
Citation: Quan, T.; Zhang, H.; Yu, Y.;

Tang, Y.; Liu, F.; Hao, H. Seismic Data

Query Algorithm Based on Edge

Computing. Electronics 2023, 12, 2728.

https://doi.org/10.3390/

electronics12122728

Academic Editor: Bahman Javadi

Received: 25 May 2023

Revised: 12 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Seismic Data Query Algorithm Based on Edge Computing
Tenglong Quan 1, Huifeng Zhang 1, Yonghao Yu 2,*, Yongwei Tang 2,3, Fushun Liu 1 and Hao Hao 2,*

1 Shandong Earthquake Agency, Jinan 250014, China; 202185009009@sdu.edu.cn (T.Q.);
202185009008@sdu.edu.cn (H.Z.); 202115383@sdu.edu.cn (F.L.)

2 Shandong Computer Science Center (National Supercomputing Center in Jinan), Qilu University of
Technology Shandong Academy of Sciences), Jinan 250353, China; tangyw@sdas.org

3 Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering,
Ministry of Education, Shandong University, Jinan 250061, China

* Correspondence: yuyh@sdas.org (Y.Y.); haoh@sdas.org (H.H.)

Abstract: Edge computing can reduce the transmission pressure of wireless networks in earthquakes
by pushing computing functionalities to network edges and avoiding the data transmission to
cloud servers. However, this also leads to the scattered storage of data content in each edge server,
increasing the difficulty of content search. This paper investigates the seismic data query problem
supported by edge computing. We first design a lookup mechanism based on bloom filter, which
can quickly determine if there is the information that we need on a particular edge server. Then, the
MEC-based data query problem is formulated as an optimization problem whose goal is to minimize
the long-term average task delay with the constraints of computing capacity of edge servers. To
reduce the complexity of problem, we further transform it as a Markov Decision Process by defining
state space, action space and reward function. A novel DQN-based seismic data query algorithm is
proposed to solve problem effectively. Extensive simulation-based testing shows that the proposed
algorithm performances better when compared with two state-of-the-art solutions.

Keywords: edge computing; seismic content lookup; deep reinforcement learning

1. Introduction

Since the fifth generation of seismic devices, computer network technology has been
introduced into seismic devices. A complete seismic telemetry acquisition system can be
regarded as a relatively complex Local Area Network (LAN) system [1]. Seismic sensor
network is essentially a special sensor distributed network, so it is necessary to use network
research methods to study it, making the data transmission performance of the whole
system optimal. In addition, current seismic devices have the characteristics of high
density, large range and three-component acquisition. For wired seismic devices, simply
increasing the number of instrument tracks will not only cause pressure on the bandwidth
of the system, but also cause inconvenience to the construction. Wireless transmission
has gradually become an important transmission method for seismic devices [2]. Due to
the limited wireless bandwidth resources, if all the information generated by the seismic
device is transmitted to the cloud server for unified management, it will waste a lot of
communication resources.

In recent years, a new computing paradigm, mobile edge computing (MEC) [3] was
proposed, which can move some of the computational functions to the network edge
devices. In other words, we can perform distributed management of information on
edge servers through MEC. In this way, the seismic device does not need to send all the
information back to the cloud server for unified management, which can effectively reduce
the transmission pressure [4]. However, this also introduces a new problem. Due to the
lack of unified data management, it is difficult to quickly determine the location of data
and content query also becomes a problem. So, fast data query in the wireless network of

Electronics 2023, 12, 2728. https://doi.org/10.3390/electronics12122728 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122728
https://doi.org/10.3390/electronics12122728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12122728
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122728?type=check_update&version=1

Electronics 2023, 12, 2728 2 of 15

earthquakes supported by edge computing has become an important problem. But due to
the complexity of the problem and the limited computing resources of edge servers, there
are still many challenges to be solved.

Deep reinforcement learning (DRL) solutions [5] help take appropriate actions ac-
cording to the state of environment and have achieved great success in various kinds
of control tasks, which can provide a new idea to solve the task allocation problem in
wireless networks of earthquakes. Reinforcement learning has many advantages, among
which optimization of long-term average reward through training on historical data and
adaptability to the environment. One of the most remarkable algorithms in DRL is deep
Q-learning (DQN) [6], which can deal with models in continuous state spaces.

In this paper, we consider an earthquake information searching system with multiple
edge servers. Earthquake information is stored and distributed on edge servers. When
we perform a search, we first need to determine location of the information. Considering
multiple edge servers will store the information, we further need to determine which server
can execute the task with the constraints of computing capacity and task delay. To solve
the problem, we first propose a lookup mechanism to quickly determine the location of
information by bloom filter. Then, we formulate the MEC-based data query problem as
a Markov Decision Process (MDP) and propose a DRL algorithm to solve it. The main
contributions of this paper are as follows:

• Construct the System Model. We propose a lookup mechanism by bloom filter,
which can quickly determine if there is the information that we need on a particular
edge server. In addition, we formulate the MEC-based data query as a long-term
average optimization problem, whose goal is to optimize the service delay with the
constraints of computing capacity.

• DRL-based Algorithm. Considering the complexity of problem, we further transform
the problem into an MDP by defining the state space, action space and reward function.
A model-free deep reinforcement learning algorithm is proposed to solve the problem.
Instead of using a traditional ε-greedy strategy, we introduce the confidence interval
to explore action, which can improve the training efficiency of the model.

