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Abstract: To address the issues of low efficiency, poor security, insufficient compatibility, and difficul-
ties in traceability associated with high-voltage electric energy metering (HVEEM) device verification
methods, this paper proposes a design scheme for a remote verification system (RVS) of such devices
based on a power cloud platform (PCP). The system adopts the concept of “high-precision local
sampling + remote cloud verification” and develops a local acquisition device with compatibility and
high precision to achieve fast acquisition of local electrical parameters. The IEC 61850 communication
modeling is utilized to establish unified communication standards between the local device and the
PCP. The PCP provides two verification methods: physical error verification based on a multi-channel
standard and digital verification based on an improved Backpropagation (BP) neural network simu-
lation model. Leveraging the advantages of power cloud technology, the system enables functions
such as electrical energy calculation, remote intelligent error verification, cloud storage, condition
monitoring, and early warning. Through testing and application, it has been demonstrated that
the system achieves an integration accuracy level better than 0.02. It also exhibits good security,
compatibility, and traceability of measurement values while attaining a high level of informatization
and intelligence. Particularly, the system shows promising prospects for the remote and efficient
verification of large-scale and multi-type high-voltage metering devices.

Keywords: high voltage electric energy metering; intelligent verification; power cloud; neural
network; IEC 61850

1. Introduction

High-voltage electric energy metering (HVEEM) plays a crucial role in the develop-
ment of new power systems, supporting the advancement and application of smart grids,
distributed energy resources, and energy conservation and management, as well as intelli-
gent metering. The HVEEM device used in this study mainly consists of a high-voltage
energy meter, voltage transformers (PT) and their secondary circuits, current transformers
(CT) and their secondary circuits, and related auxiliary circuits. The accuracy of HVEEM
directly affects the economic benefits of power enterprises, and the periodic verification
of power metering systems, especially HVEEM devices, is of significant importance in
ensuring fair transactions among various power generation, distribution, and sales enti-
ties. Against the backdrop of global energy transformation towards green and low-carbon
sources and China’s dual carbon strategy, there is a pressing need to accelerate the construc-
tion of a new power system with renewable energy as its core. As the scale and complexity
of the grid continue to expand, the HVEEM system exhibits characteristics such as in-
creased metering hierarchy, a higher number of nodes, and a greater variety of equipment
types [1–5]. This places higher demands on the regular and high-precision verification of
large-scale HVEEM devices. There is an urgent need for more secure, efficient, cost-effective,
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reliable, and stable metering device verification methods and technologies. Currently, on-
site verification remains the primary method for high-voltage metering device verification.
Traditional, manual, on-site verification techniques are mature but suffer from issues such
as high workload, low efficiency, high costs, and potential metering security concerns [6–8].
In recent years, some domestic power enterprises have developed a distributed functional
structure for remote online monitoring systems for energy meters [9–11]. However, these
systems primarily focus on monitoring the status of energy metering and lack adequate
remote verification functionality. Some research institutions have proposed remote verifica-
tion solutions for gateway energy meters based on high-precision, pre-metering parameter
acquisition devices or multi-analog channel switching devices [12–17]. These solutions
optimize the design of the sampling circuit to improve the sampling accuracy, but they only
achieve simple comparisons between the sampled energy measurement from the control
terminal and the measured value of the energy meter. As a result, the issue of inadequate
traceability of the measurement values still persists. In response, some scholars have
developed remote verification systems (RVS) for energy metering based on analog signal
online acquisition [18–23] and RVS for energy metering devices based on IEC 61850 [24–26].
These systems have improved the traceability framework to some extent, but they only
support specific types of devices in fixed scenarios, they lack overall compatibility, and
their verification methods rely on dedicated hardware resources, thus failing to meet the
requirements for large-scale remote and efficient verification.

In response to the various above-mentioned issues associated with traditional, manual,
and on-site verification and general remote verification methods for HVEEM devices, this
paper proposes an intelligent remote verification solution for HVEEM devices based on
power cloud technology. Building upon conventional remote verification methods, the
proposed solution adopts an architectural design of “local high-precision multi-channel
acquisition + remote controlled power cloud (simulation) standard meter verification.”
Specifically, the high-precision local acquisition device incorporates high-precision, split-
core current transformer (CT) components and precision resistors. In addition to analog
measurement point connections, it features intelligent sensor signal interfaces, effectively
enhancing measurement accuracy and equipment compatibility. On the remote-controlled
power cloud platform (PCP) side, a simulated standard meter model based on an improved
Backpropagation (BP) neural network algorithm is deployed as a cloud service to enable
remote digital simulation verification. This approach effectively addresses the challenges
associated with large-scale remote and efficient verification while ensuring high traceability.
Furthermore, a multi-channel standard meter verification box is available to meet the
demand for high-reliability, remote, and real-time physical verification. The testing and
application demonstrate that both integrated remote verification methods of the system
achieve an accuracy level of 0.02, thereby satisfying the requirements for the remote and
efficient verification of large-scale and multi-type high-voltage metering devices.

In the following sections, this paper is organized as follows: Section 2 presents the
overall design of the RVS for HVEEM devices based on PCP. Section 3 describes the design
of the main modules in the system, including the high-precision, multi-channel local
acquisition device (HPMCLAD) and PCP. In Section 4, we elaborate on the key technologies
implemented in the system, which primarily include on-site, high-precision simultaneous
sampling, IEC 61850-compliant communication modeling, and remote verification based
on PCP. In Section 5, we discuss the testing and application of the system. Finally, Section 6
concludes the paper and provides directions for future research.

