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Abstract: Load disaggregation determines appliance-level energy consumption unintrusively from
aggregated consumption measured by a single meter. Deep neural networks have been proven
to have great potential in load disaggregation. In this article, a temporal convolution network,
mainly consisting of residual blocks with bidirectional dilated convolution, the GeLu activation
function, and multihead attention, is proposed to improve the prediction accuracy of individual
appliances. Bidirectional dilated convolution is applied to enlarge the receptive field and effectively
extract load features from historical and future information. Meanwhile, GeLU is introduced into the
residual structure to overcome the “dead state” issue of traditional ReLU. Furthermore, multihead
attention aims to improve the prediction accuracy by giving different weights according to the
importance of different-level load features. The proposed model is validated using the REDD and
UK-DALE datasets. Among six existing neural networks, the experimental results demonstrate
that the proposed algorithm achieves the least average errors when disaggregating four appliances
in terms of mean absolute error (MAE) and signal aggregate error (SAE), respectively, reduced by
22.33% and 60.58% compared with the model with the second-best performance on the REDD dataset.
Additionally, the proposed algorithm shows superior results in identifying the on/off state in four
appliances from the UK-DALE dataset.

Keywords: load disaggregation; residual structure; bidirectional dilated convolution; multihead
attention; GeLU

1. Introduction

Load disaggregation, treated as a regression task in nonintrusive load monitoring
(NILM) [1], is used to estimate appliance-level energy consumption from the aggregated
consumption of a household measured by a single meter. Although employing a submeter
for each appliance, or intrusive load monitoring, could precisely provide its energy con-
sumption information, it would bring high installation costs and installation complexity.
In contrast, NILM is a more economical and effective method that requires only one mea-
surement point, and the appliance-level energy consumption can be obtained by using
disaggregation algorithms from the total household energy. With the help of nonintrusive
load disaggregation, consumers can check and adjust the energy usage of their home
appliances, and electric power companies can effectively plan power supply strategies and
incentive policies to reduce energy wastage [2].

Over the past few years, many studies have examined load disaggregation algorithms
using various technologies, such as mathematical optimization, machine learning, and deep
learning methods. Some optimization methods, such as particle swarm optimization [3],
sparse optimization [4], quadratic programming [5], and the combination of optimization
and factor hidden Markov model methods [6,7], attempt to find the best combination of
appliances by minimizing the difference between aggregated consumption and the sum
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of appliance-level consumption. Commonly, these methods have high computational
complexity, making them unsuitable for real-time applications.

With the advent of big data, machine learning methods apply stationary or nonsta-
tionary signal processing algorithms to extract time-domain or transformation-domain
features from a large quantity of data [8–10], and then pattern recognition, both supervised
and unsupervised, is used to implement load disaggregation, such as clustering [11] and
the AdaBoost algorithm [12]. The experiments mentioned above have verified that the
disaggregation accuracy mainly depends on the manually extracted features, which are
difficult to identify due to the complexity of appliance operation.

Benefiting from the good performance of deep learning in computer vision, speech
recognition, and natural language processing, deep neural networks (DNNs) have been
applied to improve the accuracy and practicality of load disaggregation. Compared to
classical machine learning methods, DNN-based load disaggregation approaches can
automatically extract latent features, rather than carrying out manual work from measured
electrical signals, and they can effectively construct the nonlinear relationship between the
inputs and outputs of the related problem. To extract the time-series data features, a long
short-term memory (LSTM) network [13] is proposed to perform nonlinear regression tasks
using sequence-to-sequence (S2S) learning, where a network outputs a prediction sequence
with the same length as an input sequence. After this, other improved recurrent neural
networks (RNNs), such as bidirectional LSTM (Bi-LSTM) [14] and gated recurrent units
(GRU) [15], were proposed to improve the performance of load disaggregation. Considering
that RNN architectures cannot perform parallel computation, a variety of convolutional
neural networks (CNNs) are used in load disaggregation via S2S learning [16] or sequence-
to-point (S2P) learning [17]. In S2P learning, the network predicts the midpoint of the
output signal rather than the whole sequence. To obtain the high-level features of appliance-
level data, deep denoising autoencoders [18] and fully convolutional networks (FCNs) [19]
have been proposed. Commonly, CNNs are time-independent, while appliance-level
power consumption has the characteristics of time dependency, especially for multistate
appliances. Thus, based on RNN and CNN, various improved network architectures have
been proposed in this research field. For example, a lightweight algorithm combining a
deep CNN and a KNN classifier is used to identify several appliances with computational
efficiency in [20], and a residual network18 with squeeze and excitation is used to avoid the
training difficulty problem of classical CNN in [21]. In addition, to address the data-hungry
issue of DNN-based algorithms, transfer-learning-based disaggregation approaches have
been utilized to transform the features learned by DNNs using one appliance into those of
another appliance [22,23]. More related reviews can be found in [24–26].

