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Abstract: This paper presents the design of an autonomous humanoid robot designed to optimize
and enrich customer service in showrooms, e.g., electronic equipment, mobile network operators,
and generally in stores with various articles. The proposed humanoid robot design is distinguished
by two key components: a sensor-equipped mobile platform with drives and a body featuring a
head outfitted with a touch tablet and an RGBD camera. The control system enables autonomous
navigation in both known and uncharted environments, with a special focus on diverse, crowded,
and cluttered spaces. To enhance its adaptability, this robot is not only fitted with LIDAR sensors but
also cliff and ultrasonic sensors. While the interactive ability with humans is an expected functionality,
this paper brings forth certain distinct innovations in humanoid robot design for customer service.
One of these unique aspects includes the robot’s ability to physically alter its configuration, such as
rotating its head and adjusting the height of its torso to maintain line-of-sight with the customer. This
capability signifies a novel degree of spatial responsiveness that exceeds static interaction. Moreover,
the proposed robot is equipped with a user-friendly gesture recognition system, uniquely designed
to detect and recognize simple human hand gestures. This attribute paves the way for understanding
simple commands such as requests for assistance. Upon recognizing a request, the robot tailors its
services by following the person around the showroom, effectively assisting and answering customer
queries or displaying requisite information on its screen. This active assistance model, specifically
tailored for human interaction, showcases the robot’s unique capability to respond proactively and
dynamically to human inputs.

Keywords: autonomous robot; human-robot interaction; robot navigation; gesture recognition;
artificial intelligence

1. Introduction

In the swiftly advancing world of robotics, mobile robots have seen a surge in usage
across diverse settings, tasked with various roles that largely involve interaction and coop-
eration with humans [1–3]. The focus of this paper is the development of an autonomous
humanoid robot designed for these interactive tasks, with a special emphasis on customer
service environments such as hotels, stores, and hospitals.

The authors of [2] discussed the utilization of robots in healthcare recently. They
discovered that a considerable number of robots deployed in hospitals aim at facilitating
direct cooperation with patients. The authors of [4] introduced a rudimentary robot
equipped with a screen and camera, designed to function as a personal assistant and
walk-helper. Subsequent work continued on this robot, with the authors delineating and
demonstrating the holonomic system of the robot’s mobile base [5]. The authors of paper [6]
also exhibited a remotely operated system for the provision of aid.

In [7], human-robot collaboration for on-site construction was discussed. A system
designed to augment construction productivity and safety by synchronizing robot intelli-
gence with human skills was showcased. It was pointed out that the rising popularity of
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personal robots introduces numerous challenges, one of which is security. Robots are often
stronger and faster than humans, potentially creating hazardous situations. The second
challenge, pertinent to this paper, is the communication gap between the robot and the hu-
man. Conventionally, a robot designed to assist a human will typically not cooperate with
qualified individuals possessing advanced programming knowledge. Consequently, robot
communication cannot rely on complex interfaces but must utilize interfaces comparable to
natural human interactions. Robots designed to cooperate with humans should be capable
of understanding speech or gestures for natural communication.

There is also a category of robots known as Attract, Interact, and Mindset (AIM). Their
function is to draw attention to products in stores or shopping malls, then present offers
and advertisements, or assist in shopping. Many AIM robots have been introduced in
recent years [8–12], typically comprising a mobile base, a torso with a touchscreen, and a
camera. The simplest models [8] offer touchscreen interactions, while more sophisticated
ones incorporate voice recognition [9,10]. The tallest model [11] enhances visibility but
may intimidate some users. A unique model [12] incorporates gesture recognition for
natural interaction. However, none offer the comprehensive interaction modalities and
height-adjustable design of our proposed autonomous humanoid robot.

Gesture recognition systems, which are increasingly leveraging artificial intelligence,
have become popular recently. Their reliability has improved due to ongoing advancements
in algorithms, programming frameworks, and large datasets necessary for such models. The
application of gesture recognition systems has been widely discussed in publications [13–16].

Paper [13] describes a basic system for recognizing gestures, hands, and faces. The
authors suggested wide-ranging applications of this system, such as facilitating communi-
cation for deaf individuals, enabling children to interact with computers or other devices,
detecting lies, or monitoring patients in hospitals. The authors of paper [14] introduced hand
gesture recognition systems using 3D depth sensors and reviewed widely-used commercial
sensors and datasets. Various gesture recognition systems based on 3D hand modeling, static
hand recognition, and hand trajectory tracking were also described. Similar insights into
gesture recognition methods were provided in [15], while [16] presented various applications
of gesture recognition systems in the realm of human-computer interaction.

Gesture recognition systems have also found an application in robotics. There are
environments where a robot may struggle to recognize human speech, such as crowded or
noisy places such as shopping malls or factories. Here, robots need alternative communica-
tion methods, such as gestures. Given the advancements in image analysis algorithms and
portable hardware, robots equipped with various types of cameras could leverage human
gesture recognition for interaction.

