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Abstract: In Computed Tomography (CT) images of the coronary arteries, the segmentation of
calcified plaques is extremely important for the examination, diagnosis, and treatment of coronary
heart disease. However, one characteristic of the lesion is that it has a small size, which brings two
difficulties. One is the class imbalance when computing loss function and the other is that small-scale
targets are prone to losing details in the continuous downsampling process, and the blurred boundary
makes the segmentation accuracy less satisfactory. Therefore, the segmentation of calcified plaques
is a very challenging task. To address the above problems, in this paper, we design a framework
named LPE-UNet, which adopts an encoder–decoder structure similar to UNet. The framework
includes two powerful modules named the low-rank perception enhancement module and the noise
filtering module. The low-rank perception enhancement module extracts multi-scale context features
by increasing the receptive field size to aid target detection and then uses an attention mechanism to
filter out redundant features. The noise filtering module suppresses noise interference in shallow
features to high-level features in the process of multi-scale feature fusion. It computes a pixel-wise
weight map of low-level features and filters out useless and harmful information. To alleviate the
problem of class imbalance caused by small-sized lesions, we use a weighted cross-entropy loss
function and Dice loss to perform mixed supervised training on the network. The proposed method
was evaluated on the calcified plaque segmentation dataset, achieving a high F1 score of 0.941, IoU
of 0.895, and Dice of 0.944. This result verifies the effectiveness and superiority of our approach for
accurately segmenting calcified plaques. As there is currently no authoritative publicly available
calcified plaque segmentation dataset, we have constructed a new dataset for coronary artery calcified
plaque segmentation (Calcified Plaque Segmentation Dataset, CPS Dataset).

Keywords: calcified plaque segmentation; attention mechanism; low rank; CNN; gating mechanism

1. Introduction

Coronary artery disease (CAD) has become one of the leading causes of human
mortality [1] and accounts for the highest proportion of all cardiac deaths. It is characterized
by sudden onset and high mortality. The main cause of CAD is atherosclerosis-induced
coronary artery stenosis or obstruction. In the clinical diagnosis of CAD, the coronary artery
calcification score reflects an important criterion for the degree of coronary atherosclerosis
and is commonly used to assess the overall calcification status of the coronary arteries [2].
Therefore, there is an urgent need to develop an efficient and accurate calcified plaque
segmentation algorithm, as this is a critical step in calculating the plaque calcification score.
Traditional manual segmentation methods are time-consuming and labor-intensive, and
difficult to apply to CT images with exploding data volumes. Automatic segmentation
algorithms based on chest CT images can effectively reduce the workload of physicians
and assist in the detection and diagnosis of diseases and have some research value. In the
past, it has been explored for a long time. Existing conventional algorithms and DL-based
segmentation algorithms usually divide the segmentation process into two stages, first
locating or segmenting larger tissues or organs, such as coronary arteries or the heart,
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and then using further algorithms to segment calcified plaques in the coronary arteries.
However, these methods still have significant drawbacks, leaving room for improvement
in terms of accuracy and difficulty in ensuring the structural integrity of the lesion margins.
Therefore, there is still important research value in the field of calcified plaque segmentation.

In recent years, DL has demonstrated powerful performance in various medical image
detection and segmentation tasks, such as tumor, polyp, and ulcer detection [3]; organ
segmentation [4]; and COVID-19 infection segmentation [5]. Compared to conventional
natural images and medical images, calcified plaques are characterized by small scale,
irregular shape, and unclear boundaries. Accurate segmentation of too small targets has
always been a difficult problem in computer vision. There is often a trade-off between
enlarging the receptive field and losing detail information in conventional CNN. A larger
receptive field means that each neuron in the network can extract features over a larger
region during inference, resulting in more accurate segmentation results. CNN usually
enlarges the receptive field by down-sampling through consecutive pooling layers to extract
high-level semantic features. With the increase in network layers, the proportion of the
actual receptive field to the theoretical receptive field decreases step by step [6]. Therefore,
to obtain a larger receptive field, a very deep network is usually used, including many
pooling layers. However, more pooling layers mean more loss of detail information, which
is unfavorable for pixel-wise image segmentation tasks. When the segmentation target
is too small, too many pooling operations will make the network lose sight of the target,
making the image difficult to reconstruct; if there are too few pooling layers, extracting the
desired high-level semantic features is difficult. Therefore, the number of pooling layers
used by the network is a matter of balance.

