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Abstract: This paper addresses the challenging problem of bipartite consensus tracking of multi-
agent systems that are subject to compound uncertainties and actuator faults. Specifically, the study
considers a leader agent with fractional-order nonlinear dynamics unknown to the followers. In addi-
tion, both cooperative and competitive interactions among agents are taken into account. To tackle
these issues, the proposed approach employs a fully distributed robust bipartite consensus tracking
controller, which integrates a neural network approximator to estimate the uncertainties of the leader
and the followers. The adaptive laws of neural network parameters are continuously updated online
based on the bipartite consensus tracking error. Furthermore, an adaptive control technique is utilized
to generate the fault-tolerant component to mitigate the partial loss caused by actuator effective-
ness faults. Compared with the existing works on nonlinear multi-agent systems, we consider the
compound uncertainties, actuator faults and cooperative–competition interactions simultaneously.
By implementing the proposed control scheme, the robustness of the closed-loop system can be
significantly improved. Finally, numerical simulations are performed to validate the effectiveness of
the control scheme.

Keywords: bipartite consensus tracking; neural network; compound uncertainties; actuator faults

1. Introduction

In recent years, researchers have paid much more attention to coordination control
of multi-agent systems due to its benefits, such as low operating costs, high robustness,
and flexible scalability [1–3]. Although agents can transmit information among themselves
via multiple hops, in practice, not every follower has access to the leader’s information
due to constraints such as transmission distance or environment in the communication
network. Therefore, it is particularly important to consider the problem of distributed
control in a non-complete topology. Distributed coordination control refers to agents
working cooperatively through decentralized controllers by using local information and
limited communication interactions. Consensus plays an important role in the research
of distributed coordination control because of its wide range of applications, including
sensor networks [4], multi-robots [5], and multi-UAVs [6]. Depending on the number
of leader agents, the classical consensus can be divided into two categories: leaderless
consensus [7–9] and consensus tracking [10–12]. As an important part, consensus tracking
has become very popular in many fields, such as formation tracking [13], flocking [14],
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containment [15], etc. Among them, consensus tracking indicates that all followers can
asymptotically follow a leader or an average of group leaders.

It is worth noting that most of the current research on distributed coordination control
mainly focuses on the cooperation between agents, and describes the interactions among
agents as an unsigned graph [16]. In the 1940s, Heider summarized the pattern of positive
and negative interactions between individuals from the triangle of interpersonal relation-
ships. He noticed that in social networks, the existence of both friend and foe relationships
and the simultaneous existence of cooperation and competition interactions is the systemic
norm. Further examples include: (1) biology, where neurons have both facilitating and re-
sisting relationships [17]; (2) multimedia, where users have trust or distrust in the attitudes
of other users [18]; (3) multi-party states, where there are cooperative and competitive
relationships between two/multiple parties; (4) international relations, where there are
cooperative and hostile relationships between states [19]. Unlike unsigned digraphs, in
which positive edges (sign “+”) can be used to represent positive relationships between
individuals and negative ones (sign “−”), the complex relationships mentioned above
can be described through signed networks. Based on this, the simultaneous existence of
cooperation and competition interactions has important implications for the distribution
group behavior of multi-agent systems [20]. Therefore, the study of distributed control for
multi-agent systems over signed networks has extensive research implications.

Theoretically, the interactions between agents determine the behavior of the final group
[21,22]. Consensus tracking is achieved by relying on cooperation among the agents, and even-
tually, the state of all followers remains the same as that of the leader. However, considering
two groups of agents over signed networks, if there is cooperation among neighboring agents
within subgroups and competition among neighboring agents across different subgroups,
eventually, follower agents in the same subgroup as the leader converge to the same state as
the leader, while the other follower agents approach the opposite state as the leader [23]. This
dynamical phenomenon is known as bipartite consensus tracking over signed networks.
In recent years, this issue has received significant attention from researchers. In [24], an
adaptive bipartite consensus tracking control approach was introduced for second-order
multi-agent systems on competition networks, where the agents are suffering from un-
known disturbances. Furthermore, the interventional bipartite consensus tracking issue of
high-order multi-agent systems was addressed in [25] and neural network-based adaptive
estimators are designed to approximate and compensate for the nonlinear uncertainties of
agents. Then, the research in [26] focused on exploring the bipartite tracking consensus
issue for linear multi-agent systems that include a dynamic leader, and the control input
of the leader agent was unknown for each follower agent. A novel non-smooth control
scheme was proposed on the basis of the relative state of agents. In [27], the authors
proposed the bipartite trackingconsensus protocol for generic linear multi-agent systems
over directed cooperation–competition networks and obtained the convergence conditions
based on the matrix product technique. Moreover, the authors in [28] presented a novel
sub-super-stochastic matrix method for stability analysis of the bipartite tracking control
issue over signed networks. Thus, the research results of bipartite consensus tracking were
further enriched. It is noteworthy that the aforementioned results are less likely to study
the problem under the simultaneous uncertainty of leaders and followers. Meanwhile,
disturbances, such as unknown external disturbances and model uncertainties, are always
prevalent in the dynamics of leader and follower agents and have a serious impact on the
control performance of the multi-agent system. The authors in [29] solved the bipartite
consensus tracking problem and designed a robust controller, which combined the neu-
ral network and extended the high-gain observer (called NN-EHGO). While this control
structure is relatively complex, it is more difficult to apply directly in practice.