In this paper, we focus on predicting appliance-level power consumption from aggre-
gated consumption by combining the usage of multihead self-attention with a bidirectional
temporal convolution network (TCN), denoted as the Attention-bitcn model, and then fur-
ther identify the on/off state of the appliance by comparison with an appliance threshold.
The proposed model employs a residual structure to alleviate gradient disappearance and
explosion. By employing bidirectional dilated convolution, the proposed model not only en-
larges the receptive field but also makes predictions more accurately using the previous and
future information, since appliance operation is often noncausal. For example, a washing
machine has predefined operational cycles, e.g., the washing run always precedes the dryer
cycle. Different from the bidirectional dilated residual network in BitcnNILM [27], which
utilizes ReLU as an active function followed by dropout in the residual block, we use the
Gaussian error linear unit (GeLU) instead of ReLU, where GeLU overcomes the "dead state"
issue of ReLU and integrates the dropout and ReLU properties, simplifying the residual
block and making it compact. Considering that there are differences in the importance
of the multilevel load features extracted from the multiple residual blocks with different
dilated factors, multihead self-attention is employed after the dilated residual network
to enable the model to focus on the most important load features from the different-level
feature maps and provide different weights according to the load feature importance. After
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load disaggregation is implemented using the proposed model, the on/off state of the
appliance is identified by comparing the decomposed result with a preset power threshold
provided in [27].

To summarize, the main contributions of this work are as follows.

1. An architecture combining a bidirectional TCN with multihead self-attention is con-
structed and trained to implement nonintrusive load disaggregation.

2. Bidirectional dilated convolution within bidirectional TCN is employed to maximize
the receptive field and improve the prediction from previous and future information;
meanwhile, GeLU, integrating the properties of dropout and ReLU, is used as an
active function to make the residual block compact.

3. Multihead self-attention within the proposed algorithm is utilized to capture the
correlations of different-level load features.

4. The REDD and UK-DALE datasets are used to validate the proposed algorithm, which
achieves the least average errors for the disaggregation of four appliances in the REDD
dataset and shows superior results in identifying the on/off states of four appliances
in the UK-DALE dataset.

The structure of the present paper is as follows. Section 2 briefly introduces the prob-
lem formulation of load disaggregation. Section 3 describes the proposed algorithm, in-
cluding the residual structure of bidirectional dilated convolution, multihead self-attention,
and training. Section 4 introduces the experimental results, including the datasets, evalua-
tion indices, comparative analysis of the proposed algorithm, and ablation experiments.
Conclusions are drawn in Section 5.

2. Problem Formulation

The NILM problem is to monitor the operating state of an individual appliance by
decomposing the total energy consumption into individual consumption, where the total or
individual consumption can be represented using any electrical variables, such as current,
voltage, active power, reactive power, or a vector of all of them. In this study, the active
power is considered to be the electrical variable. At time t, the aggregate active power y(t)
is given by the sum of the individual power and can be expressed as follows:

y(t) =
N

∑
n=1

xn(t) + ε(t), (1)

where xn(t) denotes the active power of appliance n, N denotes the total number of
appliances, and ε(t) denotes the Gaussian noise measurement.

Accordingly, the energy disaggregation can be described to establish the nonlinear
function fn(·), given by

xn(t) = fn(y(t)), (2)
which maps a sequence of total consumption y into a sequence of individual consumption
xn with the same length.