In segmenting calcified plaques in coronary CT angiography images, contextual
information plays a significant role in addition to the inherent morphological features
of the plaques. Contextual information at different scales can provide different receptive
fields, which can be achieved by pyramid structures that include convolution kernels
of different sizes or dilation rates. Moreover, not all feature maps contribute equally to
the segmentation task, and only task-related channels and regions are of concern. The
redundancy problem inside convolutional filters is also prominent.

With the increase in network depth, the extracted features have higher-level semantic
features, more accurate localization ability, and less detailed information. On the other
hand, shallow features contain rich detailed information. In order to compensate for the loss
of detailed information caused by downsampling, shallow features are used to fuse with
high-level features to predict the target jointly. However, for the segmentation task of small-
scale calcified plaques, directly concatenating shallow features and high-level features
will reduce the localization ability of the features, since shallow features contain much
irrelevant information that is not useful for prediction. To improve the prediction accuracy
of the model, it is necessary to filter out the noise in shallow features before performing
multi-scale feature fusion. Another issue worth noting is that the small-scale characteristics
of calcified plaques can bring about a serious class imbalance problem between foreground
and background, which is not conducive to the convergence of the model.

This paper proposes an end-to-end calcium scoring network, LPE-UNet, to accurately
segment calcium deposits in coronary artery CT images. To address the problem of lost
detail information during downsampling, this study first reduces the number of down-
sampling operations while maintaining segmentation performance. Before inputting the
extracted features into the decoder, a low-rank perceptual enhancement module is used to
enhance and purify the features. The low-rank perceptual enhancement module consists of
a multi-scale feature extraction module and a feature filtering module based on attention
mechanisms. Multi-scale feature extraction not only provides the model with contextual
information at different scales for prediction but also expands the receptive field of the
model without losing detailed information, allowing the model to collect information more
accurately over a larger range for segmentation. The attention module consists of two
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sub-modules, channel attention and low-rank spatial attention, which enable the model to
focus only on relevant features and regions for the task.

In addition, to suppress the interference of irrelevant features in the fusion of deep and
shallow features, a gate mechanism for filtering redundant information was constructed
on the skip connection in this paper. The highly correlated spatial positions of the output
were clustered, and the obtained results were used to mask the features, blocking out
task-irrelevant regions. Finally, to address the problem of class imbalance, we proposed
a novel weighted loss function that combines the weighted cross-entropy loss function
and the Dice loss for network supervision training. This further improves the accuracy of
calcium deposit segmentation and avoids the problem of network convergence difficulty
when using Dice loss alone. We conducted comprehensive experiments on the coronary
artery calcium deposit dataset and achieved optimal performance. The experimental
results confirm the feasibility and effectiveness of the proposed algorithm in this paper. In
summary, the contributions of this paper are mainly focused on four aspects:

1. We propose a new end-to-end segmentation network, LPE-UNet, which accurately
segments calcium plaques in the coronary artery.

2. We design a low-rank perceptual enhancement module (LPE), which adds the ability
to capture and process multi-scale information to the model and establish global
dependencies between local features. It can improve the segmentation accuracy.

3. By adding noise optimization modules to suppress noise information in skip connec-
tions, which use attention based gates to filter low-level features, We further improved
the accuracy of network inference.

4. Due to the small-scale characteristics of calcium plaques, class imbalance can easily
occur during network training. We proposed a new weighting method that uses a
combination of weighted cross-entropy and DiceLoss for mixed supervision train-
ing of the network, which effectively improves the stability of model training and
prediction accuracy.

2. Related Work
2.1. Calcified Plaque Segmentation Algorithm

In recent years, many CT image-based algorithms have been proposed for calcium
deposit segmentation. Existing segmentation methods typically divide the segmentation
process into two stages, first, segmenting or locating larger tissues such as coronary ar-
teries or the heart, and then segmenting the calcium deposits in the coronary arteries.
Gao et al. [7] developed a method to automatically detect the range of the calcified plaque
with acoustic shadowing in IVUS images by combining of the Gaussian mixture model and
Markov random field. Yoshida et al. [8] used linear enhancement filters and region-growing
algorithms to extract the coronary arteries, and then used threshold segmentation to extract
calcium deposits from the enhanced images. Sun et al. [9] proposed a coronary artery
plaque detection method based on automatic scale selection and fuzzy c-means. They
first estimated the vessel diameter by obtaining the response of DoG operation in each
slice center of the artery and cropped the slices based on the features. Then, they used
fuzzy c-means to classify the cropped images and extracted calcium deposits based on their
intensity, quantifying arterial stenosis rate. In recent years, with the rapid development
of computer hardware and DL theory, many excellent DL-based algorithms for calcium
deposit segmentation have been proposed one after another.