Until now, numerous studies have been conducted on bipartite consensus track-
ing problems for multi-agent systems with integer-order dynamics, such as first-order
systems [30], second-order systems [31], and high-order systems [32]. However, in practice,
many systems cannot be described by integer-order homogeneous systems when the agent
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works in a complex environment [33], e.g., underwater robots with a large amount of
viscous material or micro-organisms on the seafloor, unmanned aerial vehicles with a
large number of particles in a complex space, etc. In contrast, fractional-order systems
exhibit system properties well in various fields due to their powerful memory and genetic
properties. Additionally, owing to the system’s scale and complexity, agents are more
likely to develop faults that will degrade performance or eventually cause the system to
completely fail [34]. It is crucial to take into account the multi-agent system’s fault-tolerant
performance to guarantee the system’s lengthy stability. Currently, there are limited results
available for the bipartite consensus tracking problem of uncertain multi-agent systems
when actuator faults are present.

Drawing from the aforementioned discussions, this paper’s primary goal is to resolve
the bipartite consensus tracking control issue for multi-agent systems that encounter
compound uncertainties and actuator faults. The interaction topology among the agents
is represented by a signed graph. Moreover, the leader agent is modeled by an uncertain
fractional-order equation, which is unknown to all followers. The following summarizes
the primary contributions of this paper:

(1) A robust fully distributed bipartite consensus tracking control scheme is designed for
the multi-agent system with compound uncertainties and actuator faults. According
to the property of fractional calculus, a function transformation relation is constructed,
which effectively solves the problem of mismatching the derivative orders of the leader
and follower dynamic models.

(2) Neural networks are used to approximate the uncertainties of both the leader and
follower agents, while online adaptive laws are employed to continually update
the parameters of the neural network. Furthermore, the impact of neural network
approximation errors on the performance of bipartite consensus tracking is considered.
By introducing an approximation error estimation term into the control input, the
accuracy of neural network approximation and the robustness of the controller are
effectively enhanced.

(3) To compensate for the partial loss of the actuator effectiveness problem, fault-tolerant
components are built into the bipartite consensus tracking controllers for uncertain
second-order multi-agent systems. It is demonstrated that all signals are guaranteed
to be bounded, and followers’ states are able to track the leader’s state (or its opposite)
as closely as possible.

The remaining sections of the paper are structured as follows: Section 2 provides
an introduction to relevant mathematical theories that will be utilized in subsequent
sections. Section 3 focuses on the bipartite consensus tracking problem, while Section 4
presents theoretical solutions to the bipartite consensus tracking control problem with zero
approximation errors. Additionally, this section further discusses the design of robust
bipartite consensus tracking controllers in the presence of neural network approximation
errors. In Section 5, numerical simulations are used to validate the effectiveness of the
designed control schemes. Finally, in Section 6, the entire paper is concluded, and potential
future research topics are discussed.

2. Preliminaries

The following section will cover mathematical concepts associated with graphs, which
are used in network connectivity, as well as fractional calculus. Prior to that, several
frequently used symbols will be defined.

The notation diagn
i [βi] represents a diagonal matrix with diagonal entries β1, β2, . . . , βn,

while coln
i [βi] creates a column vector with entries βT

1 , βT
2 , . . . , βT

n arranged vertically. Alter-
natively, coln[β] creates a column vector by stacking βT vertically n times. We can define
the one vector as 1n , coln[1].
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2.1. Signed Graph Theories

In this paper, a signed graph is denoted as G and is composed of nodes V and weighted
edges E . An agent is represented by one node, and an edge from the ith agent to the jth
agent (denoted by Eij) indicates that the jth agent receives information from the ith agent.
The graph topology represents the network structure among the agents. The weight of
edge Eij is denoted as aij, the ith agent and the jth agent are considered neighbors if and
only if aij 6= 0, where aij represents the weight of the edge connecting them. However,
aij is set to 0 if and only if the edge does not exist (i and j are not connected) or if i = j
(a node cannot be considered its own neighbor). The interactions between agents are either
cooperative (aij = aji > 0) or antagonistic (aij = aji < 0). If aij = aji for all the agents,
the graph is undirected. A signed graph G is said to be structurally balanced if there is a
division of its nodes into two disjoint sets V1,V2, with V1 ∪ V2 = V and V1 ∩ V2 = ∅, such
that positive edges only exist between nodes within the same set, while negative edges
only exist between nodes in different sets. For a structurally balanced graph, we define
the signature matrix σ = coln

i [σi] ∈ Rn×1, where σi = 1 if νi ∈ V1 and σi = −1 if νi ∈ V2.
The signed graph considered in this paper is structurally balanced. The two agent sub-
groups of multi-agent systems will gradually approach two different states with opposite
signs but the same magnitude. Furthermore, for a structurally balanced graph, when
aij 6= 0, it follows that σi = σjsgn(aij).

The definition of the Laplacian matrix L for a signed graph G with n nodes is given by

L = diagn
i [

n

∑
j=1
|aij|]− {aij} ∈ Rn×n. (1)

Lemma 1 ([35]). For a connected undirected graph with n nodes, the Laplacian matrix L̄ can
be obtained by diag[σ]Ldiag[σ]. The resulting matrix L̄ has a single zero eigenvalue and the
eigenvector corresponding to this eigenvalue is 1n. All other eigenvalues of L̄ are positive. Therefore,
L̄ is a semi-positive definite matrix, and it satisfies L̄1n = 1T

n L̄ = 0.

Based on Lemma 1, for a connected undirected signed graph with n nodes, the Lapla-
cian matrix L has exactly one zero eigenvalue, and its corresponding eigenvector is denoted
by σ. This can be expressed mathematically as Lσ = σT L = 0.

2.2. Fractional Derivatives

Consider a smooth function f (t), the fractional order is defined as p. Based on
the different definitions of fractional-order derivatives, there are now three mainstream
forms of the formulation, namely “Grünwald-Letnikov derivatives”, “Riemann–Liouville
derivatives” and “Caputo derivative”, denoted as GL

0Dp
t f (t), RL

0Dp
t f (t), and C

0Dp
t f (t) with

respect to time t, respectively. Details of the above three definitions of fractional-order
derivatives can be found in [36].