3. The Proposed Algorithm

To obtain the nonlinear mapping function fn(·) in (2), we construct a deep learning
network, as shown in Figure 1, which mainly consists of one standard convolution layer,
eight residual blocks with bidirectional dilated convolution, multihead attention, and
a dense layer. First, the sliding-window data of the aggregate power are fed into the
standard convolution layer to extract low-level load features. Furthermore, eight residual
blocks are used to extract higher-level load features. The output of each residual block is
connected with the next stack, and its output is concatenated to construct the representation
of different-level load features. Multihead self-attention is further used to capture the
correlations of different-level load features. To reduce the overfitting issue during training,
the dropout layer is implemented after the attention weights are obtained in multihead
self-attention. Finally, the dense layer transforms the feature vector into a target point with
S2P learning. After the proposed network is trained to implement load disaggregation, the
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on/off state of the appliance is identified by comparing it with a preset appliance threshold.
More details on the core components, i.e., the residual block with bidirectional dilated
convolution, multihead attention, and network training, are presented in the following.
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Figure 1. The proposed architecture for load disaggregation, where (a, b) denote the filter length and
dilated factor in the residual block, respectively.

3.1. Bidirectional Dilated Convolution

To effectively extract load features with long-term dependence and improve the load
disaggregation accuracy, bidirectional dilated convolution with information from previous
and future directions is utilized to overcome the causal dilated convolution limitation with
information from only a single previous direction.

Commonly, causal dilated convolution is formed by combining causal convolution and
dilated convolution, where the causal convolution is used to directly predict the value of
the next layer at time t from the value of the previous layer at time t and before time t, not
relying on the information from the further time steps, as shown in Figure 2a, while the
dilated convolution is used to expand the receiving field, not relying on the increase in the
convolution kernel or the convolution depth. A stack of causal dilated convolutions with 4
layers and a filter length of 2 is shown in Figure 2b, where the convolution filter is applied over
an area larger than its length using interval sampling with different dilated factors (denoted
as d). When d = 1, each time point needs to be sampled to calculate the inner product with
the convolution kernel; when d = 2, there will be one time point skipped between every
two points to execute the convolution operation, and so on. Generally, d is increased to 2j−1,
where j denotes the number of convolutional layers. As the number of layers increases, the
greater the dilation factor d, the larger the receiving field. For a 1-D time-series input f ∈ <n

and convolution kernel function g, the causal dilated convolution operation with d on x is
defined as

F(t) = ( f ∗ dg)(t) =
k−1

∑
i=0

g(i) ft−d·i (3)

where ∗ denotes the dilated convolution operator, k denotes the convolutional kernel size,
and t− d · i denotes the past direction information.

However, the causal dilated convolution achieves only a single directional prediction,
and it is not comprehensive enough to extract the load features. For load disaggregation in
the NILM problem, future samples are generally useful in improving predictions, which can
be seen from the success of bidirectional RNNs. Thus, to improve the accuracy, bidirectional
dilate convolution is proposed to predict F(t) by utilizing both historical information
([ ft−di, ..., ft]) and future information ( ft+1, ft+2, ft+di), defined as

F(t) = ( f ∗ dg)(t) =
k−1

∑
i=−(k−1)

g(i) ft+d·i, (4)
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where t + d · i represents the past-directional information when i < 0 and the future-
directional information when i > 0. The architecture of bidirectional dilated convolutions
with 4 layers and a filter length of 3 is shown in Figure 2c.
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Figure 2. Three types of stacked convolutions [27]. (a) Causal convolution; (b) dilated causal
convolution; (c) bidirectional dilated convolution.

3.2. The Residual Block

To effectively improve the training efficiency and largely handle the gradient dis-
appearance and gradient explosion problems, the residual block is applied in the pro-
posed model and constructed by residual connection and two residual units, as shown in
Figure 3. Each of the convolution units contains bidirectional dilated convolution, batch
normalization (BN), and GeLU activation [28,29]. As conventional deep networks do, BN
follows bidirectional dilated convolution to speed up and stabilize the deep neural network
training.