• Comparison-based Evaluation. We perform extensive simulations to evaluate the per-
formance of our proposed algorithm. The simulation results show that our algorithm
achieves better performance in comparison with two baselines.

The paper is organized as follows. The related works are reviewed in Section 2. The
system model is introduced in Section 3. The algorithm is proposed in Section 4. Section 5
discusses the simulation results and Section 6 introduces limits of our paper and future
work. Section 7 presents the conclusions.

2. Related Works
2.1. Edge Computing

As a new paradigm in computing and networking, edge computing is attracting
extensive attention from academic and industry researchers. Some works have studied
the computation offloading problem involving only a single edge node. For example,
literature [7] focused on the energy consumption problem of computation offloading, and
modeled it as a stochastic optimization problem with the goal of minimizing the energy
consumption of task offloading while ensuring the average waiting queue length. The
original problem was transformed by stochastic optimization method, and a dynamic
energy-saving computation offloading method was proposed. Literature [8] formulated
the task offloading problem, which joins uplink, downlink and computing resources al-
location as a network of queues. The goal of optimization is to minimize the operational
expenditure of computing resource providers. Then, authors transformed the problem into
a Generalized Nash Equilibrium Problem and proposed two decentralized algorithms by
introducing the penalty parameters to the coupling constraints. In [9], authors proposes
an opportunistic access fog-cloud computing network to reduce latency and energy con-
sumption of data transmission and computation. In this way, each mobile user can select

Electronics 2023, 12, 2728 3 of 15

the fog node through opportunistic access method. With the constraints of users’ quality
of service requirements, they jointly optimized both resource allocation and computation
offloading, and designed an iterative algorithm to solve the problem. However, there are
always multiple edge nodes in a system. Due to the different number of terminal devices
and the different amount of computing tasks in the service range of each edge node, the
single edge node offloading model is easy to lead to heavy computing pressure on some
edge nodes, while some edge nodes are relatively idle. This results in the load imbalance
between edge nodes, which affects the service experience [10].

Some of the latest research works consider the cooperation of multiple edge nodes
to complete computing tasks. The authors of [11] proposed a computation offloading
optimization mechanism for multi-edge device cooperation, modeled the optimization
problem as a mixed-integer nonlinear programming problem, and designed a preference-
based two-sided matching algorithm to reduce the overall task execution delay and achieve
load balancing between edge devices. Literature [12] classifies application tasks in terms of
computation amount and communication cost to help the computation offloading decision,
and proposes an offloading algorithm based on greedy task graph partitioning, which
uses greedy optimization method to minimize task communication cost. Reference [13]
considers the trade-off between task delay during computation offloading and energy
consumption during wireless transmission, and proposes an efficient and distributed
predictive offloading and resource allocation scheme for multi-layer fog computing system
by predicting system traffic, which can significantly reduce task delay with only a small
amount of prediction information value. The authors of [14] designed a software-defined
fine-grained multi-access edge computing architecture, which co-managed network and
computing resources, and designed a two-level resource allocation strategy based on
deep reinforcement learning to provide effective computing offloading services. Data
privacy is also an important issue in computing offloading. Combined federated learning,
authors [15] proposed a distributed learning framework for computation offloading with
the goal of minimizing the task delay and energy consumption. As shown in Table 1, these
computation offloading methods select the offloading location from all the edge nodes. But
in seismic data query, information is stored separately and not all edge nodes store the
required information, so the traditional computing offloading method is difficult to apply
to this scenario.

Table 1. Comparison of existing works.

Literature Cooperation of Nodes Long-Term Average Content Lookup

[7] × × ×

[8,9] × X ×

[11,12] X × X

[13–15] X X ×

our solution X X X

2.2. Wireless Network in Earthquakes

With the rapid development of Internet of Things devices, wireless networks are
more and more widely used in earthquake and meteorological observation. Authors [16]
showed how IoT devices based on wireless network can share the information (i.e., slightest
vibration detected by earthquake warning devices, water level, soil moisture) globally,
and carried out an in-depth analysis of it. The authors of [17] introduced the construction
of Nankai Trough Seafloor Observation Network for Earthquakes and Tsunami (N-net).
The system is a hybrid network of wired and wireless. Due to the low cost and rapid
deployment, wireless sensor networks can provide remote monitoring and sensing for
many critical scenarios, such as earthquakes and floods. The authors of [18] proposed an ar-
chitecture based on wireless sensor networks in smart city applications and used unmanned

Electronics 2023, 12, 2728 4 of 15

aerial vehicles as offloading nodes. In [19], the authors introduced an open-source earth-
quake monitoring system, which was based on wireless network and energy-autonomous
sensor nodes. Two emerging technologies in wireless network, LoRa and Message Queue
Telemetry Transport (MQTT), was used in the system to reduce latency and packet delivery
ratio. The authors of [20] designed an energy consumption scheduling scheme based on lon-
gitude and latitude coding algorithm and differential evolution algorithm to reduce overall
energy consumption of wireless sensor network in the process of earthquake monitoring.
In order to improve the utilization rate of network resources, they formed three-layer
network architecture by building intermediate service layer to connect sensor nodes and
sink nodes. Authors [21] proposed a low-cost, low-power and cloud-base seismic alert
system. In order to process tasks based on computation and communication resources in
the cloud, the system leveraged existing wireless networks to minimize costs and maximize
communication speed. Although wireless networks have gradually become an important
transmission method for seismic devices, there are few studies on seismic data query in
wireless network.