For the purpose of notation simplification, Dp
t f (t) is employed to represent any of

the previously established derivatives. Presented below is one property pertaining to the
fractional derivatives denoted by Dp

t f (t):

Property 1. The composition rule [36]:

Dp
t
(
Dq

t f (t)
)
= Dp+q

t f (t). (2)

3. Robust Bipartite Tracking Consensus Problem Description

Considering a multi-agent system comprised of n follower agents, where each agent
can be identified by an index i (i.e., i ∈ {1, 2, . . . , n} , I). Then, the dynamics of the ith
follower agent is: {

ẋi(t) = wi(t) + fi(xi, t),

ẇi(t) = $iui(t) + gi(xi, wi, t),
(3)
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where xi(t) and wi(t) represent the position and velocity states, respectively. ui(t) denotes
the control input. Moreover, the functions fi(x, t) and gi(x, w, t) are smooth but not known
to the agents. Furthermore, these functions can differ arbitrarily between agents. The
system is represented by an undirected network connecting the agents, and the information
shared among neighboring agents is denoted by output yi(t).

Assumption 1. The variable $i represents the actuator fault (actuator health indicator) for the
ith agent. When $i = 1, it indicates that the actuator is functioning normally. If 0 < $i < 1, it
suggests that the actuator has partially lost its actuating power, but is still operational.

On the other hand, the fractional differential equation is used to model the target agent
indexed as 0:

Dq
t x0(t) = f0(x0, t), (4)

where the smooth function f0(x, t) is unknown to all followers with the exception of the
leader agent, the fractional order q satisfies 0 < q ≤ 2. The state variable is denoted as
x0(t). The leader agent is the target agent, while all other agents (i ∈ I) are considered
followers. At least one follower can access the output x0(t). In this paper, xi(0) and wi(0)
represent the initial states at the start time t = 0. That is the reason why 0 is given as the
base point of Dq

t .
We aim to devise a control strategy for the followers that solves the bipartite consensus

tracking control problem defined below:

Definition 1 (Bipartite Consensus Tracking Control). If for all followers i ∈ I , the state
variables xi(t) converge to the same value as the leader’s, i.e., limt→∞[xi(t)− σix0(t)] = 0 for all
i ∈ I , then the control protocol ui(t) in (3) is considered to achieve bipartite consensus tracking
control for the multi-agent system.

The primary difficulties associated with bipartite consensus tracking control problems include:

(1) Due to the nonlinearity of the unknown functions, which are part of the agent dy-
namics, conventional control approaches relying on local feedback linearization are
not applicable;

(2) The actuator fault $i exists in the velocity-loop and $i and $j should be different; thus, it
is important to design the fault tolerance bipartite consensus tracking control scheme;

(3) Since the followers cannot obtain the information of the leader’s dynamics, including
its order q, the conventional reference tracking control design cannot be employed;

(4) When the uncertain components of each agent’s model exhibit significant variations, it
becomes unfeasible to perform system stability analysis using a standardized model-
based approach.

Remark 1. Unlike most existing works on nonlinear multi-agent systems that only consider
cooperative interactions among agents, this paper considers both cooperative and competitive
interactions simultaneously. Specifically, the study focuses on bipartite interactions where each
sub-group seeks to cooperate internally while also competing with its counterpart, often found in
various real-world applications such as transportation or communication networks.

4. Main Results

This section aims to develop a robust control strategy for achieving bipartite consensus
tracking of multi-agent systems that suffer from both compound uncertainties and actuator
faults. At first, the leader agent will be modeled using fractional-order nonlinear dynamics,
which are unknown to followers. Specifically, neural network-based approximators are
designed to estimate uncertainties in both the leader and follower agents. Then, an adaptive
control technique will also be adopted to generate a fault-tolerant component that can
address partial loss resulting from actuator effectiveness faults. Here, we first describe how
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to design a neural network-based approximator. Based on the following assumptions, the
linearly parameterized neural networks can estimate the values of unknown functions.

Assumption 2. Linearly parameterized neural networks can be used to model two unknown
functions, namely, fi(x, t) and gi(x, w, t). These functions are represented on compact sets, Ω f i ∈
R2 and Ωgi ∈ R3, respectively.

fi(x, t) = φT
f i(x, t)θ f i + e f i,

gi(x, w, t) = φT
gi(x, w, t)θgi + egi,

(5)

where the basis functions

φ f i(x, t) = col
h f i
k [φ f i,k(x, t)] ∈ Rh f i , φgi(x, w, t) = col

hgi
k [φgi,k(x, w, t)] ∈ Rhgi

are both known. Moreover, the parameters θ f i = col
h f i
k [θ f i,k] ∈ Rh f i and θgi = col

hgi
k [θgi,k] ∈ Rhgi

are unknown constant vectors; while the errors in the neural network approximation are denoted by
e f i and egi.

Assumption 3. Linearly parameterized neural networks can be used to express the equation
γ(x, t) , D1−qt f0(x, t) on a prescribed compact set Ωγi ⊂ R2.

γ(x, t) = φT
γ (x, t)θγ + eγ, (6)

where the known basis function φT
γ (x, t) is represented as φT

γ (x, t) = col
hγi
k [φγi,k(x, t)] ∈ Rhγi .

Besides, θγ is defined as θγ = col
hγi
k [θγi,k] ∈ Rhγi , whose elements are unknown. The neural

network approximation error is denoted by eγ.