Different from ReLU, which is commonly used as an active function in TCNs or CNNs,
we utilize GeLU as the active function in the residual block. The reason can be explained
by two aspects. (1) ReLU would cause the issue of “dead neurons”. When the value of
the feature input is smaller than zero, the ReLU output is always zero and thus its first
derivative is zero, which leads to some neurons being dead. Because dead neurons give
zero activation, the weight parameters cannot be updated in future feature data points.
This issue of ReLU hinders learning and makes the network performance poor. (2) Dropout
is commonly followed by ReLU to avoid overfitting in TCNs or CNNs, while GeLU merges
the properties of dropout and ReLU [28], where the input is multiplied by zero or one.
The zero–one mask is stochastically determined and also dependent upon the input z
and simulated by Bernoulli distribution φ(z), where φ(z) = P(Z ≤ z), Z ∼ N(0, 1).
The formula for GeLU is

GeLU(z) = xP(Z ≤ z) = zφ(z), (5)
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In application, GeLU is commonly approximated by

GeLU(z) = 0.5z
(

1 + tanh[
√

2/π(z + 0.044715z3)]
)

(6)

More details of GeLU are provided in [28].
The residual connection is chosen for each residual block to alleviate the difficulty of

training deeper networks. The residual connection is achieved by the jump joining and
addition operation, as shown in Figure 3. Let In be the input features of the nth residual
block, and its output In+1 can be expressed as

In+1 = F(In) + In, (7)

where In+1 is the output of the current residual block, used as the input feature for the
next residual block, and F(·) is the output of the second residual unit within the current
residual block.

GeLU

Batch Norm

Bidirection  
Dilated Conv

GeLU

Batch Norm

Bidirection  
Dilated Conv

1 x 1 Conv

R
esid

u
al C

o
n

n
ectio

n
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Figure 3. Residual block.

3.3. Multihead Self-Attention

Multihead self-attention allows the model to capture correlations and the weighted
combination between different-level load features extracted from eight residual blocks
with different dilated factors [30,31]. After the outputs of the eight residual blocks are
concatenated, multihead self-attention is employed to assign different weights according to
the importance of the input features.

The attention mechanism adopts the “scaled dot-product attention” by operating on
three vectors, i.e., query (Q), key (K), and value (V). In scaled dot-product attention, as
shown in Figure 4a, the dot products of the queries with all keys are computed to estimate
the significance of each key. Then, the results of the dot product are divided by

√
d, where

d denotes the dimensions of K and Q. Next, a softmax function is applied to obtain the
weights, which represent the relative importance of each pair of key values to the particular
query. Finally, each attention weight is multiplied by the corresponding value to obtain the
output, and the corresponding attention function is given by

Attention(Q, K, V) = softmax
(

QKT
√

d

)
V. (8)

The multihead attention can analyze the input features from various aspects by per-
forming a single attention function h times, which takes different linear projections of
queries, keys, and values as inputs, as shown in Figure 4b. Here, h denotes the number
of heads in multihead self-attention. Then, the outputs of the attention mechanisms are
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concatenated to further perform the linear projection. Correspondingly, multihead attention
is formulated as

MultiHead(Q, K, V) = concat(H1, H2, ..., Hh)WO

Hi = Attention(QWQ
i , KWK

i , VWV
i ) (9)

where (WO, WQ
i , WK

i , WV
i ) are the linear projection matrices, Hi denotes the output of a

single attention function, and h = 6 is set in our experiments.

Q K V

Dot 

Product

Scale

Softmax

Dot Product

W
Q

W
K

W
V

M

(a)

Scaled Dot-Product 
Attention

Concat

Linear

Q K V

(b)

Figure 4. The scaled dot-product attention block is shown on the left (a), and the multihead attention
block is shown on the right (b).

3.4. Training of the Proposed Network

To eliminate the influence of different units or scales during training and testing, all
data D(t)({xn(t), y(t)} ⊂ D(t)) at time t from each appliance or mains are normalized as

D(t) =
D(t)− D

σ
, (10)

where D and σ denote the mean and standard deviation of the power, respectively.
To train the proposed network, the sliding-window mechanism is applied to divide

the whole sequence of aggregate power (y(t)) and the sequence of individual appliances
(xn(t)) into windows of fixed length L and overlapped by P < L samples. We define a bag
j as the j-th window of y(t) and xn(t) as follows:

yj = [y(j(L− P)), ..., y(j(L− P) + L− 1)],

xn,j = [xn(j(L− P)), ..., xn(j(L− P) + L− 1)], (11)

where xn,j denotes the ground-truth data.
Given a set of annotated bags T, denoted as