DL-based algorithms for calcified plaque segmentation can be broadly categorized
into patch-based scoring and pixel-wise segmentation. The first type involves chunking
the input image into patches and scoring each patch to determine the presence of calcified
plaques. In this approach, Jelmer et al. [10] cropped three orthogonal CT patches as input
for a CNN and predicted the probability of calcified plaques within the image blocks.
Lessmann et al. [11] used three parallel CNNs to process the three orthogonal CT patches,
and the fused features are used to score automatic coronary. In a follow-up work [2], they
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employed two sequential CNN, where the first network identified potential calcifications
based on location and the second network identified true calcified plaques.

The second type of approach involves pixel-wise segmentation of calcified plaques.
Lekadir et al. [12] cropped b-ultrasound pattern maps into small image blocks and clas-
sified them using a CNN for plaque detection. Santini et al. [13] used axial projections
centered around candidate pixels to perform segmentation using the U-Net architecture [14].
Shadmi et al. [15] considered both U-Net and FC-DenseNet architectures for coronary cal-
cium segmentation and Agatston score prediction. Ma et al. [16] proposed DenseRAUnet,
a novel network that takes advantage of dense connections. Zhang et al. [17] introduced
CAC-net, which utilizes 2D U-DenseNet for intra-layer calcification features and 3D U-Net
for inter-slice calcification features. Lee et al. [18] employed a 3D neural network to detect
primary calcified tissue and then used SegNet for plaque segmentation. Li et al. [19] used
two branches to detect media-adventitia and lumen, and combined their results with the
original image to enhance plaque detection. We have summarized the calcification plaque
segmentation algorithm in Table 1.

Table 1. Table of calcified plaque segmentation algorithms.

Non DL-Based Algorithms
DL-Based Algorithms

Patch-Based Scoring Pixel-Wise Segmentation

Gao et al. [7] Jelmer et al. [10] Lekadir et al. [12]
Yoshida et al. [8] Lessmann et al. [11] Santini et al. [13]
Sun et al. [9] Lessmann et al. [2] Shadmi et al. [15]

Ma et al. [16]
Zhang et al. [17]

Lee et al. [18]
Li et al. [19]

2.2. Medical Image Segmentation

The segmentation of calcified plaques in coronary arteries, as a specific task within
medical image segmentation, is closely intertwined with other related segmentation tasks.
In the field of medical image segmentation, these tasks mutually reinforce each other,
leading to shared advancements and progress.

Ronneberger et al. [14] introduced the U-Net structure for medical image segmentation,
which has since become the benchmark for many segmentation tasks. U-Net utilizes a
symmetric architecture with skip connections that effectively combine low-resolution and
high-resolution feature maps, enabling the fusion of low-level and high-level features.
Since its inception, U-Net has been widely adopted in the medical imaging field, leading to
numerous meaningful improvements. Res-UNet [20] enhances U-Net by replacing each
submodule with residual connected modules, resulting in improved performance for retinal
vessel segmentation. Unet++ [21] incorporates long and short connections, where each
decoder layer fuses connections from lower- and same-level feature maps in the encoder, as
well as high-level feature maps from the decoder. This approach has shown advancements
in medical segmentation tasks. To capture a larger perceptual field, Lopez et al. [22] applied
a superposition of multi-scale atrous convolutions to brain tumor segmentation, achieving
notable improvements in accuracy. Zhao et al. [23] integrate a feature pyramid with a
U-Net++ model to segment coronary arteries in ICAs, and proposed a compound loss
function that contains Dice loss and dilated Dice loss. Mu et al. [24] introduced the long
skip connections of the attention gate at each layer to emphasize the field of view (FOV) for
IAs and embed residual-based short skip connections in each layer to implement in-depth
supervision to help the network converge.

The rise of attention has brought great attention-based work. The attention U-Net [25]
introduces a self-attentive mechanism in each module of U-Net, enabling the suppression of
irrelevant regions in input images while highlighting salient features in specific local regions.
This approach has been applied to pancreas image segmentation. Kaul et al. [26] proposed
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the FocusNet, which combines spatial attention and channel attention for medical image
segmentation. This approach effectively emphasizes informative image regions during
the segmentation process. Additionally, the Transformer model [27], known for its global
attention mechanism, has been adapted for medical image segmentation. Researchers, such
as [4], have added a transformer branch to the original convolutional U-Net architecture to
leverage the benefits of global attention.