The authors of [17] suggested the use of a gesture recognition system for therapy with
children diagnosed with Autism Spectrum Disorders, as these children often struggle with
imitating gestures. They proposed therapeutic games involving joint gesture imitation
by the robot and children. The authors of [18] designed a non-verbal communication
system using gesture recognition for people fluent in sign language. In [19], a real-time
gesture recognition system implemented in a dynamic human-robot application was pre-
sented. Paper [20] presented a system where the UR5e robot was operated via gestures
in collaboration with humans. The authors of [21] proposed a comprehensive system for
gesture-based teleoperation, tested in a pick-and-place case study. The application of a
gesture recognition system was also reported in [22], where an agricultural robot with a
ZED 2 camera was presented. Recent studies such as [23–25] have used the MediaPipe
open-source framework [26] for real-time gesture recognition.

In contrast to the existing literature, our innovative mobile humanoid robot has been
specifically designed to operate effectively in crowded and noisy environments. Equipped
with a gesture recognition system, the robot can understand and respond to human gestures,
thus facilitating non-verbal communication when voice recognition might be impractical.
This is particularly useful in noisy places such as shopping malls or factories.
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The proposed robot introduces several novelties to the challenges associated with
traditional robot designs. A unique feature of our design is its ability to adjust its height by
modifying the position of its torso, enhancing its interactive capabilities by adapting to the
height of the human it is engaging with.

Moreover, our design incorporates an advanced gesture recognition system based on
artificial intelligence, capable of accurately and swiftly following human commands. The
system uses data from an RGBD camera mounted on the robot’s movable head. The head
is equipped with microphones, speakers, a touchscreen and a camera, enabling efficient
customer service without the need for continuous human intervention.

Finally, our design presents a cost-effective solution that could significantly reduce the
expense of robotic assistants. Despite the increasing market presence of such devices, their
high price is a barrier to their widespread adoption. By addressing this issue, we anticipate
our affordable design could boost the popularity of robotic assistants.

2. Materials and Methods
2.1. Construction of the Robot

The designed robot consists of a mobile base that is equipped with drive wheels,
caster wheels, a main control unit, and sensors. The next part of the robot is a movable
torso on which a router and an NVIDIA Jetson TX2 are mounted, serving as a module
for calculations related to computer vision and artificial intelligence (AI) models. The last
element of the robot is a movable head, which is equipped with a touch tablet, RGBD
camera, microphones and speakers. The components of the robot are shown in Figure 1.
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The robot is equipped with a total of four drives. Two are located in the base and
are used to move the robot around the environment. The robot uses a differential drive
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mode using two independently driven wheels located on both sides of the robot’s base.
The maximum speed of the robot, resulting from its construction and the used motors, is
0.6 m/s, but it has been limited by software to 0.25 m/s for safety reasons. The base of the
robot is 470 mm by 560 mm, which allows the robot to move in tight places but also ensures
the stability of the entire mechanical structure of the robot. The next drive is located in the
robot’s torso and is used to change its height so that it can adjust to, for example, the height
of a human. While driving, the robot can reduce its height to achieve better stability. The
height of the robot can vary from 1.40 m to 1.75 m; the range of motion of the robot’s torso
is 0.35 m. The fourth and last drive is located in the robot’s head and is used to turn the
robot’s head right and left. The range of head movement is ±45◦. A summary of the basic
parameters of the robot’s motion is presented in Table 1.

Table 1. Basic technical parameters of a humanoid robot.

Parameter Value

Maximum speed 0.25 m/s
Robot height min: 1.40 m, max: 1.75 m
Head rotation range ±45◦

Base dimension length: 470 mm, width: 560 mm
Torso move range 0.35 m

2.2. Autonomous Navigation

The Robot Operating System (ROS) middleware [27] was used to manage the work of
the robot. ROS is an open-source platform for software development and robot control.

Various packages and programs (nodes) were launched on two computers of the robot,
responsible, among others, for particular functionalities of the robot. They are listed and
described below.

1. Communication and receiving data from sensors (e.g., LIDAR) and communication
with low-level controllers (e.g., Roboclaw, dedicated low-level controller). Data from
sensors such as IMU, ultrasonic sensors, optical sensors, and limit switches were
collected by the dedicated low-level controller. The power controller published data
on the batteries’ actual state, including the voltage and current usage.

2. Localization of the robot in the environment. The robot’s odometry was calculated from
the IMU and encoders on its drive wheels. The Extended Kalman Filter (EKF) [28,29]
was used to combine the odometry derived from the rotation of the wheels with data
from the IMU in order to estimate the final odometry from two different sources.

3. Controlling the individual axes of the robot, i.e., controlling the drive wheels, torso,
and head. A differential drive mode was used to control the drive wheels. A velocity
command was used for controlling, and it was split and then sent to the two wheels
of differential drive wheels.

4. Autonomous robot movement. The module was used to detect obstacles and avoid
them, and to determine the global and local path of the robot’s movement from its
actual position on the map to the goal position. For this purpose, the move_base
package, whose inputs included the kinematic parameters of the robot, data from the
LIDAR and ultrasonic sensors, odometry, and the current map of the environment,
was employed. This package’s output was the robot’s velocity, which was computed
by the local planner, a submodule of the move_base package responsible for creating a
local path for the robot in the robot’s proximity environment. The move_base package
additionally generated a global path that connected the robot’s actual position and
the goal position.