T = {(y1, x1,1, .., xN,1), ...., (yj, x1,j, .., xN,j)}, (12)

the network is trained using a loss function, calculated as the mean squared error between
the related prediction and the target. Considering a minibatch of J bags and a generic
appliance, the loss function is given by

Ls =
1

NJL

J−1

∑
j=0

L−1

∑
l=0

N

∑
n=0

[xn(j(L− P) + l)− x̂n(j(L− P) + l)]2 (13)

where x̂n is the predicted power of xn for the individual appliance. Once x̂n is obtained, the
on/off state of the individual appliance is predicted by comparison with the corresponding
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threshold, where the threshold and L are set the same as in [27] to fairly evaluate the
performance of the proposed model.

4. Experimental Results

The performance of the proposed Attention-bitcn model on load disaggregation and
on/off state identification is evaluated using a public REDD [32] dataset in this section.
The proposed model is implemented on the TensorFlow and Keras frameworks, and
the training is conducted by the Adam optimizer, where two hyperparameters are set
as β1 = 0.9 and β2 = 0.999. Additionally, the batch size, learning rate, dropout rate,
and epochs are set to 128, 10−3, 0.3, and 20, respectively. Considering that the proposed
algorithm belongs to the type of S2P learning, the performance of the proposed algorithm
is verified by comparing it with the related S2P models, i.e., CNN (S2P) [17], FCN [19],
BitcnNILM [27]. Meanwhile, the proposed approach is compared with two S2S learning
models, i.e., LSTM and Bi-LSTM are both constructed using the corresponding modules
provided by Keras directly, where the number of hidden units is set to 128 in the two S2S
models. For a fair comparison, the epochs in FCN, BitcnNILM, LSTM, and Bi-LSTM are
set as 20, as in the proposed model. The epochs are set to 2 in the CNN (S2P) provided.
Furthermore, an ablation experiment is performed to evaluate the effectiveness of the
multihead attention and GeLU modules. All the experiments described in this article were
implemented using an NVIDIA RTX3060 GPU with 12 GB of RAM.

4.1. Dataset

Two public datasets, REDD [32] and UK-DALE [33], were used in the following
experiments. The REDD dataset [32] contains high-frequency (15 Hz) and low-frequency
data of power consumption recorded in 3 s for six households. Among these, the low-
frequency data from Homes No. 2 to No. 6 are used for training, and the data from Home
No. 1 are used for testing. The UK-DALE dataset [33] contains power consumption data
from five houses, where the aggregated and individual appliance power consumption were
recorded every 6 s. Similar to the REDD dataset, four appliances, including a microwave,
fridge, dishwasher, and washing machine, are also considered in the UK-DALE dataset.
The data from Home No. 2 are divided by 6:2:2 to use as the training set, validation set,
and testing set, respectively. To evaluate the proposed model and perform the comparison
with other NILM models, four appliances, i.e., a microwave, fridge, dishwasher, and
washing machine, are utilized in our works, since the selected appliances consume a large
proportion of power energy in a household and have generally representative but different
power patterns; for example, the fridge is a two-state appliance, while the dishwasher and
washing machine are multi-state appliances.

4.2. Evaluation Metrics

To evaluate the accuracy of the proposed model in load disaggregation, the mean
absolute error (MAE) and signal aggregate error (SAE) are selected as the evaluation indices.
MAE measures the average error in the predicted power consumption of a single appliance
decomposed at each moment t from the ground truth, defined as

MAE =
1
T

T

∑
t=1
|x̂t − xt|, (14)

where x̂t denotes the predicted value of the individual appliance, decomposed from the
total consumption; xt denotes the ground-truth value; and T denotes the number of time
points. Correspondingly, the all-over MAE is calculated as the average value of the MAE
for all four appliances.

SAE measures the total error of power consumption within a period, defined as

SAE =
r̂− r

r
, (15)
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where r̂ and r denote the predicted value and the ground-truth value of daily power
consumption, respectively. Similarly, the all-over SAE is calculated as the average value of
the SAE for all four appliances.