2.3. Quick Lookup Mechanism

Focusing on lookup speed, memory consumption and false positive probability, the
paper [22] proposed a smart mapping model named Pyramid-NN via neural networks
to build an index algorithm, which was trained by real NDN names offline and preset in
content routers in the future, that can not only reduce the memory consumption and the
probability of false positive, but also ensure the performance of real NDN name lookup. To
improve the performance of content lookup, the authors of [23] extended the cuckoo filter
to integrate a Bloom filter, which is used to improve the performance of insertions. The
algorithm, which was adjusted to the bucket size, can preserve the support for deletion of
the original cuckoo filter without the additional memory accesses for lookup operations. To
effectively remove false positives while completing all queries in a single memory access,
the authors of [24] proposed an adaptation scheme based on one memory access bloom
filter. The proposed algorithm is very suitable for the case of low memory bits per element.
In [25], the authors observed that many exact-pattern-matching-intensive workloads can
benefit from a DRAM-based processing-in-memory (PIM) architecture, and extended the
model with several cost-effective modifications to improve the efficiency of content lookup.
For the flow table lookup problem, the authors of [26] proposed a new flow table lookup
scheme based on bloom filters and RAM, which offers a good compromise between cost
and performance. The authors also verified the results by linearly searching the contents of
secondary RAM to solve the problem of false positives of primary bloom filter.

The above mechanisms are suitable for scenarios where the information is only stored
in one node. However, the required information is often stored in multiple edge nodes in a
seismic data query, which means these lookup mechanisms cannot be directly applied to
the information retrieval of wireless networks in earthquakes.

3. System Modeling

This section proposes the system model for task offloading. The scenario is described
first and the problem is presented next. Table 2 lists the mathematical notations.

Table 2. Mathematical notations.

Notation Explanation

N Set of edge servers

Fn Computing capacity of edge server n

K Set of tasks

T Set of time slots

ck Computing resource requirement of task k

Electronics 2023, 12, 2728 5 of 15

Table 2. Cont.

Notation Explanation

ok Data size of task k

pn Fixed transmission power of n

Bm,n The channel bandwidth between n and m

hm,n Channel gain between n and m

σ2
m,n Noise power

Tk
n Service delay status of edge server n for task k

Dk Edge server status for task k

l Size of the bit array

j The number of element

p The acceptable misjudgment rate

i The number of hash functions

tck
m Computation delay of task k

rm,n Transmission rate between edge server m and n

ttk
m,n Transmission delay of service k

f k
m Computation resources that m assigns to k

3.1. Scenario Description

An earthquake information searching system with multiple edge servers is considered,
as shown in Figure 1. There are three layers: cloud server, edge servers and seismic devices.
In reality, seismic devices collect various types of information, then they will transmit
the contents which are collected by them to the related edge server due to the limited
computing and storage resources of seismic devices. The edge server stores the information
uploaded by the seismic device locally after receiving it. If the edge service runs out of store
space, it will also offload some information to the cloud server. The set of edge server is
denoted as N = {1, 2, . . . , N}. Each edge server n is equipped with computing capacity Fn

(e.g., the maximum frequency of CPU) to support the information searching. We use task k
to denote the task of searching an element, and the set is denoted as K , {1, 2, . . . , K}. For
task k, there are two important attributes (ck, ok), where ck denotes the total computation
resources required to finish the task k, i.e., the number of CPU cycles, and ok is the data size
of the element that needs to be transmitted. Without loss of generality, we assume the time
is slotted [27], i.e., T = {1, 2, . . . , T}.

content 1 ……

1 3 0 2 1 0 2

content 2 content 3 content n

cloud server

edge
servers

seismic devices

①

② Task Offloading

Lookup Mechanism

Figure 1. System architecture.

Electronics 2023, 12, 2728 6 of 15

There are two phases for a task. First, we need to find the position of the element.
Different edge server stores different information. If we search the whole network, it will
not only increase the pressure of network traffic, but also bring a huge amount of search
computation to the system. So, we need to filtering positions of the element quickly and
accurately to avoid a global lookup. There may be multiple edge servers storing related
elements after filtering. Then, we need to further determine which edge server to obtain the
element from according to the service delay. In the following subsections, we will introduce
the lookup mechanism and the calculation of service delay.

3.2. Lookup Mechanism

When looking for a certain piece of information, we first need to determine which
edge server the information is located in. We propose the quick lookup algorithm based
on bloom filter (BF) to make quick judgments. Bloom filter is a space-efficient random
data structure, which can be seen as an extension of bit-map [28]. It is designed as a bit
array with j elements, and initially all the bits are set to 0. When an element is added to the
set, i hash functions are used to map the element to i points in a bit array and set them to
add 1. When we retrieve it, we just check to see if all the points are not zero and we will
(approximately) know if it is in the set.

The main process of our lookup algorithm based on bloom filter is as follows. We
first construct a bloom filter for each edge server, and all bloom filters are shared across
all servers. When an element lookup is performed, we first process the element with
different hash functions, and each hash function returns an integer as the index value of
the bit array. Then, we will match all bloom filters. If all the indexed values are not zero, it
means the element is in the bloom filter and we can send an element request to that edge
server. Otherwise, the element is not in the edge server. By the way, the bloom filter also
has a certain probability of misjudgment. The size of the bit array (denoted by l) is very
important. If it is too small, all the bits will quickly be assigned the value, increasing the
chance of false positives. The calculation of l is as follows.

l = − j · lnp
(ln2)2 (1)

where ln is the logarithm of the natural logarithm with the constant e as the base, j is the
number of element, and p is the acceptable misjudgment rate.