2. Overall Design of RVS for HVEEM Devices Based on PCP

The RVS for HVEEM devices based on power cloud technology consists of a HPM-
CLAD, a remote-controlled PCP, intelligent mobile terminals, and a communication net-
work. The HPMCLAD is installed on-site and serves as an Intelligent Electronic Device
(IED) connected to the IEC 61850 communication network. It supports the integration of
both traditional, analog electrical parameter signals and digital electrical parameter signals,
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enabling real-time synchronized sampling of the three-phase voltage, current, and electrical
parameters of the HVEEM device, and the parameters of the high-voltage electric energy
meter. The remote-controlled PCP, based on power cloud technology, comprises a central
workstation, client terminals in various substations, and a multi-channel standard meter
verification station. The multi-channel standard meter verification station is installed at
the central workstation and facilitates high-traceability, remote photoelectric verification.
Additionally, a simulated standard meter model based on the BP neural network is estab-
lished in the cloud to meet the demands of the large-scale remote verification of electric
energy meters. The HPMCLAD processes the collected data according to the IEC 61850
protocol and transmits it to the cloud through the communication network, and various
terminals utilize cloud services for functions such as electrical energy calculation, error
verification, cloud storage, and state monitoring analysis and early warning. Moreover, an
intelligent mobile terminal has been developed, allowing personnel to interact with the
system throughout the entire process via dedicated electric power Wi-Fi or the internet. For
more details, refer to Figure 1.
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3. Design of Major Modules for RVS
3.1. Design of HPMCLAD

The local acquisition device is installed on-site and is primarily used for the high-
precision data acquisition of electrical parameters such as three-phase voltage, three-phase
current, voltage drop across voltage transformers’ secondary circuits, and current transform-
ers’ secondary load, as well as active and reactive energy pulses from high-voltage energy
meters. It also performs the conversion of acquired data into the IEC 61850 communication
protocol and transmits it in real-time to the PCP through the integrated communication
network. Unlike the conventional practice of centrally uploading locally acquired verifi-
cation data to the remote end for data management, this paper proposes deploying the
error verification function in the cloud, which eliminates the high investment in the local
standard meter verification module and associated channel switching module. Instead, it
emphasizes the high-precision acquisition and measurement of signals. The basic principle
is shown in Figure 2.
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As shown in Figure 2, the HPMCLAD mainly consists of a main control unit, a
high-precision, multi-channel analog acquisition unit, a pulse acquisition unit, and a
communication unit. The main control unit adopts a DSP + FPGA architecture, using a
32-bit, high-performance, floating-point digital signal processor, DSP28335, which mainly
implements clock synchronization control, bidirectional remote data instruction interaction,
local communication management, unit module logic control, and on-site human–machine
interaction. The FPGA, in conjunction with the DSP, achieves multi-channel high-speed
AD acquisition, interface expansion, and high-speed signal transmission, resulting in
performance coupling and greatly improving the real-time reliability of large-capacity
data acquisition and processing. The high-precision, multi-channel analog acquisition
unit uses a 24-bit, high-precision, wide-temperature-pressure anti-aliasing synchronous
sampling chip, AD4134, which can achieve multi-channel synchronous high-precision
sampling with a sampling rate of up to 1.5 Msps. Each CT secondary circuit is equipped
with a high-precision (0.001 level) split-core CT, further improving the accuracy of three-
phase current analog acquisition. By increasing the number of AD sampling chips, the
analog synchronous sampling channels are expanded to meet the sampling requirements
of multiple busbar high-voltage metering devices for three-phase voltages, currents, and
other analog quantities at multiple measurement points. The pulse acquisition unit filters
and shapes the active and reactive power pulses of the energy meter, and the main control
unit performs pulse synchronous measurement. The communication unit mainly realizes
communication management between various functional units locally, and data interaction
with the remote PCP. The local acquisition device reads active energy, reactive energy,
fundamental energy, harmonic energy, power factor, three-phase voltages, currents, and
other measured or internal parameters of the energy meter through the RS485 interface.
For PT and CT signals that support the IEC 61850 protocol, they are connected to the
communication unit through signal interface circuits. The communication unit uniformly
converts various collected data into the IEC 61850 communication protocol and achieves
bidirectional interaction with the remote PCP through the comprehensive communication
network. The communication method between the on-site and remote PCP is standardized.
Compared with conventional RVS that target specific scenarios and signal types, the system
described in this paper exhibits better compatibility with devices and signal types from
different manufacturers.
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3.2. Remote-Controlled PCP