To evaluate the performance of the proposed model’s on/off state identification of
individual appliances, since state identification can be considered a classification task,
four metrics, i.e., recall (R), precision (P), F1 score, and accuracy (A), are used. They are
calculated as

R =
TP

TP + TN
, P =

TP
TP + FP

,

A =
TP + TN

TP + TN + FP + FN
, F1 = 2×

(
P× R
P + R

)
, (16)

where TP (true positive) denotes the number of instances with an “on” state that are
correctly predicted as “on”; TN (true negative) is the number of instances whose predicted
and ground-truth states both are “off”; FP (false-positive) is the number of instances with
an “off” state that are incorrectly predicted as “on”; FN (false-negative) is the number of
instances with an “on” state that are incorrectly predicted as “off”.

4.3. Experimental Results
4.3.1. Experiments on REDD Dataset

The proposed model implements load disaggregation for four appliances from Home
No. 1 in the REDD dataset after the parameters of the Attention-bitcn model are trained.
The corresponding results are shown in Figure 5. From Figure 5, it can be seen that the
load curves predicted by the proposed Attention-bitcn model for microwaves, dishwashers,
and washing machines are consistent with the ground-truth load curves. However, for the
fridge, the proposed model appears unable to predict the peak of the load curve well. There
are visual differences between the predicted curve and the ground-truth curve because the
sample points are too dense. After enlarging the partially decomposed curve of the fridge
within [160,000, 170,000] time samples, as shown in Figure 6, we observe that the predicted
power consumption is also consistent with the actual load, except for the sudden changes
in load corresponding to the lines in orange, which can be ignored because of the small
number of sudden changes, as noted in [27].

Next, the disaggregation performance of the proposed model is compared with those
of the other five models in terms of the MAE and SAE indices. As shown in Figure 7, the
proposed Attention-bitcn model achieves the best disaggregation performance for three
appliances, i.e., microwaves, dishwashers, and washing machines. Compared with Bitcn-
NILM, with the second-best performance, the proposed Attention-bitcn model improves
more significantly for the microwave and dishwasher, with the MAE decreasing by 4.2572
watts and 4.7295 watts, respectively. In the decomposition model of washing machines, the
decomposition accuracy of the proposed network algorithm is lower than that of Bitcn-
NILM. In comparison with the two S2S models (i.e., LSTM and Bi-LSTM), the proposed
model has a lower MAE or higher decomposition accuracy on four appliances. Meanwhile,
the overall MAE of the proposed algorithm is reduced by 0.5301 watts, 9.4675 watts, 10.0107
watts, 16.7448 watts, and 12.7838 watts, compared with BitcnNILM, CNN (S2P), FCN,
LSTM, and Bi-LSTM, respectively. Additionally, from the perspective of the SAE index, the
proposed Attention-bitcn model also achieves comparable and even superior performance
with a reduced SAE for specific appliances and overall. As a whole, the proposed algorithm
reduces the overall MAE and SAE by 22.33% and 60.58% compared with the BitcnNILM
model with the second-best performance, respectively.
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(a) (b)

(c) (d)

Figure 5. Disaggregated results for four appliances in proposed model on REDD dateset. (a) Mi-
crowave; (b) fridge; (c) dishwasher; (d) washing machine.

Figure 6. Enlarged partial curve of load disaggregation for fridge.

Furthermore, the performance indices of the on/off state identification of individual
appliances, obtained from the six algorithms, are shown in Table 1, where the best metric
values are shown in bold. It can be observed in Table 1 that, among all the compared
models, the proposed algorithm yields the best metric values for dishwashers. Even if the
metric values of the proposed algorithm are slightly inferior to the best indicator values
for the other three appliances, there is little difference from the best metric values. This
implies that the proposed algorithm provides overall good performance for the on/off state
identification of appliances.
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(a)

(b)

Figure 7. In the REDD dataset, the performance of load disaggregation for six comparison models.
(a) MAE for each appliance and overall MAE; (b) SAE for each appliance and overall SAE.

Table 1. In the REDD dataset, comparisons of on/off state identification of the individual appliances.