Besides, the number of hash functions (denoted by i) is also important for an even
distribution of index values. The calculation of i is as follows.

i =
l
j
ln2 (2)

When an edge service needs to add a new element, we use the i hash function to map
the element into i index values. Then, we increment the value of the bit array at this index
by 1. If an element is removed from a seismic service, we first also obtain the i index values,
and then decrement the value of the bit array at this index by 1.

3.3. Service Delay

Since there may be multiple edge servers storing the element, the bloom filter will
target multiple servers. So, we have to determine the location which can provide fastest
search speed. If edge server n needs to search an element which can be denoted as task k,
and edge server m is a target which is selected by bloom filter, the computation delay is
defined as:

tck
m = ck/ f k

m (3)

where f k
m is the computation resources that BS m assigns to service k per second (cycles/s).

Electronics 2023, 12, 2728 7 of 15

When the element is found, edge server m need to transmit the element back to device
n. The transmission rate is:

rm,n = Bm,nlog2(1 +
pmhm,n

σ2
m,n

) (4)

where Bm,n is the channel bandwidth between n and edge server m, pm is the fixed trans-
mission power of edge server m, hm,n is the channel gain, and σ2

m,n is the noise power. The
transmission delay of service k is

ttk
m,n = ok/rm,n (5)

The total service delay that n requests an element k from edge server m is

Tk
m,n = tck

m + ttk
m,n (6)

3.4. Problem Formulation

If edge server n needs to search task k in time slot t, we use variables xt
n,k to denote

the final query location. In order to optimize the system query efficiency, we formulate the
earthquake data query problem as follows:

min
xt

n,k

lim
T→∞

1
T ∑

n∈N
∑

k∈K
Tk

xt
n,k ,n

s.t. ∑
k′∈K

f k′
xt

n,k
≤ Fxt

n,k , ∀xt
n,k ∈ N (7)

where the goal is the long-term average service delay, and the constraint is the limited
computing capacity of edge servers.

It is difficult to solve the optimization problem. The goal of problem is the long-term
average service delay, which always need future information if we use traditional approach
(i.e., dynamic programming) to solve. However, it is impractical to obtain complete future
information in a dynamic network [29]. In addition, the state transition probability of the
optimization problem is also difficult to provide due to the unpredictability of requests. So
we cannot solve the problem by traditional methods.

4. Algorithm Design

Deep reinforcement learning is an efficient way to solve the problem with the goal of
long-term average optimization. DRL can use data sampling to replace the state transition
probability, so that it can solve the optimization problem without complete future informa-
tion. In this section, we first transform the optimization problem into an MDP, and then
propose an algorithm based on DQN to solve it.

4.1. Markov Decision Process

In this subsection, we transform the problem into an MDP by defining state space,
action space, and reward function.

The State Space: System state is a description of the current system environment. In
this problem, the state is made up of service delay status and edge server status. We denote
the service delay status of edge server n for task k as a vector Tk

n = [Tk
1,n, Tk

2,n, . . . , Tk
N,n].

The edge server status for task k is denoted as a vector Dk = [dk
1, dk

2, . . . , dk
N], where dk

n = 1
if edge server n has the related element of task k, else dk

n = 0. So, the state space of edge
server n is given as

sn = (Tk
n , Dk), where Tk

n ∈ N , Dk ∈ {0, 1} (8)

Electronics 2023, 12, 2728 8 of 15

The Action Space: In the problem, we need to determine the element position which
also the action of MDP. We use an to denote the action, where an = 1 means that we
can research the element from edge server n, and an = 0 means we will not obtain the
element from edge server n. So the size of action space is the number of edge servers N.
Additionally, there may be some actions that can not satisfy the constraints of computing
capacity, which are called as illegal actions.

The Reward Function: The reward function defines the immediate value of taking
action a in state s. As our goal is to minimize the service delay, the action which can bring
small service delay will obtain a large reward. We define the reward as the inverse of
service delay. Additionally, illegal actions should be avoided, so the reward is defined as
a penalty Pu, which is a negative number. Based on the above principles, we define the
reward function as follows:

rt
k =

{
Pu, i f am is illegal
100/(100 + Tk

m,n), i f am is legal
(9)

The first component is for illegal actions and the second is for legal actions. If we
use the inverse of service delay to denote the reward directly, it will cause the reward
function to fluctuate too much when the service delay is small. For example, if service delay
Tk

m,n = 0.1, the reward is 10. If Tk
m,n = 0.2, the reward is 5. The service delay is increased

by 0.1, but the reward function is decreased by 5. To avoid this phenomenon, we added a
certain cardinality to set the reward function instead of using the inverse directly.

4.2. DRL-Based Algorithm

The DQN is a value-based policy algorithm in reinforcement learning. Its purpose is to
approximate a Q-value function that evaluates the value of each action by neural network.
Q(s, a) is the expectation that an action a can be obtained in the state s. The environment
will feedback the corresponding reward according to the action of the agent r. So the goal
of DQN is to train a neural network to estimate the Q-value.