In this paper, we denote the estimate of a quantity α by α̂, and its estimation error
by α̃ , α̂− α. The ith agent’s estimate of fi(x, t), gi(x, w, t), and γ(x, t) are represented
by f̂i(x, t) , φT

f i(x, t)θ̂ f i, ĝi(x, w, t) , φT
gi(x, w, t)θ̂gi, and γ̂i(x, t) , φT

γ (x, t)θ̂γi, respectively.
Therefore, linear expressions based on neural networks can be designed for estimating
leaders with fractional order model uncertainties and constructing feedforward terms in the
control inputs to improve bipartite consensus tracking accuracy and reliability. Moreover,
the corresponding estimation errors are designated by f̃i(x, t), g̃i(x, w, t), and γ̃i(x, t). It is
evident that by defining

f̃i(x, t) , φT
f i(x, t)θ̃ f i,

g̃i(x, w, t) , φT
gi(x, w, t)θ̃gi,

γ̃i(x, t) , φT
γ (x, t)θ̃γi = φT

γ (x, t)[θ̂γi − θγ],

(7)

the estimation errors can also be expressed as

f̃i(x, t) = f̃i(x, t)− e f i,

g̃i(x, w, t) = g̃i(x, w, t)− egi,

γ̃i(x, t) = γ̃i(x, t)− eγ.

(8)

With reference to the universal approximation theorem of neural networks as pre-
sented in previous literature [37], we propose the following assumption:

Assumption 4. The errors in approximation, denoted by e f i, egi, and eγ, are constrained by
unknown constants δ f i, δgi, and δγ within their respective compact sets Ω f i, Ωgi, and Ωγ. In other
words, |e f i| ≤ δ f i, |egi| ≤ δgi, and |eγi| ≤ δγi.
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Assumption 5. The errors in approximation, as defined in Assumptions 2 and 3, are such that
e f i = egi = eγ = 0.

Remark 2. The linear parametric modeling of unknown nonlinear dynamics has been extensively
studied in classical adaptive control theory. Assumptions 2 and 3 are satisfied when the basis
functions are properly chosen so that the acceptance domain can cover the value domain of the
unknown smooth functions.

4.1. Bipartite Consensus Tracking of the Fractional-Order Leader with Zero Approximation Errors

In this section, we will proceed to design a robust bipartite consensus tracking con-
troller under the Assumption 5. To achieve this, we will first introduce the following
variables:

p1i = xi − σix0,

p2i = z2i − σiγ̂i(xi, t),

z2i = wi + φT
f i(xi, t)θ̂ f i,

(9)

one gets

ṗ2i =$iui + gi(xi, wi, t) + [φT
f i(xi, t) ˙̂θ f i − σiφ

T
γ (xi, t) ˙̂θγi]

+ [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]ẋi + [
∂

∂t
φT

f i(xi, t)θ̂ f i − σi
∂

∂t
φT

γ (xi, t)θ̂γi]

=$iui + φT
gi(xi, wi, t)(θ̂gi − θ̃gi) + [φT

f i(xi, t) ˙̂θ f i − σiφ
T
γ (xi, t) ˙̂θγi]

+ [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi][z2i − φT
f i(xi, t)θ̃ f i]

+ [
∂

∂t
φT

f i(xi, t)θ̂ f i − σi
∂

∂t
φT

γ (xi, t)θ̂γi].

(10)

Constructing the robust bipartite consensus tracking control algorithm as:

ui0 =− kεε1i − kp p2i − φT
gi(xi, wi, t)θ̂gi − [φT

f i(xi, t) ˙̂θ f i − σiφ
T
γ (xi, t) ˙̂θγi]

− [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]z2i

− [
∂

∂t
φT

f i(xi, t)θ̂ f i − σi
∂

∂t
φT

γ (xi, t)θ̂γi],

ui =$̂∗i ui0.

(11)

where

ε1i =
n

∑
j=1
|aij|(xi − sign(aij)xj) + |bi|(xi − σix0) (12)

is the output feedback mechanism that relies on the information transmitted through the
network.

Remark 3. The proposed robust bipartite consensus tracking controller incorporates a neural
network approximator to estimate both the uncertainties of the leader and follower agents in multi-
agent systems suffering from compound uncertainties. This technique offers improved accuracy,
robustness, and adaptability, and can handle complex non-linear dynamics, which is essential for
achieving bipartite consensus tracking. Moreover, by updating the neural network parameters
online, the approach can learn and adapt to changing system parameters, making it more versatile.

Furthermore, we obtain the derivative of p2i as

ṗ2i =− kεε1i − kp p2i − φT
gi(xi, wi, t)θ̃gi

− [
∂

∂x
φT

f i(xi, t)θ̂ f i −
∂

∂x
φT

γ (xi, t)θ̂γi]φ
T
f i(xi, t)θ̃ f i + $i $̃

∗
i ui0.

(13)
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We define the following variables:

P1 , coln
i [p1i], P2 , coln

i [p2i], X0 , x01n, E1 , coln
i [ε1i], R̂ , coln

i [σiγ̂i(xi, t)],

R̃ , coln
i [σiγ̃(xi, t)], Ψ̃ , coln[{ ∂

∂x
φT

f i(xi, t)θ̂ f i −
∂

∂x
φT

γ (xi, t)θ̂γi}φT
f i(xi, t)θ̃ f i

]
.

