, both_pro=1, 

                                       i_pro=1, u_pro=100

Figure 6. Statistics in four different probability settings for persistent multiple attacks when the user
pushes the button at the 50th time unit and the intruder attacks every 5 time units.
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Table 6. Properties in UPPAAL.

Pr[<=100] <> (HT_single.Safe) (1)
Pr[<=100] <> (HT_single.Invaded) (2)
Pr[<=100] <> (HT_multiple.Safe) (3)
Pr[<=100] <> (HT_multiple.Invaded) (4)

4.4. Proposed Algorithms

Algorithm 1 is designed to build an HLPSL model. We instantiate and explain the
algorithm by building the HLPSL model of the hardware token in Table 2. Line 2 in
Algorithm 1 provides the roles and their parameters (corresponding to line 1 in Table 2).
Lines 3–5 in Table 2 generate their parameters and corresponding types (through line 9 of
Algorithm 1). The transition starting from lines 9–12 in Table 2 is generated by dividing the
functions of different entity roles (through lines 12–22 in Algorithm 1).

Algorithm 2 supports the construction of CSP models for entities. Here, we demon-
strate the process of constructing a partial CSP model for the hardware token. Specifically,
we refer to steps 5–7 and extract three messages to form a message set (line 1 in Algo-
rithm 2). Based on the local known elements of the hardware token, which include counter
and signature, we can obtain line 1 in Table 3 (through line 1 in Algorithm 2). Taking the
first message (corresponding to step 5) as an illustration, we identify it as a transferring
action and thus find channel ComGH_U, along with the corresponding message ({handle,
app_id, challenge, origin, channel_id}) (through lines 3–7 in Algorithm 2). Additionally, since
it is a sending action, the “ ’ ” suffix is added to the element of the message, resulting in
lines 1–2 of Table 3 (through lines 8–10 in Algorithm 2).

Algorithm 3 is capable of converting a CSP model into a Timed CSP model. Taking
the hardware token as an example, the CSP model (HT_Auth()) (shown in Table 3) is first
divided into a process head (ph) (line 1 in Table 3 without “=df”) and a process body (pb)
(lines 2–4 in Table 3), which is achieved by line 1 in Algorithm 3. The pb does not contain
any operations that need to be executed within a certain time, but it does require a waiting
time (t2) before execution. Therefore, WAIT t2 needs to be added to the beginning of the
pd, and ph and pb are combined again to obtain the Timed CSP model (tp) (lines 2–10 in
Algorithm 3), which is shown in lines 5–8 in Table 3.

4.5. Discussion

Currently, MFF-IoT only supports the modeling of operations for general authenti-
cation (e.g., encryption and decryption), but it can easily be extended to support other
operations using C# integrated into PAT. MFF-IoT is only able to detect signature-faking
attacks, single attacks, and persistent multiple attacks; it can also easily be improved by
building more formal models for other attack types. Algorithms 1–3 proposed in our frame-
work are reusable and support the modeling of new authentication schemes. They facilitate
security analysis in the coarse-grained formal verification and the first fine-grained formal
verification. Moreover, this methodology can only be used for user authentication in IoT
applications, which means that it does not consider other IoT applications. Although the
time to complete each verification is less than 2 s in our case study, an increase in the time
parameter may lead to a time increase for fine-grained verification. We will keep improving
our methodology to solve these issues.

5. Conclusions and Future Work

In this paper, we have provided a multi-granularity formal framework of user authen-
tication for IoT (MFF-IoT) that includes one coarse-grained modeling and two fine-grained
modelings. We used G2F as a case study and formalized it with the AVISPA tool to verify
fundamental security properties as a coarse-grained formal verification. We applied pro-
cess algebra CSP, Timed CSP, and timed automata to build three formal models, then fed
them to PAT supported by C# and UPPAAL, which completed two fine-grained formal
verifications with gradually finer granularity. We also verified three security properties
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(deadlock freedom, signature verification, and intruder success), as well as security proba-
bility properties, with observable statistics. Based on the verification results, the ability of
G2F to resist hardware token faking attacks is influenced by the frequency with which such
attacks occur. We represent attack frequency as different weights on the edges of the timed
automata, and as this frequency increases, the likelihood of worse system performance also
increases. We intend for our MFF-IoT to assist in analyzing the performance of authenti-
cation mechanisms in a vulnerable environment in which hardware token faking attacks
are possible.

In addition to the vulnerability posed by hardware token faking attacks, there may be
other types of attacks that create vulnerable environments, which could be considered in
future work. We plan to prevent attacks for the case study based on our verification results
and explore strategies to extend the applicability of MFF-IoT to other IoT applications that
require user authentication. To improve the usability and reusability of MFF-IoT, we intend
to implement algorithms that make the conversion process more automatic and efficient.
We also aim to integrate reliability metrics into our framework to provide users with a more
comprehensive understanding of their system’s security.

In summary, our future work includes preventing attacks for the case study, extend-
ing the applicability of MFF-IoT to other IoT applications, improving the usability and
reusability of MFF-IoT, and integrating reliability metrics into our framework.
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