5. Robot model and kinematic structure description. The model took into account the
masses and moments of inertia as well as the kinematic structure of the robot.

6. Mapping and localization in the created map. The SLAM-Gmapping algorithm was
used for simultaneous creation and localization in the created map. The localiza-
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tion in the already produced map was carried out using the Adaptive Monte Carlo
Localization (AMCL) algorithm.

7. Camera and artificial intelligence model packages. The robot was equipped with
algorithms for face detection, gesture recognition, etc.

The ROS system includes RViz software, which served as a data visualizer that was
published on specific topics. This software was able to visualize the robot model, the
map currently created by the robot, data from sensors, the path of the robot’s movement,
costmaps, and images from the camera, etc. An example of visualization of these data is
shown in Figure 2.
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Figure 2. Data visualization in the RViz environment: (1)—the goal of the robot; (2)—determined
robot movement path from the global planner; (3)—distance data from ultrasonic sensors; (4)—robot
model; (5)—data from the LIDAR sensor (green points); (6)—obstacles; (7)—local costmap; (8)—map
created by a robot with a global costmap.

In order to ensure autonomous driving of the robot, Simultaneous Localization and
Mapping (SLAM) algorithms were implemented. These types of algorithms allow the
creation of a map of the environment while locating yourself in the environment. The main
sensor that is used in these types of algorithms is LIDAR. In addition, an odometry signal is
necessary, which in the case of the presented robot was obtained using encoders mounted
on the drive motors. Odometry was combined with the Inertial Measurement Unit (IMU)
sensor data using the Extended Kalman Filter (EKF) [28,29]. In the ROS environment, the
output of the SLAM algorithm was a map and the corrected position of the robot.

Various available SLAM algorithms were tested, such as CrsmSLAM [30], HectorSLAM [31],
Cartographer [32,33], and Gmapping [34–36]. Each of the algorithms was launched and tested.
The Gmapping algorithm was selected for further work and fine-tuned. To move around on the
created map, the Adaptive Monte Carlo Localization (AMCL) algorithm was used. This algorithm
is a variant of the Monte Carlo Localization (MCL) [37,38] algorithm, which is enhanced with an
algorithm to adjust the number of particles based on the distance of KL [39].
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3. Results
3.1. Robot Operation in a Cluttered Environment

During the research, the robot’s behavior in a crowded and dynamically changing
environment was tested. The correct operation of the robot’s autonomous systems respon-
sible for moving to a given point was tested. In the testing, the target point was determined
randomly on the map by the test software. The task of the robot was to move from the
current position to the preset position.

The initial tests consisted in placing obstacles in the form of cardboard boxes in
the robot’s path, which were rearranged by the operator during the robot’s movement.
Figure 3 shows time-lapse photos from the test. The odd-numbered photos show the RViz
visualization environment. The even-numbered photos show the robot placement during
the test. In the pictures, it can be seen that the robot control system recalculates the path of
the robot’s movement (the red line between the robot’s actual position and goal position-red
arrow) after each change in the distribution of obstacles.
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The next stage was the testing of the robot’s autonomous systems in an environ-
ment where there were a lot of people who were moving around. Such an environment
changes very dynamically and the robot must react quickly to changes that occur in such
an environment.

Figure 4 shows time-lapse photos from the test. The robot has been marked in the
figure in a red frame. The odd-numbered photos show robot placement during the test.
The even-numbered photos show the RViz visualization environment. In the photos from
the visualization environment, it can be seen how the robot with the LIDAR sensor (green
dots) detects people; the robot only detects human legs.
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In the tested environment, there were many obstacles between the current position
of the robot and its goal position. During the tests, there were situations in which the
robot could not find the optimal path to avoid all obstacles without collision (there were
too many people around the robot). In such a situation, the robot stopped and waited for
the environment to change. If it changed in such a way that the robot could continue to
the destination without collision, the robot began moving again. During the tests, it was
proved that our robot could safely and autonomously operate in a crowded environment.

3.2. Human Tracking with Robotic Head Rotation

In order to implement the functionality of tracking the human by rotating the head
of the robot, first the software for human detection and determining the distance between
the camera and the human was implemented. A detected human was marked on the map
created by the robot. This means that the position of the human was known relative to the
origin of the map coordinate system and relative to the camera coordinate system. The
ZED 2 camera is equipped with the functionality of detecting a person and tracking their
position relative to the camera. Using neural networks, functionality was implemented to
detect objects present in both the left and right camera images. Then, the 3D position of
each object (human), as well as its bounding box, was calculated using data from the depth
modulus. These also allowed objects to be tracked in the environment over time, even if
the camera was moving.