Apparently, we have E1 = (L + B)P1.
Then, we can derive the matrix representation of variables as follows:

P1 = X− diag[σ]X0,

P2 = Z2 − R̂ = Ẋ + F̃− R̂,
(14)

with the compact model:

Ṗ1 = Ẋ− diag[σ]Ẋ0,

Ṗ2 = −kε(L + B)P1 − kpP2 − G̃− Ψ̃ + Tu.
(15)

Additionally, the adaptive laws governing the neural network approximation
parameters are:

˙̂θ f i = k f [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]φ f i(xi, t)p2i + k f kεφ f i(xi, t)ε1i,

˙̂θγi = −σikγkεε1iφγ(xi, t),
˙̂θgi = kgφgi(xi, wi, t)p2i,
˙̂$∗i = −p2ik$ui0.

(16)

Theorem 2 (Bipartite Consensus Tracking Control). Assuming that Assumptions 2 and 3
hold, the control input ui given by Equation (11), along with the adaptive laws presented in
Equation (16), can effectively address the robust bipartite consensus tracking problem outlined in
definition Definition 1, provided that the subsequent conditions are met.

∂

∂x
γ(x, t) < 0. (17)

Proof. In order to demonstrate the stability of the closed-loop system, a Lyapunov function
is created in the following form:

V =
kε

2
PT

1 (L + B)P1 +
1
2

PT
2 PT

2

+
1

2kg

n

∑
i=1

θ̃T
gi θ̃gi +

1
2k f

n

∑
i=1

θ̃T
f i θ̃ f i +

1
2k f

n

∑
i=1

θ̃T
γi θ̃γi +

1
2k$

n

∑
i=1

$i $̃
∗T
i $̃∗i .

(18)
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It is clear that V is positive definite, the derivative of V with respect to the trajectory
of Equations (15) and (16) can be expressed as:

V̇ =kεPT
1 (L + B)(Ẋ− diag[σ]Ẋ0)− kε(Ẋ + F̃− R̂)T(L + B)P1

− PT
2 (G̃ + Ψ̃− Tu) +

1
kg

n

∑
i=1

θ̃T
gi

˙̂θgi +
1
k f

n

∑
i=1

θ̃T
f i

˙̂θ f i +
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi

+
1

2k$

n

∑
i=1

$i $̃
∗T
i

˙̃$∗i − kpPT
2 P2

=kε(R− diag[σ]Ẋ0)
T(L + B)P1 − PT

2 (G̃ + Ψ̃− Tu)− kε(F̃− R̃)TE1

+
1
kg

n

∑
i=1

θ̃T
gi

˙̂θgi +
1
k f

n

∑
i=1

θ̃T
f i

˙̂θ f i +
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi

+
1

2k$

n

∑
i=1

$i $̃
∗T
i

˙̃$∗i − kpPT
2 P2.

(19)

According to (16),

PT
2 (G̃ + Ψ̃− Tu) + kε(F̃− R̃)TE1 =

1
kg

n

∑
i=1

θ̃T
gi

˙̂θgi +
1
k f

n

∑
i=1

θ̃T
f i

˙̂θ f i

+
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi +
1

2k$

n

∑
i=1

$i $̃
∗T
i

˙̃$∗i ,
(20)

holds.
According to the composition rule in (2), we have

ẋ0 = D1−q
t

(
Dq

t x0(t)
)
= D1−q

t f0(x0, t) = γ(x0, t),

then we can obtain:

R− diag[σ]Ẋ0 = coln
i [γ(xi, t)− σi ẋ0]

= coln
i [γ(xi, t)− σiγ(x0, t)]

= coln
i [

∂

∂x
{γ(ξi, t)}(xi − σix0)]

= −diagn
i [−

∂

∂x
γ(ξi, t)]P1

, −ΞP1.

(21)

We ensure that the variable ξi satisfies the well-known mean value theorem, where
ξi ∈ [min(xi, σix0), max(xi, σix0)]. By conforming to (17), we know that Ξ is positive
definite. Therefore, we can conclude that:

V̇ = −kεPT
1 Ξ(L + B)P1 − kpPT

2 P2 ≤ 0. (22)

Hence, we can observe that V continues to decrease until the point where P1 and
P2 become zero, i.e., P1 ≡ P2 ≡ 0. This leads to P1(∞) → 0, implying that for all i ∈ I ,
limt→∞(xi − σix0) → 0. Therefore, based on the Definition 1, the proof of the theorem is
completed.

Remark 4. To overcome the issue of partial loss caused by actuator effectiveness faults, this paper
proposes a fault-tolerant component using an adaptive control technique. This innovative approach
improves not only the robustness but also the safety of the system since losses can be compensated
before leading to total or catastrophic failure. Compared to traditional methods such as redundancy
or backups, this method reduces computational complexity while offering comparable reliability.
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4.2. Bipartite Consensus Tracking of the Fractional-Order Leader in the Presence of Nonzero
Approximation Errors

In the preceding section, we formulate a bipartite consensus tracking control strategy that
ensures multi-agent systems achieve zero approximation errors. However, Assumption 5 does
not necessarily hold. Therefore, we should design the controller when the neural network
approximation errors are not zero. On the basis of the previous section, we utilize the
coordinate transformation p1i and p2i as defined in (9) once more. Nevertheless, due to the
existence of approximation errors, the first derivative of p2i will contain two additional
terms related to egi and e f i.

ṗ2i =$iui + φT
gi(xi, wi, t)(θ̂gi − θ̃gi) + [φT

f i(xi, t) ˙̂θ f i − σiφ
T
γ (xi, t) ˙̂θγi]

+ [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi][z2i − φT
f i(xi, t)θ̃ f i]

+ [
∂

∂t
φT

f i(xi, t)θ̂ f i − σi
∂

∂t
φT

γ (xi, t)θ̂γi]

+ egi + [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]e f i︸ ︷︷ ︸
,mi

.

(23)

As the system cannot obtain the approximation errors, it is not possible to eliminate
the term mi by the control input. Nevertheless, as stated in Assumption 4, we can utilize
the estimates of the bounds of (δ̂ f i, δ̂gi, δ̂γi) and devise an adaptive law for them.