DQN has two tools, experience replay and fixed Q-targets. Because there is a rela-
tionship between two consecutive action state samples, but the neural network belongs
to a nonlinear model, it must ensure that the samples are independent and identically
distributed, so the off-line learning method and the replay buffer are used. The experiences
are randomly drawn in the replay buffer, which can effectively shuffle the correlations
between the samples. Second, another way to eliminate the correlation is to make duplicate
neural networks, one to obtain the estimated Q and another to obtain the actual Q, with
the second network replicating the parameters of the first network every certain number
of steps. In general, the two networks have the same structure but different parameters.
These are Fixed Q-targets.

There are also many other deep reinforcement learning algorithms (such as A2C,
A3C, DDPG). However, the problems targeted by these algorithms themselves often have
continuous action spaces. The action space proposed in this paper is discrete. Although the
three algorithms mentioned above can be changed into discrete action space algorithms,
their accuracy will be affected. After comprehensive consideration, DQN is selected as the
reinforcement learning algorithm to solve the optimization problem to support the discrete
action space.

We propose a solution algorithm based on DQN, using Q(s, a) representing the action
a taken in the state s. The traditional ε-greedy strategy will always choose the non-optimal
action with a probability ε, even if the model has converged, which causes the wasting of
resources. To avoid the above problem, we introduce the Upper Confidence Bounds (UCB)
to design the exploring strategy. For state s and action a, the UCB is defined as follows:

UCB(s, a) = Q(s, a) +

√
2lnu

uj
(10)

Electronics 2023, 12, 2728 9 of 15

where u is the total training times, and uj is the times that an action a is selected in the state
s. The action which has the largest UCB(s, a) is selected at each time. With the training
of model, the probability of the action that is selected less times will be executed with
larger probability, which ensures the effectiveness of exploration. The model is trained by
gradient descent, and the loss function is the mean square error between the target value
and the output value of the network. The definition of the loss function is shown as

loss =
[Qtarget(st, at)−Q(st, at)]2

2
(11)

where the Qtarget(s, a) is defined as

Qtarget(st, at) = rt + γ max
a′

Q(st+1, at) (12)

where γ is the discount factor. Our algorithm is shown as Algorithm 1.

Algorithm 1 DQN-based seismic data query algorithm.

1: Select edge servers by lookup mechanism;
2: Initialize the replay memory;
3: Initialize the main network parameter θ and Q-values Q(s, a) randomly;
4: Initialize target network parameter θ′ = θ and Q-value Q′(s, a) = Q(s, a);
5: for i = 1, . . . , P do
6: Initialize s1 as first state;
7: for t = 1, . . . , T do
8: Input st and select action at by UCB(s, a) exploration strategy;
9: Execute action at, get the new state st+1 and reward rt ;

10: Store four-tuple (st, at, rt, st+1) in replay memory;
11: Sample a mini-batch samples (sj, aj, rj, sj+1) from replay memory randomly;
12: Get the loss function by Equation (11) ;
13: Perform gradient descent with respect to the network parameters θ by loss function;
14: if t%L == 0 then
15: Update target network parameter θ′ = θ
16: end if
17: end for
18: end for

The algorithm first select edge servers that contain the element via a lookup mecha-
nism. Then, we use a DRL-based algorithm to determine the final edge server to query. We
initialize the replay memory and network parameters. Then, algorithm runs multiple loops.
In each loop, the algorithm select the edge server which can make the UCB(s, a) largest,
then performance action, obtain the reward and the next state, and store the four-tuples
(st, at, rt, st+1) in replay memory. Finally, select a mini-batch from replay memory, and train
the model with gradient descent by loss function as lines 12–16.

5. Simulation Results

In this section, we conduct a large number of simulation experiments to verify the
performance of our algorithm. We analyze the performance in term of convergence, task
delay, computing capacity and number of edge servers.

5.1. Simulation Scenario and Setup

A network scenario with 30 seismic devices, 6 edge nodes, and 1 remote cloud server
is considered in the experiment. The computing capacity of the edge node ranges from
[30, 40] GHz, and the transmission rate between edge servers ranges from [10, 15] Mbps.
The value range of the amount of data transmitted in a computing task is [1, 2] Mbits. The
value range of the computing workload in a computing task is [0.5, 1.5] Gigacycles [30].

Electronics 2023, 12, 2728 10 of 15

User request data are generated through simulation. We assume the request frequency
conforms to the Zipf distribution with parameter λ = 1. The average number of requests
to service k is as follows:

D̄(k) =
V

r(k)λ
· N (13)

where r(k) is the ranking of request frequency for service k, N = 30 is the number of
seismic devices and V = 0.1. Table 3 lists the parameters for this experiment. During neural
network training, the batch size is set to 16, the learning rate to 10−3, and the discount factor
to 0.9. At the same time, the stochastic gradient descent (SGD) optimizer is used to perform
training optimization of the model. In order to evaluate performance improvements, we
compare our algorithms with the following solutions.

• Flooding method: When the edge server receives the lookup request, if there is no
relevant content after the local lookup, it will forward the request to all other edge
server nodes. When the other edge server receives the request, it will perform the
lookup of the task.

• CFBF-based method: We apply Cuckoo Filters With an Integrated Bloom Filter
(CFBF) [23] to the content lookup of edge servers. When the edge server receives
the lookup request, it will quickly determine which edge servers store the content by
cuckoo filters and randomly select a edge server to forward the request.