After determining the position of the human in relation to the position of the camera
on the map located in the head, the position of the human in relation to the robot’s base
(which was fixed in relation to the rotating head) was calculated. The reference frame of the
human position relative to the robot and head with the camera is shown in Figure 5. The
figure shows the robot in a world (map) coordinate system (xW , yW). The robot’s coordinate
system (xR, yR) was marked in blue and the camera coordinate system (xc, yc) was marked
in green. The camera recognized the human body and gave the position relative to the
camera frame (xcpos, ycpos). The person was marked in the form of coordinates (xhpos, yhpos)
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for the X and Y axes in relation to the robot’s position. By changing the coordinate system
of the detected human from the camera to the robot’s base, it was possible to calculate the
angle between the person and the robot’s base according to the formula:

α = atan

(
yhpos

xhpos

)
(1)
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The rotating angle of the head was sent to the head controller.
The head of the robot followed the detected human only if a human was in proximity

distance to the base of the robot. The distance threshold was set to 0.5 m. If this distance
was greater, even though the human was detected by the robot, the head did not follow
them. If the human was at a distance of less than 0.5 m, the robot’s head followed the
changing position of the human.

The two figures below show both the situation in which the robot’s head followed
a human being in close proximity to the robot, and the situation in which the human,
although detected, was too far from the robot and the robot’s head did not follow the
human’s position. Each of the two figures (Figures 6 and 7) consists of three planes, the
first of which (a) is an image from the camera placed on the robot’s head. The middle
image (b) is a visualization of the robot and the surrounding environment, including the
human detected in the RViz. The human is marked as a cuboid. The red arrow shows the
distance between the detected human and the robot. The last plane (c) is a photo showing
the placement of the robot and human in the test environment.

Figure 6 shows a situation where a human was detected by a robot but was too far
away for the robot’s head to follow. In Figure 6b,c it can be seen that the robot’s head is in
the center position. When a human approached the robot, the angle of rotation of the robot’s
head depended on the current position of the human. Figure 7 shows situations when a
human was in close proximity to the robot, standing to its left. In planes (Figure 7b,c) it can
be seen that the robot’s head turns towards the changing position of the human.

Due to the fact that the robot rotates its head and adjusts it to the human’s position,
it is easier for the human to interact with the robot. A human can freely move around
the robot while watching the content shown by the robot on the screen; in addition, if the
human is required to enter specific data on the touch panel, the human can do it without
changing position and standing in front of the robot. In addition, this behavior of the robot
humanizes it a bit, because during interaction it is similar to a real human.
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Figure 6. Human tracking by rotating the head of the robot. The human is not at a close distance to
the robot > 0.5 m. (a)—image from the camera in the robot’s head; (b)—visualization of the robot and
the environment, red arrow—the distance between the robot and the human, human marked as a
cuboid; (c)—robot and human placement during the test.
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Figure 7. Human tracking by rotating the head of the robot. The human is at a close distance to
the robot < 0.5 m on the left side of the robot. (a)—image from the camera in the robot’s head;
(b)—visualization of the robot and the environment, red arrow—the distance between the robot and
the human, human marked as a cuboid; (c)—robot and human placement during the test.

3.3. Adjusting the Height of the Torso According to Human Height

An additional module facilitating human interaction with the robot is adjusting the
robot’s height to the human’s height by moving the robot’s torso. Hence, a person can
comfortably view content and enter data using the touch panel without the need to bend
down or stand on tiptoes. Adjusting the height of the robot is based on detecting the face
of a human being in close proximity to the robot. The face is detected in the image from the
camera in the robot’s head.

In the first stage, the face is detected and marked as a bounding box, hence the
coordinates of the face in the camera image are known. Then, the center of the bounding
box for the Y-axis is centered in certain proportions in the Y-axis of the image as shown in
Figure 8. The robot’s height control algorithm tries to keep the human face at 65% of the
image height (Y-axis). The current position of the bounding-box face in Figure 8 is marked
with (1). If the camera image is 1280 × 720 pixels, the bounding-box position of the face for
the image is 720·0.65 = 468 pixels. A PID controller is used as the height controller of the
robot, depending on the position of the human face in the image. Its target position is the
y position of the bounding box face at 65% of the image height (Y-axis), the input is the y
position of the face in the image, and the output is the change of the torso height.
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lower part of the frame. Figure 10 shows the initial and final height of the robot after ad-
justing it to human height. 

  

1 

𝑋 𝑌 

Figure 8. Detected human face in the image from the camera placed in the robot’s head. The current
bounding box distance of the detected face in the Y-axis is marked as (1). The detected face is marked
in the white frame. Red dots indicate face landmarks (eyes, ears, nose, mouth).

Figure 9 shows time-lapse photos of the image from the camera mounted in the robot’s
head as the robot adjusted its height to the human. It can be seen how the human’s face in
the first photo is in the upper part of the frame, and in the last one it is in the lower part
of the frame. Figure 10 shows the initial and final height of the robot after adjusting it to
human height.
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Figure 9. Time-lapse photos showing the image from the camera mounted in the robot’s head at the
moment when the robot was adjusting its height to the human. The detected face is marked in the
white frame. Red dots indicate face landmarks (eyes, ears, nose, mouth).