The power cloud is an electric power information cloud platform based on advanced
cloud platform technology, integrating multi-source heterogeneous data storage manage-
ment, data processing services, online information cloud services, etc. It provides strong
support for large-scale data computation and persistent storage in RVS for HVEEM [27–30].
The existing literature focuses on the application of cloud platforms and big data analysis
technology in the field of high-voltage metering device measurement, as well as comprising
research on intelligent information management of remote online monitoring, fault diagno-
sis, and the verification achievements of electric energy metering devices. However, there
is limited research on the application of cloud-based remote verification for large-scale mea-
surement points. In this paper, based on the principles of error verification of electric energy
metering devices and PCP technology, a remote cloud master station system supported
by the PCP is designed and developed. It not only achieves functions such as general
electric energy metering device status monitoring, fault warning, and data storage, but also
realizes two remote verification methods: analog input standard meter verification and
cloud-based simulation standard meter digital verification based on a BP neural network.
In addition, a mobile intelligent terminal based on the Android platform is developed to
meet the user’s convenience needs and need for remote for querying, monitoring, control,
and inspection. The composition and implementation principles are shown in Figure 3.
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As shown in Figure 3, the remote cloud platform adopts a hierarchical architecture
consisting of the edge layer (acquisition layer), infrastructure layer, back-end service layer,
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and front-end application layer. The edge layer relies on various forms of internet and
industrial Ethernet to facilitate data interaction between the local data acquisition devices
and the cloud platform. The infrastructure layer includes cloud computing infrastruc-
ture, the virtualization of software and hardware resources, distributed cloud storage,
and resource management services. It establishes pools of computing resources, storage
resources, and network resources, providing infrastructure as a service (IaaS) to support
various application services in the cloud platform layer. The platform layer consists of the
back-end service layer and front-end application layer. The back-end service layer, based
on platform as a service (PaaS) and software as a service (SaaS), realizes functions such as
cloud computing for various power measurement data, simulation standard meter model
training, shared cloud storage, large-scale error verification, HVEEM device status moni-
toring, and fault prediction. The front-end layer can directly access the relevant services
as needed. The front-end layer adopts the B/S service mode, providing various functions
such as verification plan management, measurement node management, statistical report
query, event management, and intelligent mobile terminal management. It can meet the
diverse application needs of on-site technical personnel. The intelligent mobile terminal,
based on the Android platform, mainly realizes on-site verification, verification plan man-
agement, statistical queries, on-site monitoring, and other functions, enabling technical
personnel to grasp the on-site situation at any time and respond promptly to emergencies.
The statistical query functionality is based on historical verification data and involves
horizontal and vertical comparison, error trend analysis, and data report visualization. The
specific implementation steps include database connection, data preprocessing, statistical
calculations, and the presentation of query results. The remote cloud master station uses a
quasi-synchronous algorithm to calculate the electrical energy based on the three-phase
voltage and current data uploaded by the edge devices such as the local high-precision ac-
quisition unit. It performs error verification according to the specified verification method.
At the same time, the results of the electrical energy measurement, verification results, and
the electrical energy meter measurement results and parameters are stored in real-time on
the cloud for access and query by the front-end application layer.

4. Key Technologies
4.1. On-Site High-Precision Simultaneous Sampling

Precise, synchronized sampling is a key factor in ensuring the reliability of remote
verification results. The RVS for HVEEM devices not only needs to achieve high-precision
sampling of the analog signals, including three-phase currents, voltages, PT secondary-side
voltage drops, and CT secondary-side loads at multiple points in the local substations, as
well as digital signals such as active and reactive power pulses from energy meters, but
also needs to ensure the synchronization requirements of the sampling process in order to
enhance the accuracy of remote verification. For pulse signals and intelligent sensor signals
based on the SV/GOOSE protocol, the sampling technology has achieved a high level of
accuracy. This paper focuses on the introduction of multi-channel, analog, high-precision
sampling and high-synchronization accuracy sampling methods. The principle of the
HPMCLAD is shown in Figure 4.

The voltage analog signals are collected using a high-precision voltage divider circuit
built with precision resistors to scale down the voltage. The current analog signals are
collected using 0.01-level, high-flux, high-stability, wide-temperature type split-core current
transformers (CTs). The I/V conversion circuit is designed in a zero-load manner, and the
signal is buffered and amplified by a high-precision, low-noise operational amplifier to
improve the accuracy of the analog-to-digital conversion. The analog-to-digital conversion
is performed by a 24-bit, four-channel, synchronous sampling, 1.5 MSPS high-precision,
aliasing-free analog-to-digital converter, AD4134, to reduce the conversion error. By cascad-
ing multiple AD converters, up to 32 channels of synchronized analog signal acquisition
can be achieved with a single acquisition module. The AD4134 chip incorporates an anti-
aliasing analog filter and oversampling digital filter, and it also includes a high-precision
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voltage reference source, which greatly simplifies the design of the input drive and ref-
erence power supply circuits. The serial data output pins and associated control pins
of the AD4134 chip are connected to the FPGA through a minimal interface mode. The
sampling data are transmitted at high speed and high throughput using the SPI interface,
which reduces the number of I/O interfaces, simplifies the peripheral circuit design, and
minimizes the impact of traditional multi-channel routing on the PCB layout.
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In addition, synchronous pulse input IO + Timer is employed for time synchronization,
with a timing accuracy better than 1 µs. Under typical clock frequencies, the synchroniza-
tion clock accuracy can reach 7 ns. Furthermore, reserved interfaces for GPS and BeiDou
timing are utilized to ensure the reliability of the clock synchronization. Building upon
the foundation of high-precision clock synchronization design, synchronous sampling is
implemented by capturing the rising edge of the next system clock after receiving the
synchronous acquisition command as the reference timestamp for data acquisition. This ap-
proach further reduces synchronization sampling errors and enhances the synchronization
accuracy of multi-channel sampling.