3. Method
3.1. Overview of LPE-Unet

Like [21,25,28–31], the proposed LPE-UNet network in this paper is based on the U-
shaped architecture of the UNet network commonly used in medical image segmentation
tasks. As shown in Figure 1, the model consists of four parts, encoders, decoders, low-rank
perception enhancement modules, and noise optimization modules. The encoders and
decoders form the backbone network. The encoders take low-level features as an input
and use successive convolution and a downsampling pool layers to extract more abstract
semantic features, and the decoder takes the upsampled high-level features and the same
level features as inputs and gradually recovers the detail through successive convolution to
obtain the final segmentation results. Due to the small scale of calcified plaques, the method
in this paper reduces the number of layers of the downsampling pool in order to avoid
losing the feature information of the object to be segmented. The configurations of encoders
and decoders are shown in Table 2. Let Fei and Fdi represent the output feature map of the
ith encoder and decoder separately. To supplement the lost reception field of view, a low-
level perceptual enhancement module is built into the network to expand the perceptual
field. Furthermore, the global attention is computed to weight the extracted multiscale
features by establishing long-distance dependencies between features to highlight the
important information in the features.
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encoder0  encoder1     encoder2 encoder3

decoder0

LPE

decoder1 decoder2

384× 384
LPE

NOM Noise optimization module  

Low-rank perception enhancement module 

F

C
upsample

C concatenation

Feature map

F

NOM

96

×

96

×

126

192

×

192

×

64

96

×

96

×

64

192

×

192

×

64

48

×

48

×

126

96

×

96

×

126

192

×

192

×

32

48

×

48

×

256 

48

×

48

×

256

conv

1×1decoder3 

48

×

48

×

256

192

×

192

×

32                

96

×

96

×

126

384

×

384

×

32

384

×

384

×

32  

conv

1×1

Figure 1. An overview of the proposed LPE-Unet. It takes an encoder–decoder format.

Traditional networks based on the UNet architecture use skip connections to sup-
plement the decoder with detailed information lost due to continuous downsampling.
However, the shallow feature maps have higher resolution and contain more complex
information, and a large number of irrelevant features have a negative impact on the
subsequent inference of the network. To address this issue, this paper proposes a noise
optimization mechanism to filter out noisy information in low-level features. By learning a
global weight distribution, this mechanism suppresses unimportant features in the feature
map and highlights task-relevant features.

Finally, to address the severe inter-class imbalance problem caused by the small size
of calcified plaques, this paper designs and implements a new cross-entropy weighting
method, which focuses the optimization of the network on the regions of interest. During
training, we use a combination of weighted cross-entropy and DiceLoss for mixed super-
vised training of the network, which effectively improves the stability of model training
and the accuracy of predictions.
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Table 2. Parameter table of the backbone of our model. Each convolution is followed by a group
normalization and a ReLU activation, which is omitted for readability.

Layer Name Parameters Output Size

encoder0

conv3 × 3, 16

32, 192, 192conv3 × 3, 32
maxpool2 × 2, stride2

encoder1

conv3 × 3, 32

64, 96, 96conv3 × 3, 64
MaxPooll2 × 2, stride2

encoder2

conv3 × 3, 64

128, 48, 48conv3 × 3, 128
MaxPooll2 × 2, stride2

encoder3
conv3 × 3, 128

256, 48, 48conv3 × 3, 256

decoder3
conv3 × 3, 256

256, 48, 48conv3 × 3, 256

decoder2
conv3 × 3, 128

128, 96, 96conv3 × 3, 128

decoder1
conv3 × 3, 64

64, 192, 192conv3 × 3, 64

decoder0
conv3 × 3, 32

32, 384, 384conv3 × 3, 32

3.1.1. Low-Rank Perception Enhancement Module

The low-rank perception enhancement module consists of a multi-scale feature extrac-
tion module and a hybrid attention module to enhance features.

Extracting semantic information in different receptive fields can effectively improve
segmentation accuracy. However, the calculation and model training difficulty increases
with the increase in the receptive field, which limits the size of the receptive field. Inspired
by Atrous Spatial Pyramid Pooling [32] and inception modules [33], we use a multi-scale
feature module to extract multi-scale features, which increases the size of the reception fields
without significantly increasing the computation and losing resolution. Multi-scale features
can provide different context information. As shown in the top left corner in Figure 2,
multi-scale feature extraction includes four branches. These four branches include one
branch with a 1 × 1 convolution kernel and three branches with 3 × 3 dilated convolutions
with dilation rates of 1, 2, and 3. The feature maps of different branches are concatenated to
obtain multi-scale features containing rich semantic information. Finally, the concatenated
features undergo a convolution operation to reduce channels. Let Faspp represent the output
of the multi-scale feature extraction module, and the calculation process is as follows:

Fms f = conv1(ϕ(conv1(Fe3), Ca1(Fe3), Ca2(Fe3), Ca3(Fe3))) (1)

where conv1(·) represents 1 × 1 convolutions. ϕ represents the feature fusion function, here
the concatenation operation is used. Cai(·) represent 3 × 3 dilated convolutions with atrous
rate i.