3.4. Gesture Recognition System for Issuing Commands to the Robot

In order to improve the interaction between the robot and the human and to issue
commands to the robot, a dedicated system was designed for recognizing gestures by the
robot, which were then assigned to specific commands.

The gesture detection module consisted of algorithms based on artificial intelli-
gence and convolutional neural networks (CNN). A dedicated dataset consisting of about
78,000 photos of hands was created to train the algorithm. The set was developed on the
basis of the HaGRID dataset [40]. The original HaGRID dataset contains person images in
different scenes and lighting conditions. Our dataset contained only images of hands with
different gestures that were cropped from the full image. The dataset created by us was
divided into three classes, to which commands for the robot were assigned thus:

• fist—hand clenched into a fist; command: follow human, human requires robot assistance;
• palm—open hand; command: go back to the starting place, the human no longer needs

the robot’s assistance,
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• unknown—unknown gesture, any other hand shape; command: execute the last
command.
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Figure 10. Adjusting the height of the torso according to human height: (a)—the initial height of the
robot when the human approached it. The robot is too small for the person who wants to interact
with it; (b)—the height of the robot after adjusting its height to the height of a human.

Figure 11 shows sample photos from the created dataset. The hands in the dataset
consist of hand images that are lit differently and were taken against different backgrounds,
for the left and right hands, and in different poses. All this was aimed at ensuring the
best classification accuracy for the model implemented in real conditions on the robot.
Classification accuracy was the main criterion for evaluating the model, and was calculated
using the equation:

accuracy =
correct predictions
total predictions

·100 (2)

Accuracy is expressed in percent. Correct predictions are a sum of true positive and true
negative examples.
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Figure 11. Examples of photos from the created dataset divided into three classes: (a)—fist: a person
requires assistance; (b)—palm: the person no longer requires assistance; (c)—unknown: any other
hand gesture that does not change the currently executed command.

During the tests of the gesture recognition system, various CNN architectures were
tested, including ResNet152, Resnet50, ResNet101 [41], InceptionResNet [42], Inception [43],
and EfficientNet [44]. Finally, the ResNet152 architecture was chosen, because it achieved
the highest classification accuracy, i.e., about 96.1% for the validation set. However, for
all tested models the achieved accuracy for the validation set was above 92%. Table 2
presents the obtained accuracies for the validation set for individual models. The input
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to each model was a picture of a hand with pixel dimensions (85, 85, 3). Each model was
trained for 20 epochs on the dataset described above. For optimization parameters of the
tested models, an Adam [45] optimizer was used with a learning rate equal to 1e-4. As
a loss function, a categorical cross-entropy loss function was used, which is given by the
following formula:

L = −
k

∑
i

yi log(ŷi) (3)

where:
k—is the number of classes,
y—is the ground truth label for a given class,
ŷ—is the probability for a given class.

Table 2. Classification accuracy for validation set for every tested model architecture.

Model Name Validation Set Accuracy

ResNet50 92.13%
ResNet101 95.23%
ResNet152V2 96.09%
InceptionV3 95.24%
InceptionResNetV2 95.47%
EfficientNetV2 94.04%

Figure 12 shows the waveforms presenting the classification accuracy for the training
and validation sets during learning for each tested model. The accuracy presented in
Figure 12 was in the range between 0 and 1 (0–100%).
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Figure 12. Classification accuracy for training and validation sets for individual models: (a)—ResNet50;
(b)—ResNet101; (c)—ResNet152; (d)—InceptionV3; (e)—InceptionResNetV2; (f)—EfficientNetV2.

Figure 13 shows confusion matrices for the validation set consisting of about 3500 im-
ages. These matrices show multiclass classification problems by comparing the predicted
labels from a model and ground true values from the dataset. As can be seen, all models
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had the biggest problem with correctly classifying the images of the fist. Models sometimes
classified these images as unknown. However, this was a very small percentage as all
models achieved very high accuracy. Out of approximately 3500 tested images, an average
of 100 fist images for each model were classified as unknown. For the proposed solution, it
does not matter much, because the unknown class does not issue any command to the robot.
The percentage of incorrectly classified fists and palms as unknown was very small, which
was important from the point of view of the proposed solution because any incorrectly
detected fist or palm can issue a wrong command to the robot.
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Figure 13. Confusion matrices for the validation set for individual models: (a)—ResNet50;
(b)—ResNet101; (c)—ResNet152; (d)—InceptionV3; (e)—InceptionResNetV2; (f)—EfficientNetV2.

The Resnet152 neural network consists of 152 layers, including convolutional layers
that form the residual blocks, which are shown in Figure 14.
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Residual building blocks are defined as:

z = F(x{W}) + x (4)
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where W is a parameters matrix from the weight layer, and x is the input to the residual
block. The function F(x) represents the residual mapping that the model is learning. The
main idea behind the residual block is the identity (skip) connection between the layers.
It helps very deep networks to learn complicated patterns in data and improves gradient
backpropagation.