Then, the robust bipartite consensus tracking controller ui is designed as:

ui0 =− kεε1i − kp p2i − φT
gi(xi, wi, t)θ̂gi − [φT

f i(xi, t) ˙̂θ f i − σiφ
T
γ (xi, t) ˙̂θγi]

− [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]z2i

− [
∂

∂t
φT

f i(xi, t)θ̂ f i − σi
∂

∂t
φT

γ (xi, t)θ̂γi],

− rec(p2i){|kεε1i + p2i[
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]|δ̂ f i + |p2i|δ̂gi + σi|kεε1i|δ̂γi}︸ ︷︷ ︸
,di

,

ui =$̂∗i ui0.

(24)

The control input (24) consists of four main components: a state feedback term to
ensure the basic performance of the system, a neural network fitting feedforward term
related to the leader acceleration information to improve the system tracking control
performance, a neural network estimation term to eliminate the uncertainty term in the
follower model, and a neural network estimation error compensation term to reduce the
impact of the approximation error on the estimation performance.

Assuming the safe reciprocal function is denoted by rec(α) in the following form

rec(α) =


1
α

, α 6= 0,

0, α = 0.
(25)

Then the derivative of p2i becomes:

ṗ2i =− kεε1i − kp p2i − φT
gi(xi, wi, t)θ̃gi + mi − di

− [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]φ
T
f i(xi, t)θ̃ f i + $i $̃

∗
i ui0.

(26)
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The matrices M, ∆, E f , and Eγ are denoted by the following column vectors M =
coln

i [mi], ∆ = coln
i [di], E f = coln

i [e f i], Eγ = coln
i [eγi], respectively, one can modify

Equations (14) and (15) into

P2 = Ẋ + F̃− R̂ = Ẋ− R + F̃− R̃− E f + Eγ,

Ṗ2 = −kε(L + B)P1 − kpP2 − G̃− Ψ̃ + M− ∆.
(27)

Further adaptive rules for the neural network parameters estimation and approxima-
tion error bounds are:

˙̂θ f i = k f [
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]φ f i(xi, t)p2i + k f kεφ f i(xi, t)ε1i,

˙̂θγi = −σik f kεε1iφγ(xi, t),
˙̂θgi = kgφgi(xi, wi, t)p2i,

˙̂δ f i = kδ

∣∣kεε1i + p2i[
∂

∂x
φT

f i(xi, t)θ̂ f i − σi
∂

∂x
φT

γ (xi, t)θ̂γi]
∣∣,

˙̂δgi = kδ|p2i|,
˙̂δγi = kδσi|kεε1i|,
˙̂$∗i = −p2ik$ui0.

(28)

Theorem 3 (Bipartite Consensus Tracking Control with nonzero approximation errors). If
Equation (17) is satisfied, the bipartite consensus tracking problem described by Definition 1 under
Assumptions 2–4 can be achieved by utilizing the adaptive algorithm designed by Equation (28) in
combination with the control protocol ui given by (24).

Proof. To prove the stability of the closed-loop system, the following positive definite
Lyapunov function is chosen:

V =
kε

2
PT

1 (L + B)P1 +
1
2

PT
2 PT

2

+
1

2kg

n

∑
i=1

θ̃T
gi θ̃gi +

1
2k f

n

∑
i=1

θ̃T
f i θ̃ f i +

1
2k f

n

∑
i=1

θ̃T
γi θ̃γi

+
1

2kδ

n

∑
i=1

δ̃T
gi δ̃gi +

1
2kδ

n

∑
i=1

δ̃T
f i δ̃ f i +

1
2kδ

n

∑
i=1

δ̃T
γi δ̃γi,

(29)

and its derivative is:

V̇ = kεPT
1 (L + B)(Ẋ− Ẋ0)− kε(Ẋ− R + F̃− R̃− E f + Eγ)

T(L + B)P1

− PT
2 (G̃ + Ψ̃) + PT

2 (M− ∆) +
1
kg

n

∑
i=1

θ̃T
gi

˙̂θgi +
1
k f

n

∑
i=1

θ̃T
f i

˙̂θ f i +
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi

+
1
kδ

n

∑
i=1

δ̃T
f i

˙̂δ f i +
1
kδ

n

∑
i=1

δ̃T
gi

˙̂δgi +
1
kδ

n

∑
i=1

δ̃T
γi

˙̂δγi − kpPT
2 P2

= D1 + D2,

(30)

where
D1 =kε(R− Ẋ0)

T(L + B)P1 − PT
2 (G̃ + Ψ̃)− kε(F̃− R̃)TE1

+
1
kg

n

∑
i=1

θ̃T
gi

˙̂θgi +
1
k f

n

∑
i=1

θ̃T
f i

˙̂θ f i +
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi − kpPT
2 P2,

(31)
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and
D2 =(kε(E f − Eγ)

TE1 + PT
2 M)− PT

2 ∆

+
1
kδ

n

∑
i=1

δ̃T
f i

˙̂δ f i +
1
kδ

n

∑
i=1

δ̃T
gi

˙̂δgi +
1
kδ

n

∑
i=1

δ̃T
γi

˙̂δγi.
(32)

According to Equations (19)–(22) in Theorem 2, one gets

D1 = −kεPT
1 Ξ(L + B)P1 − kpPT

2 P2 ≤ 0. (33)

For the sake of simplification, define s f i , kεε1i + p2i[
∂

∂x φT
f i(xi, t)θ̂ f i− σi

∂
∂x φT

γ (xi, t)θ̂γi].
Accordingly, based on the Equations (23), (24), (28) and Assumption 4,