The hybrid attention module consists of two sub-modules, the channel attention
module and the low-rank based spatial attention module, which enable the model to
focus only on relevant features and regions for the task at hand. We use a SE module to
model channel attention, which computes the relationships between different channels
and learns a weight for each channel. In order to extract more important and critical
feature information. The multi-scale feature Fms f enters the channel attention module,
first undergoes global average pooling and then passes through two consecutive fully
connected layers. The output channels of the first fully connected layer are less than the
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input channels, and the output channels of the second fully connected layer are equal to C.
The calculation process of the channel weights is shown as follows.

Wc = θ
(

fl2

(
θ
(

fl1

(
PGavg(Fms f )

))))
(2)

where θ(·) is the sigmoid function, fl1 and fl2 are fully connected layers, and PGavg(·)
represent global average pooling. After channel attention, the features become:

Fc = Wc × Fms f (3)

conv

1×1

AvgPool

MaxPool

conv1×1

reshape

softmax

SE

Conv3×3

Rate=1
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upsample

+
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Figure 2. Low-rank perception enhancement module structure diagram.

To model the importance of different positions, we added a spatial attention module
to the network which can establish global dependencies between different local features
and introduce low rank in non-local self-attention. This module is inspired by the non-
local self-attention mechanism. Since lesion areas and background areas contain different
features and the edge areas of lesions have different contexts from the internal areas, we
use a mixed pooling strategy to help distinguish between lesion areas and background
areas. Specifically, the mixed pooling module includes three branches, an average pooling,
a maximum pooling, and a 2 × 2 convolution. The maximum pooling can extract the
most prominent features, the average pooling can extract flat background information,
and a 2 × 2 convolutional branch is added to reduce information loss. After passing
through the mixed pooling part, Fc is transformed into three sets of feature maps, which
are concatenated to obtain Fm p. the size of Fm p is reduced to one-quarter of Fc, thereby
reducing the computational complexity of the model. The formula for computing Fm p is
as follows:

Fmp = ϕ
(

Pavg(Fc), Pmax(Fc), conv2(Fc)
)

(4)

Among them, Pavg and Pmax represent the average pooling layer and the maximum
pooling layer, respectively, and conv2 represents 2 × 2 convolution. ϕ represents the feature
fusion function, here the concatenation operation is used. Then Fmp is used to calculate the
global dependencies between different local features.

When computing spatial attention, instead of computing correlations between all
locations, we map pixels to a compact low-dimensional space, and compute the correlation
matrix between two feature spaces as global descriptors, then reconstruct the features using
global descriptors. By mapping features to a low-dimensional space, we hope to discover
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semantic information with a higher degree of abstraction. Let C denote the dimensionality
of the Fmp and K denote the dimensionality of the low-dimensional space, where K is
significantly smaller than C. By mapping the original features to the low-dimensional
space, the value V and query Q of each position are obtained. Then the C dimensional
key K is computed in the original feature space. By multiplying the key and query, the
correlation matrix A ∈ RKC of the two feature spaces is obtained. Then the reconstructed
features are obtained by multiplying the value and the feature space similarity matrix A.
Because K of the low-dimensional space is significantly smaller than C, using K global
descriptors to reconstruct the C dimensional features led to a low rank in the reconstructed
features. Fmp first passes through two 1 × 1 convolution branches to obtain Q and K, then
we reshape Q and K to two-dimensional matrixes by merging spatial dimensions. The
correlation matrix A ∈ RKC is calculated as follows:

A = δ

(
convQ

1
(

Fmp
)T convK

1
(

Fmp
)

√
dk

)
(5)

Then we reconstruct features of each location with global descriptors, and the calcula-
tion process is as follows

Ws = conv1(AT convV
1
(

Fmp
)
) (6)

where convQ
1 , convK

1 , and convV
1 are all 1 × 1 convolution kernels, δ represents the softmax

function. dk is a regularization term that ensures that the sum of each row is equal to 1. By
multiplying the value and A to obtain the reconstructed features, each location can receive
the information of the whole space. This operation allows the model to establish feature
dependencies at a global level, facilitating the understanding of how each pixel relates to
the overall context. The output of the spatial attention module is:

Fs = Ws + Fc (7)

3.1.2. Noise Optimization Module

High-level features capture more abstract semantic information and have the ability
of precise localization, as images pass through successive downsampling layers, spatial
details are lost. However, for accurate image segmentation tasks, spatial details are crucial
alongside semantic information. To address this, UNet architecture connects the encoder
and decoder at the same level through skip connections and gradually incorporates shal-
low detail information from the encoder to the decoder. Nonetheless, shallow features
with higher resolution contain more generic low-level semantic information, they may be
irrelevant or even intrusive to our task. This information, which can negatively impact
the accuracy of calcified plaque segmentation, is referred to as noise. Directly fusing shal-
low and deep features will introduce this noise, thereby damaging the network’s precise
localization ability and reducing the accuracy of segmentation. Based on the assumption
that the feature maps in each channel have similar compatible weight distributions, we use
spatial attention to filter out noise information in the shallow features. In this paper, we
construct a spatial attention-based gating mechanism on the skip connections to suppress
the noise in low-level features. The detailed structure of the module is shown in Figure 3.
To reduce computation, we only added the module in the second and third layers of the
network. The module consists of two branches, which calculate the global and local spatial
attention maps, respectively, and then fuse the results of the two branches to obtain the
final attention map. First, a channel information aggregation function θ is used to calcu-
late the feature information of the two-dimensional spatial position, and then the input
channel aggregation information Fθ is expanded into one-dimensional data, and then two
consecutive fully connected layers are used to learn the feature information of each position
in the matrix. Then the learned one-dimensional global attention tensor is restored to a
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two-dimensional matrix. Let WGi represent the global attention which takes the output of
ith encoder as input, it is calculated as follows

WGi = f f 2

(
f f 1(θ(Fei))

)
. (8)

where θ is the channel information aggregation function, and a 1 × 1 convolution is used
in this paper. f f 1 and f f 2 represent two consecutive fully connected layers. Sine WGi
did not consider the variability of features between channels, we add another path as a
complement to the first path. In this approach, we use a probabilistic learning function T
to simultaneously compare the importance between different channels and locations. The
function T here is implemented using a 3 × 3 convolutional layer.

Wli = T(Fei) (9)

We fuse the two attention features together, and then use the sigmoid function to com-
pute the global weight distribution matrix. In order to avoid the complete loss of features
due to the weight being too small, a threshold ε is added to the calculated probability map,
here we take ε as 0.01. The residual connection is used here, and the calculation process is
shown in the formula, and FGi is the output feature matrix.

FGi =

(
σ

(
1

C(X)
(WGi + Wli)

)
+ ε

)
∗ Fei + Fei (10)

C(X) is a regularization term so that the sum of each row of the weight matrix is 1.

softmaxfc fcconv

conv

×

addition

dot production

+ × +
reshape reshape

Figure 3. Block diagram of noise optimization module.

3.2. Mixed Training

The calcium plaque segmentation dataset has two main characteristics, high image
resolution and small and irregular lesion size. Therefore, there is a significant class imbal-
ance problem in the task of calcium plaque segmentation in coronary artery CT images.
The cross-entropy loss function focuses more on the segmentation quality of global seg-
mentation results, and using the cross-entropy loss function in class-imbalanced scenarios
often fails to achieve good results. Since the true goal of segmentation is to maximize the
dice coefficient, the Dice loss function performs well in scenarios with severe positive and
negative sample imbalances. However, when the batch size is small and the segmentation
target is too small, even a small prediction error may cause significant changes in the loss
value, leading to oscillations in the loss curve and difficulty in network convergence. The
high image resolution of the calcium plaque segmentation dataset leads to a small batch
size, and the small lesions make it difficult to perform image scaling operations. Therefore,
using the Dice loss function directly for network training is not suitable for this task. This
paper combines the advantages of weighted cross-entropy loss function and Dice loss
function and uses a hybrid loss function to train the network. During training, the network
is first trained with the iterative weighted cross-entropy loss function (DWCE Loss) for
multiple rounds, and then trained with the Dice loss function until the network converges.
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Based on the problems raised above, this method proposes a weighted cross-entropy
loss function based on the distance from the pixel point in the image to the lesion. The
traditional binary cross entropy loss function formula is as follows

l(p) = −
(
yp log

(
xp
)
+
(
1− yp

)
log
(
1− xp

))
(11)

where p represents the current pixel, y is the label, and x is the predicted value. During the
calculation of the cross-entropy loss function, each pixel contributes the same to the final
loss value. In the case of unbalanced samples in this task, the model optimization direction
will be dominated by a large number of negative sample losses, which will make the model
difficult to train or converge to non-optimal results. In order to solve this problem, this
paper proposes a relatively novel weighting method.