Microwave Fridge

P R A F1 P R A F1

Attention-bitcn 0.9110 0.9546 0.9982 0.9323 0.9917 0.9972 0.9972 0.9944
CNN(S2P) [17] 0.7730 0.9933 0.9988 0.8694 0.9551 0.9240 0.9467 0.9392
FCN [19] 0.7857 0.9742 0.9963 0.8699 0.8126 0.9818 0.9392 0.8892
BitcnNILM [27] 0.9354 0.9275 0.9995 0.9314 0.9974 0.9965 0.9973 0.9969
LSTM 0.7439 0.9680 0.9873 0.8547 0.7733 0.9727 0.9219 0.8616
Bi-LSTM 0.4084 0.9873 0.9423 0.5778 0.7531 0.9703 0.9131 0.8480

Dishwasher Washing Machine

P R A F1 P R A F1

Attention-bitcn 0.8262 0.9921 0.9913 0.9016 0.5525 0.9950 0.9901 0.7105
CNN(S2P) [17] 0.4169 0.9817 0.9443 0.5853 0.5589 1.0000 0.9903 0.7170
FCN [19] 0.1613 0.9967 0.7910 0.2776 0.6417 0.9917 0.9931 0.7818
BitcnNILM [27] 0.3897 0.9859 0.9377 0.5586 0.4450 0.9963 0.9848 0.6152
LSTM 0.4061 0.9716 0.9420 0.5728 0.4178 1.0000 0.9828 0.5864
Bi-LSTM 0.3689 0.3274 0.9844 0.3470 0.4007 1.0000 0.9817 0.5721

4.3.2. Experiments on UK-DALE Dataset

Similar to the experiments on the REDD dataset, the proposed algorithm is trained
and tested on the UK-DALE dataset, and the disaggregation results for four appliances are
shown in Figure 8. For microwaves, dishwashers, and washing machines, the disaggregated
load curves in Figure 8 show that the proposed algorithm achieves satisfactory results,
whereas it is unsatisfactory for the fridge, similar to that of the REDD dataset. After some
investigation, we also find that the error is mainly caused by the abrupt power changes of
the two-state fridge, shown in the vertical lines in Figure 8b.
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(a) （b）

(c) (d)

Figure 8. Disaggregated results for four appliances in proposed model on UK-DALE dataset. (a) Mi-
crowave; (b) fridge; (c) dishwasher; (d) washing machine.

Furthermore, the MAE and SAE indices are calculated statistically for the proposed
algorithm to evaluate the performance of disaggregation. After the other five algorithms
are separately trained and tested on the UK-DALE dataset, we plot the MAE and SAE
indices of all the algorithms in Figure 9 and report the on/off state identification of four
appliances in Table 2. On the UK-DALE dataset, the proposed algorithm achieves the
second-best result in the MAE and SAE indices, whereas there is a small gap between
the proposed algorithm and BitcnNILM, which has the lowest MAE and SAE. Moreover,
the proposed algorithm shows better on/off identification indices than BitcnNILM on the
UK-DALE dataset.

Combining the above results, we find that, for the fridge, with a relatively short
operation cycle, the proposed algorithm achieves better decomposition performance on
the REDD dataset than the UK-DALE dataset, where the sampling frequency of REDD
is higher than that of UK-DALE. The power sequences with a high time resolution are
crucial for the proposed algorithm to capture the feature information. Additionally, for
the dishwasher, with complex working states and longer operation cycles, the proposed
algorithm achieves superior results in on/off state identification on the two datasets.
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Figure 9. In UK-DALE dataset, the performance of load disaggregation for six comparison models.
(a) MAE for each appliance and overall MAE; (b) SAE for each appliance and overall SAE.

Table 2. In UK-DALE dataset, comparisons of on/off state identification of the individual appliances.