D2 =
n

∑
i=1

[
s f ie f i − |s f i|(δ̂ f i − δ̃ f i)

]
+

n

∑
i=1

[
p2iegi − |p2i|(δ̂gi − δ̃gi)

]
+

n

∑
i=1

[
− kεε1ieγi − |kεε1i|(δ̂γi − δ̃γi)

]
≤

n

∑
i=1

(
|s f i| · |e f i| − |s f i| · δ f i

)
+

n

∑
i=1

(
|p2i| · |egi| − |p2i| · δgi

)
+

n

∑
i=1

(
|kεε1i| · |eγi| − |kεε1i| · δγi

)
≤0,

(34)

is almost universally true along the time axis as long as P2 6≡ 0, and it is obvious that if the
following condition P2 ≡ 0 and E1 ≡ 0 holds, one gets D2 ≡ 0. Based on this information,
it can be inferred that

V̇ = D1 + D2 ≤ −kεPT
1 Ξ(L + B)P1 − kpPT

2 P2 ≤ 0, (35)

and based on the outcome of Theorem Theorem 2, the proof of the theorem is completed.

Remark 5. A class of robust control methods for system uncertainties and disturbance estimation
and compensation has been extensively studied in the existing literature. The idea of these methods is
to use the system input and output information to estimate the uncertainties and equate them to the
input for feedforward compensation, in order to achieve the goal of simplifying the controller design
without reducing the impact of system uncertainties and disturbances. Methods developed based on
such ideas include disturbance observer (DOB) [38] and uncertainty and disturbance estimation
(UDE) [39], but these methods are based on model design and often require an accurate system
model to achieve an efficient estimation of unknown uncertainties. In contrast, the approximation
principle of neural networks for unknown models can make up for the shortcomings of traditional
control methods, which do not rely on accurate mathematical models, use learning and adaptation
capabilities to complete the mapping of control systems from input to output, and have strong
robustness to system parameter uptake and uncertain perturbations. Therefore, the robust control
scheme based on neural network estimation designed in this paper is more general than the traditional
filter-based estimation methods, such as DOB and UDE.

Remark 6. All control protocols in this paper assume that the signed network has the property
of structural balance. On this basis, the multi-agent system can be naturally divided into two
subgroups and show relative motion trends by the positive and negative nature of the connection
weights. If the signed network no longer has the structurally balanced characteristic and cannot be
grouped directly, how to design the control protocol for the multi-agent system to achieve bipartite
consensus tracking is still an open topic.
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5. Simulations

In the following section, we will employ numerical simulations to investigate the
theoretical results of the robust bipartite consensus tracking control. To evaluate the
effectiveness of the bipartite tracking control algorithm proposed in Theorem 3, we will
consider a group of four agents that are interconnected in accordance with the topology
illustrated in Figure 1. The dynamics (3) of these agents incorporate non-linear components,
as specified by the following equation:

 ẋ1 = w1 + cos(−x1)−
1

t2 + 1
,

ẇ1 = $1u1 + 0.1 sin(x1 + w1)e−t, ẋ2 = w2 − x2e−t2
+ sin(x2),

ẇ2 = $2u2 − 0.2x2e−w2
2t, ẋ3 = w3 + e−|x3|t − 1,

ẇ3 = $3u3 − x3 sin(w3)− cos
[ x3

(t + 1)2

]
,{

ẋ4 = w3 + e−x4 sin(x4t),

ẇ4 = $4u4 − e−x4tcos(w4)− 1.

The leader dynamics model (4) with the uncertain part is defined as follows:

Dq
t x0 = −0.3x0 + cos(t0.7) + 0.01t + 1.

3

21

4

2 1

−1.5

0

1

−1

Figure 1. The topology among the agents.

It can be seen from Figure 1 that only the first agent can obtain the output state
information of the leader with the corresponding weight b1 = 2, while b2 = b3 = b4 = 0.

In order to approximate the unknown functions f , g, and γ, we utilize the radial basis
function (RBF) neural networks. Specifically, we opt for the commonly utilized Gaussian
functions to act as the basis functions φ f i(x, t), φgi(x, w, t) and γ(x, t) in Equation (5). These
Gaussian functions are defined as:

φ f i,k(x, t) = e
−

(x−µ f ix,k)
2+(t−µ f it,k)

2

η2
f i,k , k ∈ {1, 2, . . . , h f i},

φgi,k(x, w, t) = e
−

(x−µgix,k)
2+(w−µgiw,k)

2+(t−µgit,k)
2

η2
gi,k , k ∈ {1, 2, . . . , hgi},

φγi,k(x, t) = e
−

(x−µγix,k)
2+(t−µγit,k)

2

η2
γi,k , k ∈ {1, 2, . . . , hγi}.
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The aforementioned Gaussian functions are characterized by their center µ∗,k and their
width η∗,k with each k corresponding to a distinct receptive field.

In this simulation, the neural network φt
f i(x, t)θ f i consists of h f i = 17× 17 nodes.

the centers (µ f ix,k, µ f it,k) are uniformly distributed in the space [−25, 25]× [0, 30]. Addi-
tionally, the neural network φt

gi(x, w, t)θgi contains hgi = 17× 17× 17 nodes, with centers
(µgix,k, µgiw,k, µgit,k) evenly spaced in [−25, 25] × [−25, 25] × [0, 30]. The values for the
widths were selected to be η f i,k = ηgi,k = 6, and ηγi,k = 6. The number of nodes was
determined as hγi = 17× 17, with their centers (µγix,k, µγit,k) being evenly distributed
in the range of [−25, 25]× [0, 30]. For the initial state of the leader agent, the values of
x0(0) = 3 and θ̂γi(0) = 0 were set.