We compare our algorithm with two solutions: Flooding method and CFBF-based
method. The differences between the three algorithms are as shown in Table 4. Flooding
method does not have a lookup mechanism, and the task offloading method only forwards
the request to all other edge server nodes. CFBF-based method quickly locates content by
CFBF, but does not combine with the task offloading method. We quickly locate content
via BF and design a DQN-based task offloading method to finally determine the location of
information in our algorithm.

Table 3. Parameter settings for simulations.

Parameters Value

The number of seismic devices 30

The number of edge servers 6

Computing capacity of edge server Fn [30, 40] GHz

Transmission rate of the seismic device to the edge server [10 Mbps, 15 Mbps]

Computing workload of a task [0.5, 1.5] Gigacycles

The amount of data transmitted of a computing task [1 Mbits, 2 Mbits]

Batch size of neural network 16

Learning rate of neural network 10−3

optimizer SGD

Table 4. Comparison of algorithms.

Algorithm Lookup Mechanism Task Offloading Method

Flooding method None None

CFBF-based method CFBF None

Our method BF DQN-based

5.2. Performance Evaluation

Figure 2 shows the convergence behaviors with different learning rate α in the training
phase. When α = 10−1, neural network can converge quickly. It will converge after about

Electronics 2023, 12, 2728 11 of 15

180 episodes, but the model fluctuates greatly. This is because the model learning rate is
too large and it is difficult to converge to the optimal point, which leads to the oscillation
of model. When α = 10−2, the neural network can converge quickly, which can converge
after about 230 episodes, but the model still fluctuates greatly. When α = 10−3, although
the neural network converges relatively slow, up to 400 episodes, the convergence of the
neural network model is very good. Therefore, we set the learning rate as α = 10−3 in the
training phase of the model.

0 100 200 300 400 500 600
Episode

-100

0

100

200

300

R
ew

ar
d

=10-3

=10-2

=10-1

Figure 2. Convergence behavior with different learning rates.

Figure 3 shows the loss value with different batch size in the training phase, which is
the number of four tuples selected in each episode from replay memory. As shown in the
figure, when the batch size is 4, the convergence speed of the model is slow and the model
fluctuates largely. It converges about 300 episodes. The reason is that the smaller the batch
size, the more accidental the data will be. When the batch size is increased from 4 to 16, the
convergence speed of the model is significantly accelerated and the model is more stable. It
converges about 400 episodes. Although the training time and calculation amount of each
round are positively related to the batch size, that is, the larger the batch size, the higher
number of four tuples need to be trained in each episode and the longer the training time,
we choose the batch size to be 16 to improve the convergence of the algorithm.

0 100 200 300 400 500 600
Episode

0.6

0.8

1

1.2

1.4

1.6

L
os

s

batch size=16
batch size=4

Figure 3. Loss value with different batch sizes.

Figure 4 shows the task delay (lookup time) of three algorithms. We find that the task
delay of the three algorithms is very low at the beginning of experiment. The task delay of
flooding method is stable at 200 ms, and the task delay of CFBF-based is 180 ms. Compared
with these two algorithms, our algorithm can reduce the delay by about 20% and 11.1%,
which is up to 160 ms. The reason is that all edge servers are idle when the system starts,

Electronics 2023, 12, 2728 12 of 15

so edge servers have enough computing resource to complete task, which leads to the
low delay. As the system runs and the number of tasks increases, the service delay will
gradually rise and become stable. Compared with the other two algorithms, our algorithm
has the lowest task delay due to BF and the choice of computing location, which means our
algorithm can reduce the delay of seismic data query without increasing network overhead.
On the other hand, flooding method has to forward tasks to all other edge servers, which
consumes a lot of computational resources, so it has the worst performance.

0 50 100 150 200 250 300
Time slot

0

40

80

120

160

200

240

T
as

k
de

la
y(

m
s)

Our method
CFBF-based
Flooding method

Figure 4. Task delay of three algorithms.

Figure 5 shows the effect of computing capacity of edge servers. It is clear that as
the computing power of the edge server increases, the task delay decreases. It is easy to
explain that the edge server has sufficient computing resources to perform multiple tasks
at the same time, thus reducing the average task delay. Therefore, in practice, if we can
improve the computing capacity of edge servers, we can also effectively reduce the delay of
tasks. Overall, our algorithm has the lowest task delay and best performance. It is worth
noting that CFBF-based algorithm has a better performance than our algorithm when the
computing capacity of edge server is 3 GHz. The reason is that the execution cost of our
algorithm will be slightly higher than that of CFBF-based algorithm due to the use of BF and
DRL. So when computing resources are tight, the benefit brought by our algorithm is lower
than the overhead when the algorithm is executed, resulting in slightly worse performance.

3 6 9 12 15
Computing Capacity(GHz)

0

100

200

300

T
as

k
de

la
y(

m
s)

Our method
CFBF-based
Flooding method

Figure 5. The effect of computing capacity.

Figure 6 shows the effect of number of edge servers. We find that as the number of
edge servers increases, the average task delay of our algorithm and CFBF-based algorithm
decreases instead. As the number of edge servers increases, the number of tasks performed
on each edge server decreases, the computational pressure on the edge servers decreases,

Electronics 2023, 12, 2728 13 of 15

and consequently the task delay decreases. But for flooding method, the average task delay
does not decrease as the number of edge servers increases, because flooding method need
to forward the task to every edge server, and the number of tasks performed on each edge
server does not decrease as the number of edge servers increases. On the contrary, due to
the increase in system complexity, the service delay increases slightly.