4.2. IEC 61850 Compliant Communication Modeling

Currently, there are various manufacturers of high-voltage metering devices in the mar-
ket, with different communication formats and signal types. In the same substation, there
may be situations where multiple manufacturers, models, and communication formats of
high-voltage energy metering devices are installed simultaneously due to maintenance and
technical upgrade cycles. The existing remote energy metering verification systems were
often developed based on specific device models and communication formats, resulting
in poor dynamic scalability and communication compatibility, making them unable to
meet the remote verification requirements of large-scale gateway points in regional sub-
stations. In this paper, based on the compatibility access of the front-end, high-precision
local acquisition device with electronic, digital sensors, or energy meters, a communication
solution for the RVS based on the IEC 61850 communication standard is proposed. The
aim of this solution is to address the diverse types and signal formats of energy meters and
their associated sensors which are distributed at gateway metering points. By achieving
compatibility access through the front-end local acquisition device, the communication
management unit of the local acquisition device completes the IEC 61850 protocol con-
version, message parsing, and synthesis of the collected data from gateway points. This
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abstracts the local acquisition device as an intelligent device that uniformly accesses the
IEC 61850 communication network, greatly improving the system’s compatibility and
scalability. The IEC 61850 communication standard adopts object-oriented data modeling
techniques, which provide good data self-description and network independence [31,32].
Drawing on the communication modeling methods used in substations, the communication
modeling of the RVS is performed, as illustrated in Figure 5.
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Figure 5. Schematic diagram of communication structure.

As shown in Figure 5, referring to the IEC 61850 communication modeling approach
for intelligent substations, the HPMCLAD is defined as an Intelligent Electronic Device
(IED), with the Remote Power Cloud Main Station serving as the Client and the field acqui-
sition device and other edge devices serving as the Server. The bidirectional interaction
between the two is achieved through the MMS service mechanism. The LN classes required
for the verification process, as determined by the IEC 61850-7-4 standard, are selected and
appropriately extended. Each measurement loop of the field acquisition device is defined as
a Logical Device (LD), and under each LD, multiple logical nodes (LN) are defined accord-
ing to the remote verification process, including verification circuit management, metering
error verification, PT secondary voltage drop testing, current transformer secondary load
testing, fault alarms, and other nodes. The Verification Circuit Management LN primarily
includes common information such as measurement lines, devices, self-description of the
field acquisition device, and verification plans. The Metering Error Verification LN is based
on the standard-defined Measurement LN (MMTR) logical node class and is appropriately
extended to include parameters for remote verification settings, error verification results,
and associated device sample values. The PT Secondary Voltage Drop Testing and Current
Transformer Secondary Load Testing LNs are based on the standard-defined Extended
Measurement LN (MMXU) and are appropriately extended to include specific data object
(DO) descriptions of the test results. The Fault Alarm LN defines common faults during the
remote verification process to ensure timely reporting of various verification data which
are exceeding limits. Some of the extended DO parameters are shown in Table 1.
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Table 1. Table of some expanding data objects.

LN Object CDC Definition

Measurement error
verification

ErrNo ING Verification number
ErrVal BCR Error value
ErrAvg BCR Mean value of error

ErrAvgNum ING Number of error mean samples
ErrVLim ASG Error alarm limit
Errnum ING Number of verification turns

ErrType ING
Verification method (standard

pulse verification or simulation
standard meter verification)

PT secondary
pressure drop test

ErrPt DEL Voltage drop
Delta WYE phase angle difference
FVal WYE ratio difference

Transformer
secondary load test

GVal WYE Conductance
BVal WYE Susceptance

4.3. Remote Verification Based on PCP

Traditional RVS often adopt the approach of locally performing high-precision data
acquisition for verification and uploading the results to a remote back end. The remote
verification functionality mainly involves remote control of the verification commands and
information management of the sampled verification data. In this approach, the devices
to be verified and the verification equipment (such as standard verification modules) still
operate in the same environment. However, for a large number of access points requiring
verification, this method is inefficient and incurs high equipment investment and mainte-
nance costs. Some RVS [18–21] have employed a design approach of “local high-precision
acquisition + remote verification.” However, in these systems, after the energy measure-
ment is completed by the local acquisition device, only a simple comparison is made
between the measured energy and the value of the meter under test. An uninterrupted
comparison chain has not been effectively established. In terms of functionality, these sys-
tems focus more on intelligent, information-based status monitoring and data management.
The verification results of the measurement errors can only serve as general references and
cannot guarantee the traceability of the measurement values.

To address the aforementioned issues and deficiencies, based on the principle of
verification using high-voltage energy meters and leveraging the advantages of the PCP,
this paper proposes a deployment of the energy meter error verification functionality on
the remote-controlled PCP. Two remote verification methods are provided: one based on
a multi-channel pulse standard verification device and the other based on a BP neural
network simulation standard meter.