In order to facilitate the demonstration of the calculation process, we use ω to represent
the weight matrix. The initial value is set to the label value of the ground truth label Y, that
is, ω0 = Y. The process of one iteration is as follows

ωt = ρ(ω) = ωt−1 + yt ∗ α (12)

yt = η(y0) (13)

where y0 is the label, η represents the expansion operation, each iteration, the label is
expanded by one pixel, and α is selected based on experience, indicating the weight of
the expanded label matrix. t is the number of iterations of the calculation process. After t
times of operations, the final weight matrix ω appears as a stepped matrix with the label as
the center and the weights gradually decrease outward. In this way, the role of positive
examples is improved, the role of negative classes is weakened, and the phenomenon of
category imbalance is alleviated. Since the weight of the boundary negative class in the
obtained ω matrix is 0, in order to make the negative class away from calcified plaque can
also contribute to the optimization of the network, we do the following transformation
on ω:

ω = ω + δω0 (14)

Among them, δ is used to balance the relationship between ω and marginal negative
classes. The setting of parameter values can be modified according to the proportion of the
foreground class in the ground truth. In this experiment, δ is set to 0.1. We use the symbol
LDWCE to represent the weighted cross-entropy loss (DWCE Loss). The calculation process
is as follows

LDWCE =
1
N ∑ ω ∗ l(p) (15)

where l(p) represents the calculation result of the conventional cross-entropy loss function,
ω is the weight distribution map calculated above, and N is the sum of the weight matrix ω.
Compared with DiceLoss, which ignores a large number of background elements, DWCE
Loss takes into account the value of each pixel. Therefore, when training the network,
we sequentially use ω30, ω10, ω5 to pre-train the network, and finally use DiceLoss to
train the network to obtain the final convergence result. The whole training process can
be understood as the process of gradually concentrating the focus of the network on the
lesion area.

4. Experiments
4.1. Experiment Setting

The batch size of the network is set to 16, an initial learning rate of 0.0001, and weight
decay of 0.0001. To increase the amount of data and reduce GPU memory usage, we use a
sliding window to extract patches of size 384× 384 with a step size of 35 from the original
images as input to the network. Finally, we obtain the segmentation results by averaging
the results of multiple patches.
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4.2. Dataset

The experimental data were all from Qianfoshan Hospital in Shandong Province. We
selected representative data from 130 coronary heart disease patients from a large number of
CT image data for annotation. The annotation process was completed by two experienced
radiologists and checked by another physician to ensure the accuracy of the dataset. Each
patient’s data consisted of about 60 to 100 DCM files (each file represents a slice of CT
images). Due to differences in physician operating habits and equipment models, the pixel
distance and slice spacing of the CT images also varied. Generally, the pixel distance is 0.5
or 0.35, and the slice interval is 0.5 to 0.7. To reduce the impact of equipment, the patient’s
CT image data are resampled, with a distance of 0.5 between adjacent slices and a pixel
distance of 0.35 within the same slice. As there were some areas with high HU values in
the data, to avoid the image data distribution being too concentrated after normalization,
which may lead to unclear feature differences, we set a threshold to suppress the high
HU values. To increase the amount of data and the model’s generalization ability, we
performed routine data augmentation operations, including image normalization, flipping
and rotation, adding Gaussian noise, adding elastic deformation, and randomly adjusting
contrast. A sample image of the calcified plaque segmentation dataset is shown in Figure 4.

Figure 4. Calcified plaque segmentation dataset sample figure (The yellow mark in (b) represents
Ground Truth).

4.3. Evaluation Index

Intersection over Union: Iou is used to represent the mean value of the ratio between
the overlapping part of ground truth and the prediction and the union of Ground Truth
and the segmentation. This avoids the interference of background pixels in the image when
calculating the segmentation effect, and the representation of the segmentation result is
more accurate. Iou can be expressed as:

Iou =
TP

(FP + FN + TP)
(16)

Iou is widely used in various semantic segmentation tasks and target detection tasks.
Dice score: Dice can be defined as twice the ratio between the overlapping area of the

prediction and the ground truth between the sum area of both, which is popular in medical
image segmentation. The Dice score is defined as:

Dice =
2TP

(FP + FN + 2TP)
(17)

F1_score: The F1 score takes both Precision and Recall into consideration. When
we analyze the experimental results, Precision is usually used to measure whether the
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segmentation result has a misjudgment, and Recall is usually used to measure whether
the result has a false positive error.