The last layers in ResNet152 model were fully connected layers; between these layers
and the convolutional layers, the global average pooling layer was used. The model, despite
having so many layers, consists of only about 58 million parameters. The network was
trained for about 1 h for 20 epochs and for the described dataset on a computer with two
NVIDIA RTX 2080Ti GPUs. A distributed training method was used, which allowed one
model to be trained on two separate graphics cards. For comparison, the training time of
the model trained with only the AMD Ryzen Threadripper 2950X CPU (16 cores, 32 threads)
was over 19 h.

ResNet152, input to which was only the image of the hand itself, was one of the
elements of the entire module for recognizing gestures based on the image from the camera
placed in the robot’s head. The diagram of the entire gesture recognition module is shown
in Figure 15. Data from individual submodules were taken into account when determining
the final command for the robot. The entire gesture recognition module consisted of three
sub-modules:

• pose detection submodule,
• hand detection submodule,
• ResNet152.
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to crop a rectangle of a fixed size, e.g., (80, 75, 3), which contained a hand based on the 
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era image. If the input of the hand detection submodule was a camera image of size 
(1280, 720, 3), then the submodule did not give satisfactory results and did not detect 
hands reliably. The output from the hand detection submodule was landmarks for indi-
vidual elements of the hand and a bounding box, which did not contain unnecessary 
background. Such a picture most closely resembled the pictures that were in the dataset 
used to train the ResNet152 network. The image that was the output from the hand de-
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As mentioned above, the module for issuing commands to the robot was active on-
ly if the hand of the detected person was raised above their right shoulder. Gesture, po-

Figure 15. The gesture recognition module consists of the following submodules: (a)—pose detection,
(b)—hand detection, (c)—ResNet152. (1)—position of the detected person’s shoulder in the camera
image; (2)—hand position of the detected person in the camera image. Red dots indicate pose
landmarks (eyes, ears, elbow, hand, shoulder, knee, etc.).

The detection of the human pose and the hand was developed on the basis of the
Single Shot MultiBox Detector (SSD) architecture [46]. The gesture recognition module was
implemented in TensorFlow framework and Python language.

The input to the first submodule is an image from a camera placed in the robot’s head
of size (1280, 720, 3). The output from the pose detection submodule is the position of
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individual landmarks on the human body. The submodule returns 32 points (coordinates),
e.g., nose, hand, shoulder, knee, etc. The module for issuing commands to the robot is
activated only when the hand of the detected person is raised above the right shoulder.
In Figure 15a), the image from the camera has been marked with the number (1) for the
position of the right shoulder, and the number (2) for the position of the hand. When the
hand is raised above the right shoulder, the y position coordinate of the hand is less than
the y position coordinate.

Due to the fact that the dataset contains photos of hands that were cropped in an
almost perfect way (they did not contain unnecessary background), it was not possible
to crop a rectangle of a fixed size, e.g., (80, 75, 3), which contained a hand based on the
position of the hand. Such an image, which was the input of the ResNet152 network, was
incorrectly classified in most cases, and the classification module should work with high
reliability. To tackle this problem, the hand detection submodule was applied. Its input
was an image of size (140, 170, 3) created from the position of the hand in the camera image.
If the input of the hand detection submodule was a camera image of size (1280, 720, 3),
then the submodule did not give satisfactory results and did not detect hands reliably. The
output from the hand detection submodule was landmarks for individual elements of the
hand and a bounding box, which did not contain unnecessary background. Such a picture
most closely resembled the pictures that were in the dataset used to train the ResNet152
network. The image that was the output from the hand detection submodule had a variable
size, so it was resized to (85, 85, 3) dimensions so that it could match the desired input
shape of the ResNet152 network. The output from the ResNet152 network was a vector of
probabilities based on which of the three classes, fist, palm, or unknown, the image was
assigned to.

As mentioned above, the module for issuing commands to the robot was active only if
the hand of the detected person was raised above their right shoulder. Gesture, position,
and hand recognition were still active, but no command was sent to the robot. Figure 16
shows a situation where a man’s hand is below his right shoulder.
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Figure 16. The hand of the detected person is below his right shoulder. The module for issuing
commands to the robot is not active. (1)—position of the detected person’s shoulder in the camera
image; (2)—hand position of the detected person in the camera image. (a)—an image from the camera
with the output from the pose detection submodule—pose landmarks marked as red dots (eyes, ears,
elbow, hand, shoulder, knee, etc.); (b)—an image that is the input to the hand detection submodule
with the marked output from this submodule—hand landmarks marked as color dots (joints of
fingers, wrist, etc.) and bounding boxes marked as a green frame; (c)—robot and human placement
during the test.