4.3.1. Remote Verification of Multi-Channel Pulse Standard Verification Device

Taking full advantage of the powerful computing capabilities, fast response, abundant
resources, and high reliability of the PCP, a significant amount of computational work is
allocated to the PCP. The front-end local acquisition device focuses on local high-precision
data acquisition and uploading. After aggregating and organizing the massive amount
of collected data in the cloud, advanced metering algorithms are employed for energy
calculation. Simultaneously, the front-end, high-precision local acquisition device, interme-
diate communication logic links, and remote energy calculation method are integrated and
abstracted into a single energy meter. This energy meter is then used as a reference standard
after undergoing accuracy calibration with a higher-grade standard meter. The verification
of the meter under test is conducted using a multi-channel pulse standard calibration
device. This verification approach not only significantly reduces the hardware performance
requirements of the local acquisition device but also reduces the investment cost in basic
hardware infrastructure. Moreover, it ensures the continuity of the measurement value
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transmission chain and greatly improves the efficiency of remote verification work. The
basic schematic diagram can be seen in Figure 6.
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As shown in Figure 6, the HPMCLAD acquires the active and reactive power pulses
of the meter under test, as well as the line electrical parameters, with high precision.
These measurements are then transmitted through the comprehensive communication
network to the power cloud. In the power cloud, cloud services are invoked, and advanced
algorithms are employed to perform energy calculation. During the energy calculation
process, the program utilizes the four most recently sampled values in chronological order.
It applies a third-order Lagrange interpolation algorithm with Ts/4 as the reference to
refine the interpolation and perform resampling. The accumulated energy is computed
using dot product and metering algorithms, while the frequency is calculated using a
quasi-synchronous algorithm. The front-end, high-precision acquisition device and the
cloud-based energy metering system are integrated and verified through the use of a
three-phase standard source and a 0.01-level standard meter. The accuracy of the energy
measurement system exceeds the 0.02 level, making it suitable for verifying the accuracy of
downstream energy meters as a standard reference source.

The multi-channel standard verification device supports up to 16 pulse inputs, en-
abling the simultaneous remote verification of eight metering devices at different points.
The massive amount of collected data stored in the cloud is synchronized and organized.
The pulse conversion circuit generates a multi-channel standard verification device by set-
ting the energy threshold and converting the collected data into metering pulses. The multi-
channel standard verification device utilizes a high-precision and high-stability 50 MHz
clock as the high-frequency reference clock for counting the input pulses (low-frequency
pulses). Depending on the grade of the meter being verified, the number of pulses to be
collected during the verification sequence, denoted as N, is determined. The verification
sequence starts from the rising edge of the first low-frequency pulse and ends at the ris-
ing edge of the Nth low-frequency pulse. Simultaneously, the number of high-frequency
standard pulses is recorded. The energy measurement value for the corresponding pe-
riod is obtained by multiplying the number of pulse collections by the pulse constant.
Furthermore, the cloud-based verification program formulates the verification plan, and
the program automatically “soft switches” the verification channels in a First-In-First-Out
(FIFO) manner according to the set parameters. This enables efficient utilization of the
verification channels, avoiding the inefficiency and high cost associated with traditional
hardware switching methods. As well, it enhances the support capability for large-scale
remote verification.

4.3.2. Construction of Simulation Standard Meter Based on Improved BP Neural Network

The verification method based on the multi-channel standard verification device has
good traceability of measurement values. However, it is still limited by the number of
channels and requires long-term, high-load operation, which increases maintenance costs. It
cannot fully meet the increasingly growing demand for the high-speed parallel verification
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of large-scale access to metering devices at different points. To address this limitation,
considering the complexity of the electric energy metering system and the various nonlinear
parameters that are influenced by electromagnetic factors, a simulation standard meter
model based on an improved Backpropagation (BP) neural network is constructed in the
cloud. This leverages the strong nonlinear mapping capability of artificial neural networks
to achieve low-cost and efficient remote verification relying on the advantages of cloud
computing power.

The Backpropagation (BP) neural network is a learning algorithm for neural networks,
consisting of an input layer, hidden layers, and an output layer. Each neuron receives input
responses from the network and generates connection weights. By reducing the direction of
the expected output and actual output error, the connection weights are iteratively adjusted
layer by layer from the output layer, running until the global error reaches a set threshold.
This process achieves a nonlinear fitting effect and exhibits good generalization capabilities
for different data. Some researchers have proposed a neural network-based calibration
method for energy meters [33–37], which partially validates the feasibility of this approach.
It provides valuable insights for the large-scale, parallel remote verification of energy
metering devices based on the electric PCP. However, the model training samples in this
research have low resolution and a small scale. Additionally, only a few specific data points
were compared, indicating the need for further optimization in terms of model accuracy
and usability. To address this, a simulation standard meter model based on an improved
BP neural network is constructed. It involves comparing the measurement values obtained
from the input of sampled three-phase electrical parameters to the standard meter model
with the measurement values of the energy meter, thus performing error verification.