The initial conditions of the multi-agent system were set as X(0) = [3,−1, 1, 1.5]T,
W(0) = [−2,−3, 2,−1]T, θ̂ f i(0) = θ̂gi(0) = 0, and parameters related to the proposed
controller were selected as: ke = kz = 10, k f = kg = kδ = k$ = 1. Moreover, the actuator
health indicators were defined as: ρ1 = 0.8, ρ2 = 0.65, ρ3 = 0.45 and ρ4 = 0.75.

Figure 2a illustrates the state trajectories of the multi-agent system under the com-
pound uncertainties and actuator faults. It depicts that the state trajectories of all followers
are divided into two groups, where one group tracks the trajectory of the leader, while the
other group is symmetric around axis y = 0. Additionally, the bipartite consensus error
displayed in Figure 2b converges gradually to zero, which indicates that the multi-agent
system eventually accomplishes the bipartite consensus tracking control. To demonstrate
the performance of the neural network approximator, Figures 3a,b and 4a are presented,
which reveal the estimation error of the uncertain function f̃i(x, t), g̃i(x, w, t), and γ̃i(x, t)
obtained by applying the neural network approximator. The results indicate that the final
estimation error achieves convergence within a certain range, while the small fluctuations
discernible in the figure arise due to the presence of the approximation error. Furthermore,
Figure 4b displays the trajectories of the control input. In this designed experiment, by
selecting a suitable neural network approximator and utilizing adaptive control technology,
the proposed method achieves the estimation of the uncertainties in multi-agent systems.
Additionally, the issue of partial loss caused by actuator effectiveness faults is addressed
by utilizing adaptive control technology. As a result, robust bipartite consensus tracking
control of the multi-agent system is achieved in the presence of compound uncertainties
and actuator faults.

Time(s)

(a)

Time(s)

(b)

Figure 2. The fractional order q = 1.2. (a) State trajectories xi(t) of multi-agent systems. (b) Bipartite
consensus error xi(t)− σix0(t) trajectories of multi-agent systems.
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Time(s)

(a)

Time(s)

(b)

Figure 3. The fractional order q = 1.2. (a) Neural Network estimation error for unknown function
fi(xi, t). (b) Neural Network estimation error for unknown function gi(xi, wi, t).

Time(s)

(a)

Time(s)

(b)

Figure 4. The fractional order q = 1.2. (a) Neural Network estimation error for unknown function
γi(xi, t). (b) Trajectories of control input ui(t).

In order to compare the bipartite consensus tracking control performance with different
feedback gains, four different sets of parameters were considered, as shown in Table 1.

Table 1. Four different sets of feedback gains ke and kz.

Case 1 2 3 4

Feedback gains ke = 5, kz = 5 ke = 15, kz = 5 ke = 15, kz = 15 ke = 5, kz = 15

The simulation results are shown in Figure 5. It can be seen that the convergence speed
of the bipartite tracking error can be improved by increasing the feedback gain appropriately.
However, an excessive feedback gain also increases the transient amount of the control
input and burdens the actuator. Therefore, a trade-off between control performance and
controller capability is needed to select the appropriate controller parameters.

Moreover, to examine the effectiveness of followers in tracking different types of
fractional order leaders, further simulations were conducted. Considering the leader
dynamic equations as Dq

t x0 = −e|x0|0.5 + sin(2x0) + cos(t0.7) + 0.01t + 1 (leader type 2)
and Dq

t x0 = −0.5x3
0 − e−x0 + cos(t0.7) + 0.01t + 1 (leader type 3), respectively. Defining

the fractional order q = 0.6, the simulation results are shown in Figures 6 and 7. Among
them, in Figure 6, when the leader trajectory had a large slope, i.e., when the leader velocity
varied widely, local oscillations appeared in the tracking curve. This is because conventional
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tracking control often assumes that the curvature of the reference trajectory is within a
certain range, and if the rate of change is large, the higher-order information term of the
reference trajectory is large, while often the control input is bounded and cannot be infinite.
Therefore, tracking will appear in a certain situation of oscillation phenomenon.

Time(s)

(a)

Time(s)

(b)

Time(s)

(c)

Time(s)

(d)

Figure 5. Bipartite consensus error xi(t) − σix0(t) trajectories of multi-agent systems (a) case 1;
(b) case 2; (c) case 3; (d) case 4.

Time(s)

(a)

Time(s)

(b)

Figure 6. The fractional order q = 0.6 and leader type is 2. (a) State trajectories xi(t) of multi-agent
systems. (b) Bipartite consensus error xi(t)− σix0(t) trajectories of multi-agent systems.
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Time(s)

(a)

Time(s)

(b)

Figure 7. The fractional order q = 0.6 and leader type is 3. (a) State trajectories xi(t) of multi-agent
systems. (b) Bipartite consensus error xi(t)− σix0(t) trajectories of multi-agent systems.

6. Conclusions

This paper has addressed the problem of distributed bipartite consensus tracking for a
class of uncertain second-order multi-agent systems, where the tracking target’s fractional
dynamics are unknown. An adaptive control strategy is proposed by using linearly parame-
terized neural networks to estimate the uncertain components of the models. Mathematical
simulations and theoretical proofs are presented to demonstrate the effectiveness of the
proposed method. However, the proposed control schemes in this paper are only verified
from the perspective of simulation, and further experiments can be conducted for the actual
system. In addition, the multi-agent system studied in this paper has only second-order
dynamics, but UAVs and unmanned vehicles often exhibit higher-order dynamics, and the
system itself is strongly nonlinear. Therefore, in future research, we will focus on extending
the control scheme proposed in this paper to solve the problem of robust cooperative
control for nonlinear high-order multi-agent systems.
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