In order to ensure the stability of the commands issued to the robot and to avoid a
situation where the gesture recognition module detected a gesture for following a human in
the first frame of the image, and in the second frame image detected a gesture for returning
the robot to the starting point, an algorithm based on a moving average was proposed,
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analyzing the detected gestures from the last 15 frames of the image. The fist gesture—follow a
person—was assigned a value of 1, and the palm gesture—return to the starting place—was
assigned a value of 0. If the average of the last 15 frames was greater than 0.5, the command
to follow a person was issued, if the average was lower, the command to return to the starting
place was issued. This approach prevents unnecessary oscillations and issuing of unwanted
commands to the robot. The ResNet152 network assigns a hand image to one of three classes,
the first two being commands and the last being any other gesture. Examples of gestures
labeled unknown are shown in Figure 17. The green frame on the left of each image shows
the input image to the ResNet152 network.
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Recognition of commands by the gesture recognition system we proposed, imple-
mented in the autonomous robot, worked very reliably and accurately. During tests in
various conditions, the gesture recognition system never recognized a gesture incorrectly,
which did not result in issuing any incorrect commands to the robot. The stability of issuing
commands to the robot was ensured by the analysis of several consecutive image frames
and the highly-accurately-trained ResNet152 network.

3.5. Issuing Commands to the Robot by the Human

In the developed system, the robot can be given two commands to improve the
interaction between the robot and the human. If the operator would like to move around
the room and requires assistance from the robot to view content on a tablet or enter data on
the screen, they should command the robot to follow them by raising their hand above the
right shoulder and clenching it into a fist as shown in Figure 18.

Figure 19 shows the individual steps during the movement in the form of time-lapse
photos. The odd-numbered photos show the image from the camera placed in the robot’s
head with particular layers: map created by the robot, costmaps, data from sensors, the
robot’s path, and its goal of movement. The even-numbered photos show the model of
the robot and its surrounding environment. The current goal of the robot’s movement in
individual photos has been marked with a red arrow, while the planned path of the robot’s
movement to the goal position has been marked with a red line.
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Figure 19 shows the individual steps during the movement in the form of time-
lapse photos. The odd-numbered photos show the image from the camera placed in the 
robot’s head with particular layers: map created by the robot, costmaps, data from sen-
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model of the robot and its surrounding environment. The current goal of the robot’s 
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Figure 18. An example of commanding a robot to follow a human. (a)—image from the camera with
the output from the pose detection submodule—pose landmarks marked as red dots (eyes, ears,
elbow, hand, shoulder, knee, etc.); (b)—an image that is the input to the hand detection submodule
with the marked output from this submodule—hand landmarks marked as color dots (joints of
fingers, wrist, etc.) and bounding boxes marked as a bold green frame. The dark green frame on the
left upper corner of the image shows the input to the ResNet152 network.; (c)—robot and human
placement during the test.

The last two photos in Figure 19 show a situation where the human has stopped and
the robot has also stopped in front of him, waiting for his next move. In this case, the robot
performs other activities, e.g., adjusting the height of the torso and following the position
of the human rotating its head. If the human changes their position on the map, the robot
starts following the human again. Figure 20 shows a situation in which the robot, standing
in front of a human, was commanded to return to its starting position. The human raised
his open hand above his shoulder, suggesting that the person no longer required the robot’s
assistance. Figure 20a shows an image from a camera placed in the robot’s head with layers
from the visualization environment; a human is marked as a blue cuboid. Figure 20b shows
the visualization of the robot in the RViz environment; a human is marked as a blue cuboid
in front of the robot.

Figure 21 shows time-lapse photos showing the robot’s path to the starting point after
the human has issued a command suggesting that they no longer need the robot’s assistance.
The first picture on the left (Figure 21) shows the first stage of the movement. The goal and
the path of movement to the starting point have already been determined by the robot. In
addition, in this photo, a person can be seen, marked in the form of a cuboid, still standing
in front of the robot and giving commands. In the next three photos, it can be seen that the
robot autonomously moves to the starting point and waits for further instructions.
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Figure 20. The human raises the open hand above the shoulder, which means that the human no
longer requires the assistance of the robot. (a)—image from a camera placed in the robot’s head with
layers from the visualization environment; (b)—visualization of the robot and the environment, a
human marked as a cuboid; (c)—robot and human placement during the test.
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4. Discussion

The work described in this article demonstrates significant strides in the design and
construction of a mobile humanoid robot with enhanced user-interaction capabilities. This
robot, incorporating advanced autonomous navigation, dynamic physical parameters, and
a high degree of human interactivity, represents a solution for human-robot collaboration
in a variety of settings.

The incorporation of SLAM and AMCL algorithms ensures reliable navigation by
the robot, as they allow the robot to move in both known and unknown environments
while taking into account and safely avoiding obstacles on the way to its destination. The
effectiveness of these algorithms not only establishes a foundation for the robot’s core
functionalities but also contributes to enhancing the user’s trust in the robot’s autonomy.
The decision to make the robot’s torso and head movable is a notable improvement in
the design of interactive robots. This allows the robot to adjust its height and direction
of gaze to match the user’s, which results in a more human-like interaction. The ability
to maintain eye contact and respond in a manner similar to human reactions makes the
robot more approachable and increases the user’s comfort during the interaction. The
successful implementation of a human detection and tracking module, along with the
gesture recognition module, adds another layer of interactivity. These modules allow the
robot to recognize humans and respond to hand gestures. The robot’s ability to mark
a human’s exact location on the map also creates opportunities for further interaction
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and navigation capabilities. The decision to utilize various neural network architectures
for the gesture recognition module ensured high accuracy in gesture recognition. The
implemented solution, composed of three submodules, allowed the robot to adjust its
height and rotate its head according to the human’s actual position, adding to the robot’s
responsiveness and adaptability.