The simulation standard meter model is developed based on the learning and training
of measured sample data from precision standard sources and standard energy meters
(with a precision level of 0.01). During the training process, improvements are made to
the algorithm using additional momentum methods and dynamic adaptive learning rate
methods. As shown in Figure 7, a programmable three-phase standard source is used to
simulate the full range of parameters at the highest resolution. It records parameters such as
the three-phase voltage, three-phase current, frequency, power factor, and active/reactive
power measurement synchronization of the standard meter. This approach maximizes
the generation of a large number of training samples with finer granularity and more
comprehensive readings. The purpose of this study is to utilize a trained neural network to
simulate the behavior of a standard meter. By replacing the conventional standard meter
with a mature neural network, we aim to achieve accurate power predictions. The selection
of the neural network structure is crucial as it possesses its own distinct characteristics.
The input variables in this study are defined as three-phase current, three-phase voltage,
frequency, and phase. These variables capture essential electrical parameters in the system.
The objective is to predict the corresponding power value (P) using a BP neural network.
Based on engineering experience and considerations of the convergence speed and error
accuracy, a single hidden layer structure of 4-16-1 is chosen for the BP neural network.
This architecture comprises 4 input nodes, 16 neurons in the hidden layer, and 1 output
node. The specific configuration of the hidden layer aims to strike a balance between
computational efficiency and predictive performance. The basic structure of the BP net-
work [33,36,37] is shown in Figure 8. The learning and training process is performed by
minimizing the approximation error between the network output and the standard meter
output values, and using them as the convergence criterion.
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Although the BP neural network algorithm is widely used, it has several limitations
such as slow convergence and the tendency to converge to local optima. To accelerate
the training convergence speed, an improvement is made to the traditional BP neural
network algorithm by adding a momentum term to the weight update term and employing
accelerated gradient descent for convergence optimization [36–39].

Standard BP neural network weights update term:

∆ω(k) = η · g(k) (1)

In Equation (1), ∆ω(k) represents the parameter adjustment value at the k-th iteration,
η denotes the learning rate, and g(k) signifies the gradient computed at the k-th iteration.

Adding the momentum term parameter, the update term becomes:

∆ω(k) = η[(1− µ)g(k)] + µg(k− 1) (2)

In Equation (2), µ represents the momentum factor, which is typically chosen to be
between 0 and 1. Its core idea is to accelerate or decelerate the gradient descent search based
on the consistency of the current gradient descent direction with the previous direction.
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The value of the learning rate η has a significant impact on the convergence speed
and convergence quality. When the value is too large, the convergence process is prone
to oscillations. On the other hand, when the value is too small, the convergence speed
becomes excessively slow. The selection of an appropriate learning rate is challenging when
using a fixed learning rate approach. To address this issue, an adaptive learning rate factor
based on the computation of the gradient direction is introduced, enabling the adaptive
determination of the learning rate.

η(k) = σ(k) · η(k− 1) (3)

σ(k) = 2λ (4)

In Equations (3) and (4), η(k) represents the adaptive learning rate factor at the k-th
iteration, while λ represents the gradient direction. When the computed gradient g(k) at the
k-th iteration is larger than the previous computed gradient, λ is set to 1. This amplifies the
learning rate η to accelerate convergence. Conversely, when g(k) is smaller than the previous
gradient, λ is set to −1, causing the learning rate η to decrease and ensuring convergence
while avoiding oscillations. The simplified algorithm flow is depicted in Figure 9.
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The training implementation steps are as follows [37–39]:
Step 1: Prepare the training dataset: Select a set of standard source voltage, cur-

rent, frequency, and phase values (x = {Vol, Cur, Fre, Pha}) as inputs. Also, gather the
corresponding measurements from the 0.01-level standard meter as the expected output
(y = {Power}). Collect a sufficient number of historical data samples and organize them
as input vectors X = (x1, x2, · · · xn, 1), and their corresponding expected output vectors as
Y = (y1, y2, · · · , yn).

Step 2: Normalize the training data: Perform data normalization on the input vectors
X and output vectors Y to bring them within a common range or scale. This step ensures
that the training data are consistent and avoids issues related to different measurement
units or magnitudes.

Step 3: Define the neural network structure: Determine the architecture of the back-
propagation (BP) neural network. In this case, choose a single hidden layer with 4 input
nodes, 1 output node, and 16 hidden nodes (4-16-1 configuration).

Step 4: Initialize network parameters: Set the initial values for various parameters of
the neural network, including the number of input nodes (nin = 4), output nodes (nout = 1),
and hidden nodes (nhid = 16). Specify the maximum iteration count (nmax = 1000), training
error threshold (εlim = 0.0001), initial learning rate (ηini = 0.5), and momentum factor
(µ = 0.8).

Step 5: Randomly initialize weights and thresholds: Initialize the connection weights
(W) and thresholds (b) of all neurons in the network randomly within the range (0, 1). Also,
set the initial values of weight and threshold change rates as ∆W(0) = ∆b(0) = 0.

Step 6: Iterate the training process. Initialize the iteration count: k = 0. Initialize the
training error: Etrain(0) = ∞. While k < nmax and Etrain(k) > εlim, perform steps 7 to 12.
Otherwise, proceed to step 13.