3 6 15 189 12
Number

50

100

150

200

250
T

as
k

de
la

y(
m

s)

Our method
CFBF-based
Flooding method

Figure 6. The effect of the number of edge servers.

6. Discussion

We proposed a seismic data query algorithm based on edge computing in this paper.
There are also some limitations of our algorithms. First, we did not consider the error rate
of the bloom filter, which related to the size of the bit array and the number of elements.
When an error occurs, we need to make decisions again, which may incur additional
overhead. Second, mobility is not considered in the problem. User mobility will increase
the complexity of the problem significantly. For future work, we will further consider user
mobility and analyze the impact of the error rate of bloom filter, in order to better improve
the efficiency of seismic data query.

7. Conclusions

In this paper, we focused on the seismic data query problem, which is based on
edge computing technology in an earthquakes wireless network. First, a BF-based lookup
mechanism is proposed to quickly determine the location of content. In order to obtain the
content, we need to further determine which edge server the content query task will be
offloaded to. We formulated the problem as an Markov Decision Process by defining the
state space, action space and reward function. Considering the complexity of the problem,
a DQN-based algorithm which can effectively solve the problem was proposed. Finally, the
extensive simulation-based performance evaluation showed that our proposed solutions
had better performance than the other two baseline algorithms.

Author Contributions: Conceptualization—methodology, T.Q.; validation—investigation, H.Z.; for-
mal analysis—data curation, Y.Y.; review—editing, Y.T.; visualization, F.L.; writing—original draft
preparation, H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of Shandong Province
under Grant ZR2022QF040; the QLU Pilot Project of Integration of Science, Education and Production
under Grant 2022PX083.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

Electronics 2023, 12, 2728 14 of 15

References
1. Abdalzaher, M.S.; Soliman, M.S.; El-Hady, S.M.; Benslimane, A.; Elwekeil, M. A Deep Learning Model for Earthquake Parameters

Observation in IoT System-Based Earthquake Early Warning. IEEE Internet Things J. 2022, 9, 8412–8424. [CrossRef]
2. Khan, I.; Pandey, M.; Kwon, Y.-W. An earthquake alert system based on a collaborative approach using smart devices. In

Proceedings of the IEEE/ACM International Conference on Mobile Software Engineering and Systems (MobileSoft), Madrid,
Spain, 17–19 May 2021.

3. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

4. Luo, R.; Jin, H.; He, Q.; Wu, S.; Xia, X. Cost-Effective Edge Server Network Design in Mobile Edge Computing Environment.
IEEE Trans. Sustain. Comput. 2022, 7, 839–850. [CrossRef]

5. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]

6. Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.

7. Chen, Y.; Zhang, N.; Zhang, Y.; Chen, X.; Wu, W.; Shen, X. Energy Efficient Dynamic Offloading in Mobile Edge Computing for
Internet of Things. IEEE Trans. Cloud Comput. 2021, 9, 1050–1060. [CrossRef]

8. Zaw, C.W.; Tran, N.H.; Han, Z.; Hong, C.S. Radio and Computing Resource Allocation in Co-Located Edge Computing: A
Generalized Nash Equilibrium Model. IEEE Trans. Mob. Comput. 2023, 22, 2340–2352. [CrossRef]

9. Sun, W.-B.; Xie, J.; Yang, X.; Wang, L.; Meng, W.-X. Efficient Computation Offloading and Resource Allocation Scheme for
Opportunistic Access Fog-Cloud Computing Networks. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 521–533. [CrossRef]

10. Yuan, L.; He, Q.; Tan, S.; Li, B.; Yu, J.; Chen, F.; Yang, Y. CoopEdge+: Enabling Decentralized, Secure and Cooperative Multi-Access
Edge Computing Based on Blockchain. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 894–908. [CrossRef]

11. Zhang, Q.; Sun, S.; Liu, M.; Li, Z.; Zhang, Z. Online Joint Optimization Mechanism of Task Offloading and Service Caching for
Multi-Edge Device Collaboration. J. Comput. Res. Dev. 2021, 58, 1318–1339.

12. Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

13. Gao, X.; Huang, X.; Bian, S.; Shao, Z.; Yang, Y. PORA: Predictive Offloading and Resource Allocation in Dynamic Fog Computing
Systems. IEEE Internet Things J. 2020, 7, 72–87. [CrossRef]

14. Wang, L.; Zhang, J.; Wang, T.; Wu, K. A Fine-Grained Multi-Access Edge Computing Architecture for Cloud-Network Integration.
J. Comput. Res. Dev. 2021, 58, 1275–1290.

15. Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the Design of Federated Learning in Latency and Energy Constrained
Computation Offloading Operations in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 71, 2041–2057.
[CrossRef]

16. Pal, Y.; Nagendram, S.; Al Ansari, M.S.; Singh, K.; Gracious, L.A.A.; Patil, P. IoT based Weather, Soil, Earthquake, and Air
Pollution Monitoring System. In Proceedings of the International Conference on Computing Methodologies and Communication
(ICCMC), Dubai, United Arab Emirates, 28–29 January 2023.