While this work has resulted in a promising solution for robotic human assistance, it
also opens the door to potential future advancements. The prospects of developing and
testing the robot in customer service scenarios, as well as analyzing the user experience,
are exciting opportunities for further exploration. By evaluating user interactions with the
robot, it may be possible to fine-tune its capabilities and improve the overall human-robot
interaction experience.

The presented work has demonstrated results in the design and operation of a hu-
manoid robot capable of interacting with humans and navigating its environment au-
tonomously. However, it has its limitations and sets directions for future research and
development. One limitation of the current system is its scalability. The deployment
of a fleet of such robots and their coordinated operation will require advancements in
multi-robot systems. Future work should therefore focus on developing algorithms and
systems that can allow the robot to operate with other robots in larger, more complex envi-
ronments and coordinate effectively. While the robot is equipped with algorithms for face
detection and gesture recognition, its adaptability to diverse, dynamic environments could
be improved. This includes its ability to interact with people of different ages, abilities,
and cultural backgrounds, and to handle unexpected situations. Future research should
consider incorporating more advanced AI algorithms and more robust sensor technology
to enhance the robot’s adaptability.

On the other hand, deploying humanoid robots in public spaces raises a number of
ethical and social concerns, particularly in terms of privacy, security, and human-robot
interaction. Robots equipped with cameras and sensors could potentially capture and store
data on individuals without their consent, breaching their privacy rights. They could also
capture sensitive information in the environment that individuals might not want to share.
Humanoid robots could potentially be hacked, leading to misuse of data or the robot itself.
This could result in damage to property or even harm to individuals. As robots become
more common in public spaces, they will inevitably interact more frequently with humans.
This raises questions about how these interactions should be managed to ensure they are
safe and positive. In our tests in a crowded environment, we noticed that people willingly
interacted with the robot. People’s behavior towards the robot was positive and friendly.
The authors did not notice a negative reception of the presented robot.

Public perception will play a critical role in the adoption and integration of humanoid
robots in society. Therefore, transparency in design, deployment, and operation, and the
inclusion of public opinion in regulatory decisions, will be vital for the successful and
ethical application of such technologies.

Our autonomous humanoid robot excels in environments where traditional robots,
such as those discussed in [2,4] might falter. While the robots described in these studies
are used primarily in health care settings or as personal assistant robots, ours is designed
for noisy and crowded environments such as shopping malls or factories, broadening the
potential scope of application significantly.

The adaptability of our robot sets it apart from many discussed in the literature.
The Attract, Interact, and Mindset (AIM) robots described in [8–12], while effective at
attracting customer attention, lack the height-adjustability feature found in our robot. This
adaptability improves the engagement experience as the robot can adjust its torso height
to match the height of the human it interacts with. This detail, though seemingly minor,
enhances the human-robot interaction experience.

The gesture recognition system of our robot is also noteworthy in comparison with
those highlighted in [13–16]. While many systems rely on a mix of 3D hand modeling,
static hand recognition, or trajectory tracking of the hand, our robot uses a comprehensive
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AI-based gesture recognition system. It leverages data from an RGBD camera on the robot’s
head to follow human commands accurately, making it more robust and dynamic.

Moreover, compared to the therapy robots for children with Autism Spectrum Disor-
ders presented in [17] or those for sign language communication in [18], our robot serves a
wider audience. While the aforementioned robots cater to niche segments, ours is designed
for general public use, further widening its reach and potential impact.

Finally, a key comparison point lies in the affordability of our robot. The cost of many
robotic assistants, such as those found in [8–12], often proves to be a significant barrier to
widespread adoption. Our design prioritizes cost-effectiveness, potentially leading to more
widespread use and acceptance of such technology.

In summary, our proposed robot builds upon the strengths of existing technologies
while addressing some of their limitations, making it a promising advancement in the field
of humanoid robotics.

5. Conclusions

This paper presents a mobile humanoid robot, designed to assist in public spaces by
following human operators via hand gestures. We have devised and tested a navigation
system enabling it to operate in known and unknown environments while avoiding ob-
stacles. Unique to this robot are its features for enhanced human interaction, including
a height-adjustable torso and a rotating head that limits excessive movement and offers
a more natural, efficient tracking of humans. Its human detection, tracking, and gesture
recognition modules are based on several neural network architectures and offer precise
location and interaction capabilities. In tests, the robot adeptly recognized and responded
to human gestures.

In conclusion, this work presents a compelling contribution to the field of mobile
humanoid robotics, showing that robots can successfully interact with humans in a natural,
intuitive manner. This achievement has the potential to revolutionize the way we utilize
robots in environments such as hotels, hospitals, and shopping malls, thus significantly
enhancing the quality of services provided in these settings.
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