Step 7: Perform forward propagation to compute the output values.
Weighted input from input layer to hidden layer:

zhid(k) = Win2hid(k) · x + bhid(k) (5)

Activation value of the hidden layer:

ahid(k) = f(zhid(k)) (6)

Weighted input from hidden layer to output layer:

zout(k) = Whid2out(k) · ahid(k) + bout(k) (7)

Activation value of the output layer:

aout(k) = f(zout(k)) (8)

Step 8: Calculate the output layer error.
Error of the output layer:

Eout(k) = y(k)− aoutput(k) (9)

Step 9: Perform backpropagation to update connection weights and thresholds from
output layer to hidden layer:

Update weights and thresholds from hidden layer to output layer:

∆Whid2out(k + 1) = Eout(k) · f ′(aout(k)) (10)

Whid2out(k + 1) = Whid2out(k) + η(k) · (1− µ)∆Whid2out(k + 1) · aT
hid(k) + µ∆Whid2out(k) · aT

hid(k) (11)
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∆bout(k + 1) = Eout(k) (12)

boutk + 1 = bout(k) + η(k) · ∆bout(k + 1) (13)

Step 10: Calculate the hidden layer error through backpropagation:
Calculate the error of the hidden layer:

Ehid(k) = WT
hid2out(k) · Eout(k) · f ′(ahid(k)) (14)

Step 11: Update connection weights and thresholds from input layer to hidden layer:
Update weights and thresholds from input layer to hidden layer:

∆Win2hid(k + 1) = Ehid(k) · f ′(ahid(k)) (15)

Win2hid(k + 1) = Win2hid(k) + η(k) · (1− µ)∆Win2hid(k + 1) · xT + µ∆Win2hid(k) · xT(k) (16)

∆bhid(k + 1) = Ehid(k) (17)

bhid(k + 1) = bhid(k) + η(k) · ∆bhid(k + 1) (18)

Step 12: Update iteration count, training error, and adaptive learning rate:
Update iteration count:

k = k + 1 (19)

Update training error [34]:

Etrain(k) =
1
2 ∑ (aout − y)2 (20)

Update learning rate according to the following formula based on Equations (3) and (4):

η(k) =
{

2 · η(k− 1), Etrain(k) > Etrain(k− 1)
2−1 · η(k− 1), Etrain(k) ≤ Etrain(k− 1)

(21)

Step 13: Output the network’s predicted output:

ypre = aout (22)

These steps describe the training process of the backpropagation neural network. The
activation function used is the Sigmoid function, denoted by f(x), and its derivative is f′(x).
The weights and thresholds are updated using the learning rate η and the momentum
factor µ.

f (x) = sigmoid(x) = 1/
(
1 + e−x) (23)

f ′(x) = sigmoid(x) × (1− sigmoid(x)) (24)

The formula for calculating the relative error of the test meter is given as follows [40]:

γ =
M−M0

M0
× 100% (25)

In Equation (25), M represents the measurement result of the test meter, and M0
represents the measurement result of the 0.01-grade, high-precision standard meter.

Experimental tests have shown that the measurement accuracy of the simulated
standard meter closely approximates the 0.01-level physical standard meter with an overall
precision of 10−5. This achievement effectively reduces the hardware investment and
fully leverages the computational advantages of the electric PCP. It represents a valuable



Electronics 2023, 12, 2493 16 of 20

exploration into achieving efficient remote verification of large-scale sampled data. The
proposed model is deployed as a cloud service, enabling the rapid remote verification of
massive data from high-voltage electric energy meters.

5. Testing and Application Discussion

Through the local acquisition device, communication network, and remote-controlled
cloud platform, two different approaches were tested and validated: the cloud-based,
multi-channel pulse standard verification device and the simulated standard meter based
on the improved BP neural network. The experiments utilized high-precision, three-phase
standard simulated power sources and digital power sources as test inputs. Different
loads were simulated using a load box to represent both balanced and unbalanced condi-
tions. The power factors which were tested were 1, 0.5 lagging (L), and 0.8 leading (C). A
comparison was made between the output results of the cloud-based multi-channel pulse
standard verification device, the simulated standard meter, the 0.02-level standard meter,
the 0.05-level standard meter, and the 0.01-level precision standard meter by calculating
the differences. The experimental results are presented in Table 2. In this context, γM repre-
sents the multi-channel pulse standard error, γS represents the simulated standard meter
error, γ0.02 represents the 0.02-level standard meter error, and γ0.05 represents the 0.05-level
standard meter error, which are calculated according to Equation (25). “Ib” represents the
reference current, which refers to the stable value of the current at the nominal voltage
and frequency. It is typically half of the current meter’s range. On the other hand, “Imax”
represents the maximum current, which denotes the highest value of the load current. It is
generally the upper limit of the current meter’s range.

Table 2. Table of the verified test data.

Load Status Load Current Interval Power Factor (cosϕ) γM (%) γS (%) γ0.02 (%) γ0.05 (%)

Balanced

0.05Ib ≤ I < 0.1Ib 1.0
+0.009 +0.011 −0.014 +0.041

0.05Ib ≤ I ≤ Imax −0.007 −0.005 +0.011 +0.032

0.1Ib ≤ I < 0.2Ib 0.5 L
+0.006 +0.010 +0.015 −0.026

0.2Ib ≤ I ≤ Imax −0.005 +0.004 −0.009 −0.036

0.1Ib ≤ I < 0.2Ib 0.8C
+0.009 −0.011 −0.012 −0.034

0.2Ib ≤ I ≤ Imax −0.005 −0.004 +0.010 +0.035

Unbalanced
0.1Ib ≤ I ≤ Imax 1.0 +0.009 +0.013 +0.013 −0.043
0.1Ib ≤ I ≤ Imax 0.5 L −0.008 +0.012 +0.010 −0.034