17. Aoi, S.; Takeda, T.; Kunugi, T.; Shinohara, M.; Miyoshi, T.; Uehira, K.; Takahashi, N. Development and Construction of Nankai
Trough Seafloor Observation Network for Earthquakes and Tsunamis: N-net. In Proceedings of the IEEE Underwater Technology
(UT), Tokyo, Japan, 6–9 March 2023; pp. 1–5.

18. Khalifeh, A.; Darabkh, K.A.; Khasawneh, A.; Alqaisieh, I.; Salameh, M.; AlAbdala, A.; Alrubaye, S.; Alassa, A.; Al-HajAli, S.;
Al-Wardat, R.; et al. Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation.
Electronics 2021, 10, 218. [CrossRef]

19. Boccadoro, P.; Montaruli, B.; Grieco, L.A. QuakeSense, a LoRa-compliant Earthquake Monitoring Open System. In Proceedings of
the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza, Italy, 7–9
October 2019.

20. Liu, J.; Ge, X.; Wen, L.; Zhao, H.; Zhuo, J.; Dong, X. Energy Allocation Strategy of Earthquake Monitoring Wireless Sensor
Network Based on Longitude and Latitude Coding and Differential Evolution Algorithm. In Proceedings of the International
Conference on Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China, 19–21 August 2022; pp. 1136–1141.

21. Klapez, M.; Grazia, C.A.; Zennaro, S.; Cozzani, M.; Casoni, M. First Experiences with Earthcloud, a Low-Cost, Cloud-Based
IoT Seismic Alert System. In Proceedings of the International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Limassol, Cyprus, 15–17 October 2018; pp. 262–269.

22. Li, Z.; Liu, J.; Yan, L.; Zhang, B.; Luo, P.; Liu, K. Smart Name Lookup for NDN Forwarding Plane via Neural Networks. IEEE/ACM
Trans. Netw. 2022, 30, 529–541. [CrossRef]

23. Reviriego, P.; Martínez, J.; Pontarelli, S. CFBF: Reducing the Insertion Time of Cuckoo Filters With an Integrated Bloom Filter.
IEEE Commun. Lett. 2019, 23, 1857–1861. [CrossRef]

24. Reviriego, P.; Sánchez-Macián, A.; Rottenstreich, O.; Larrabeiti, D. Adaptive One Memory Access Bloom Filters. IEEE Trans. Netw.
Serv. Manag. 2022, 19, 848–859. [CrossRef]

25. Wu, L.; Sharifi, R.; Venkat, A.; Skadron, K. DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching. IEEE Comput. Archit.
Lett. 2022, 21, 89–92. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3114420
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TSUSC.2022.3178661
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TCC.2019.2898657
http://dx.doi.org/10.1109/TMC.2021.3120520
http://dx.doi.org/10.1109/TCCN.2023.3234290
http://dx.doi.org/10.1109/TPDS.2022.3231296
http://dx.doi.org/10.1109/JIOT.2021.3064225
http://dx.doi.org/10.1109/JIOT.2019.2945066
http://dx.doi.org/10.1109/TVT.2021.3135332
http://dx.doi.org/10.3390/electronics10020218
http://dx.doi.org/10.1109/TNET.2021.3119769
http://dx.doi.org/10.1109/LCOMM.2019.2930508
http://dx.doi.org/10.1109/TNSM.2022.3145436
http://dx.doi.org/10.1109/LCA.2022.3201168

Electronics 2023, 12, 2728 15 of 15

26. Kaljic, E.; Maric, A.; Njemcevic, P. Bloom filter based acceleration scheme for flow table lookup in SDN switches. In Proceedings
of the International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and
Herzegovina, 16–18 June 2022; pp. 1–6.

27. Hao, H.; Xu, C.; Zhang, W.; Yang, S.; Muntean, G.-M. Computing Offloading with Fairness Guarantee: A Deep Reinforcement
Learning Method. IEEE Trans. Circuits Syst. Video Technol. 2023, early access. [CrossRef]

28. Fan, Z.; Wen, G.; Huang, Z.; Zhou, Y.; Fu, Q.; Yang, T.; Liu, A.X.; Cui, B. On the Evolutionary of Bloom Filter False Positives—An
Information Theoretical Approach to Optimizing Bloom Filter Parameters. IEEE Trans. Knowl. Data Eng. 2022, 35, 7316–7327.
[CrossRef]

29. Xiao, H.; Xu, C.; Ma, Y.; Yang, S.; Zhong, L.; Muntean, G.-M. Edge Intelligence: A Computational Task Offloading Scheme for
Dependent IoT Application. IEEE Trans. Wirel. Commun. 2022, 21, 7222–7237. [CrossRef]

30. Hao, H.; Xu, C.; Yang, S.; Zhong, L.; Muntean, G.-M. Multicast-aware Optimization for Resource Allocation with Edge Computing
and Caching. J. Netw. Comput. Appl. 2021, 193, 103195. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSVT.2023.3255229
http://dx.doi.org/10.1109/TKDE.2022.3200045
http://dx.doi.org/10.1109/TWC.2022.3156905
http://dx.doi.org/10.1016/j.jnca.2021.103195

	Introduction
	Related Works
	Edge Computing
	Wireless Network in Earthquakes
	Quick Lookup Mechanism

	System Modeling
	Scenario Description
	Lookup Mechanism
	Service Delay
	Problem Formulation

	Algorithm Design
	Markov Decision Process
	DRL-Based Algorithm

	Simulation Results
	Simulation Scenario and Setup
	Performance Evaluation

	Discussion
	Conclusions
	References