Microwave Fridge

P R A F1 P R A F1

Attention-bitcn 0.9003 0.8857 0.9993 0.8929 0.8669 0.9451 0.9306 0.9043
CNN(S2P) [17] 0.6864 0.9693 0.9984 0.8037 0.8009 0.9530 0.9014 0.8703
FCN [19] 0.3225 0.9113 0.9932 0.4764 0.7891 0.9422 0.8925 0.8589
BitcnNILM [27] 0.8662 0.9002 0.9992 0.8828 0.8813 0.9512 0.9386 0.9150
LSTM 0.5843 0.8694 0.9966 0.7472 0.7031 0.7936 0.7318 0.8042
Bi-LSTM 0.5537 0.8521 0.9942 0.7017 0.6799 0.8081 0.8014 0.7385

Dishwasher Washing Machine

P R A F1 P R A F1

Attention-bitcn 0.8130 0.9627 0.9843 0.7771 0.8442 0.8860 0.9970 0.8646
CNN(S2P) [17] 0.8009 0.9530 0.9014 0.8703 0.2955 0.9492 0.9007 0.1736
FCN [19] 0.3383 0.9283 0.9404 0.4959 0.1167 0.9831 0.9178 0.2086
BitcnNILM [27] 0.7584 0.9139 0.9881 0.8289 0.7693 0.9341 0.9962 0.8437
LSTM 0.4470 0.8751 0.8906 0.5349 0.5880 0.8481 0.9734 0.7120
Bi-LSTM 0.6083 0.9393 0.9418 0.6942 0.5695 0.8905 0.8881 0.7039

4.4. Ablation Study

To evaluate the effectiveness of GeLU and the attention module in the proposed
network, we perform an ablation experiment by removing the corresponding module
separately from the proposed network model.

The model with the removal of GeLU, denoted as “w/o GeLU”, refers to the replace-
ment of GeLU with ReLU and BN in the residual block while retaining multihead attention,
while the model with the removal of attention, denoted as “w/o Attention”, refers to the
removal of multiattention while keeping GeLU. As the above experiments are performed,
these models are trained and tested on the REDD dataset, and the corresponding MAE and
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SAE indices are shown in Figure 10. The proposed Attention-bitcn model yields the lowest
MAE and SAE for microwaves and dishwashers compared with “w/o GeLU” and “w/o
Attention”. Overall, the absence of GeLU or the attention module increases the overall
MAE and SAE, which implies that GeLU and the attention module play a role in improv-
ing the performance of the proposed algorithm in load disaggregation. Furthermore, the
effectiveness of GeLU and the attention module can be seen from the indicator values of
on/off state identification, as shown in Table 3.

(a)

(b)

Figure 10. Performance of load disaggregation with/without GeLU or attention module. (a) MAE
for each appliance and overall MAE; (b) SAE for each appliance and overall MAE.

Table 3. Comparisons of on/off state identification of the individual appliances in ablation experiment.

Microwave Fridge

P R A F1 P R A F1

Attention-bitcn 0.9110 0.9546 0.9982 0.9323 0.9917 0.9972 0.9972 0.9944
w/o Attention 0.8929 0.9696 0.9994 0.9297 0.9975 0.9983 0.9981 0.979
w/o GeLU 0.7058 0.7818 0.9931 0.7419 0.9864 0.9980 0.9961 0.9922

Dishwasher Washing Machine

P R A F1 P R A F1

Attention-bitcn 0.8262 0.9921 0.9913 0.9016 0.5525 0.9950 0.9901 0.7105
w/o Attention 0.7978 0.9434 0.6495 0.1772 0.7154 0.9900 0.9951 0.8306
w/o GeLU 0.5412 0.9356 0.9657 0.6857 0.8136 0.9938 0.9971 0.8947

5. Conclusions

This work presents a temporal convolution model with the activation function GeLU
and a residual structure for time-series load disaggregation based on bidirectional dilated
convolution and multihead attention. The proposed model is compared with three related
deep network models (i.e., CNN (S2P) [17], FCN [19], BitcnNILM [27]), LSTM, and BiL-
STM on the public REDD and UK-DALE datasets. The experimental results show that
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the proposed model achieves equivalent and even superior results for time-series load
disaggregation and on/off state identification for individual appliances in NILM problems.

Whereas the operation of multihead self-attention increases the training time due to
more weight parameters appended in the model, the fixed thresholds for the on/off state
of the appliances cannot be adapted to the same types of appliances with different power
consumption. In future work, we intend to decrease the model complexity when imple-
menting edge computing, while improving its performance, e.g., by setting dynamic or
optimal thresholds. In addition, the current supervised approach will be further developed
into a generalized semisupervised or unsupervised approach.
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