As shown in Table 2, the integrated multi-channel standard calibration approach
achieves a metering accuracy close to the 0.01 level, significantly surpassing the 0.02 level.
The metering accuracy of the simulation standard meter based on the improved BP neu-
ral network is slightly lower than the 0.01 level but still better than the 0.02 level and
significantly superior to the 0.05 level. Both calibration approaches meet the accuracy
requirements for the remote calibration of power metering devices at the 0.2 level and
below. The test results also indicate that the metering accuracy of the two calibration
approaches is influenced by the load conditions. Under balanced load conditions, the
performance is better compared to unbalanced conditions. Additionally, under the same
power factor and load balance, there is a tendency for the metering accuracy to degrade
when the load is biased. Furthermore, although the simulation standard meter based on the
improved BP neural network demonstrates good approximation accuracy (better than 10−5)
to the 0.01 level precision standard meter during modeling and training, its actual testing
accuracy is slightly lower than the accuracy level achieved during modeling. This can be
attributed to factors such as insufficient granularity in the modeling data sampling points
and the absence of load conditions in the data samples.

Currently, the designed system described in this paper has been deployed and is
undergoing trial operation. Field applications have demonstrated that the system achieves
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its intended functionalities, enabling the compatibility access and rapid remote intelligent
calibration of widely distributed electronic and digital energy meters in various substations.
The remote calibration feature realizes standardization, automation, and intelligence. After
initial wiring, remote calibration, querying, and monitoring can be performed solely at
the remote-controlled center station, client-side, or intelligent mobile terminals. This
system proves to be particularly beneficial for scenarios involving large-scale equipment
integration, as it significantly reduces equipment investment and improves operational
efficiency. In comparison with the traditional meter calibration method, the relevant
performance parameters are presented in Table 3.

Table 3. Comparison of performance evaluation with traditional methods.

Performance Metrics Traditional Manual
Verification Methods

Current Remote
Calibration Systems

Proposed System in
This Paper

Verification mode Manual Automatic Automatic

Verification methods On-site physical calibration Remote physical verification
Remote physical verification

or Remote Simulation
Verification

Average time cost per test 11.5 min 1.3 s [38] 1.0 s

Workload High Low Low

Operational Risk High Low Low

Compatibility N/A Partial Support Support multi-vendor and
multi-type device

Traceability Difficult Partial Support Full Support

Maximum relative error N/A 1.24% [37] +0.013%

Integrated Accuracy N/A 1.5 level 0.02 level

Number of parallel
verification devices supported 1–2 10–50 (General physical

server resources)
>100 (Parallel Computing

Support of the PCP)

System Functions N/A Basic Comprehensive

The proposed improvement approach in this paper overcomes the limitations of the
traditional validation methods, such as high workload, low efficiency, high cost, insufficient
compatibility, difficult traceability, and lack of support for the parallel calibration of large-
scale metering devices. By adopting the “on-site high-precision sampling + remote cloud-
based validation” approach, the system introduces a novel solution that fully harnesses the
power of cloud platforms. It outperforms traditional methods in terms of efficiency, safety,
compatibility, traceability, and reliability. The proposed system significantly enhances
the accuracy of high-voltage metering device validation. The remote validation platform
offers two validation methods: multi-channel standard physical error validation and
validation based on an improved BP neural network simulation table. Leveraging the
advantages of power cloud technology, the system realizes various functions, including
energy calculation, remote intelligent error validation, cloud storage, and status monitoring
and alerts. Particularly, it provides a promising application prospect for large-scale and
diverse high-voltage metering devices.

6. Conclusions

This paper proposes an intelligent remote calibration solution for high-voltage power
metering devices based on the PCP, which is closely related to the construction of new power
systems. This solution can provide remote monitoring, data analysis, energy management,
and operation support for various types of sites such as hydroelectric power stations,
renewable energy facilities, and converter stations (substations), thereby promoting the
sustainable operation and optimized management of new power systems. The solution
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adopts a pre-processing, high-precision data acquisition approach and remote cloud-based
error calibration. The on-site data acquisition devices are designed with high precision and
compatibility, using the IEC 61850 unified communication standard. This greatly enhances
the security, system compatibility, and scalability of the solution. At the cloud end, two
methods are provided for calibration: multi-channel standard physical calibration and
digital calibration based on an improved BP neural network simulated standard meter.
Leveraging the computational advantages of the power cloud, the solution improves
work efficiency and reduces the investment required for traditional channel switching
equipment. It provides valuable insights for remote calibration in scenarios involving
the large-scale deployment of calibration points. In both methods, the “standard meter”
adopts an integrated error concept and is calibrated against a precision standard meter.
The structure is simplified, and the traceability of the measurement values is relatively
good. However, due to the inherent limitations of BP neural network technology, further
research is needed to refine the modeling and theoretical support of the simulated table
under different load conditions. Additionally, the high-performance implementation of
the system relies on the computational advantages of the cloud platform and the high
reliability of high-speed communication networks. Further research is required to ensure
the integrity and robustness of the data traceability system throughout the entire process.

The test application demonstrates that the system can achieve its designed func-
tionality with an integrated error accuracy at the 0.02 level, exhibiting high precision.
Furthermore, the system shows strong compatibility and scalability, along with a good
level of informatization and intelligence. It is capable of meeting the remote calibration
requirements for large-scale, high-voltage metering devices, ensuring the safe, efficient,
cost-effective, reliable, and stable conduct of meter calibration work.
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