F1 =
2× Recall × Precision
( Recall + Precision )

(18)

F1_score is usually used when the recall rate and precision rate need to be controlled
at the same time, and it is also one of the most commonly used evaluation indicators in
segmentation tasks.

4.4. Results

We conducted comprehensive experiments to verify the effectiveness and superiority
of the proposed method. First, we compared the performance of the LPE-UNet model
with several classic networks (UNet [14], DeepLab v3+ [34], FCN [35], Attention-UNet [25],
nnUNet [28], UNet++ [21], and R2U_UNet [29]) on the coronary artery calcification plaque
dataset. Secondly, we conducted sufficient ablation experiments to evaluate the effec-
tiveness of each proposed module. All experiments were conducted using 4-fold cross-
validation, where the dataset was randomly divided into training set (60%), validation set
(20%), and test set (20%).

Table 3 shows the experimental results of our method compared with other methods.
It can be seen that our method outperforms other existing models, which is consistent with
our expectations. In order to better compare and evaluate the overall performance of the
models, we used F1_score as the evaluation metric to further qualitatively evaluate the
segmentation results. We defined F1 scores greater than 0.95 as very accurate, between
0.93 and 0.95 as accurate, between 0.90 and 0.93 as moderately accurate, between 0.85 and
0.90 as slightly inaccurate, and less than 0.85 as very inaccurate, in order to evaluate the
accuracy of all segmentation results. We conducted the statistical analysis of all test set
outputs, and the results are shown in Figure 5. As can be seen from the figure, the number
of samples that are very accurate in the computed results of our method model is much
higher than that of other models, while the number of samples that are very inaccurate and
slightly inaccurate is much lower than that of other models. Therefore, we believe that our
method has better overall performance and stability.

Figure 5. Qualitative evaluation results of test set CT images. The vertical axis is the number of
samples, and the horizontal axis is the evaluation level. From 1 to 5 on the horizontal axis represent
very accurate, accurate, moderately accurate, slightly inaccurate, and very inaccurate, respectively.
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To further validate the effectiveness of the proposed method, we visually compared the
segmentation results of our method with other methods. As shown in Figure 6, we selected
eight different test images, including two images with small targets, three images with
multiple small lesion targets, and three images with larger targets. Overall, compared with
other models, the method proposed in this paper is more consistent with the Ground Truth
for the segmentation results of image lesion edge pixels, with better lesion edge integrity,
more accurate segmentation, and better visual effects, which verifies the effectiveness
and superiority of the method proposed in this paper. Compared with other methods
for lesion segmentation, due to the role of the noise optimization module and mixed
loss function, our method has a more accurate division of image contours and lesion
boundaries, while effectively reducing the possibility of false positives. Our method has
improved the segmentation ability for smaller targets of calcified plaques, with more
accurate segmentation boundaries and effectively suppressing false positive errors.

Figure 6. Comparison chart of experimental results.

We perform ablation experiments on the proposed model to verify the effectiveness
of the algorithm improvements. In our experiments, we use the UNet network with one
reduced downsampling operation as our baseline network and gradually add the proposed
modules and training strategy to verify the effectiveness of the low-rank perception en-
hancement module, noise optimization module, and mixed training strategy, respectively.
The results of the ablation experiments are shown in Table 4. From the experimental results,



Electronics 2023, 12, 2750 14 of 17

it is clear that each time we add a new part to the network, our model further improves the
accuracy of the segmentation results. In Experiment 2, we added the multi-scale feature
extraction module (MSF) to the network to expand the perceptual field and aggregate
different level features, while avoiding feature loss caused by the pooling layer, and the
experimental result of the Iou metric improved by 0.7% (F1_score improved by 0.46% and
Dice score improved by 0.43%), which shows that our insight works. In Experiment 3 we
added the noise optimization modules (NOM) at the base of Experiment 2 to suppress the
effect of irrelevant features in the low-level features passed through the skip connections,
and the experimental result of Iou was further improved by 0.21% (F1_score was improved
by 0.35% and Dice score improved by 0.20%). In Experiment 4, a hybrid attention mecha-
nism is added to Experiment 3. The multi-scale feature extraction module and the hybrid
attention mechanism together form the low-rank perception enhancement module (LPE),
the network is trained using Dice Loss, and the experimental effect F1_score is further
improved by 0.25%, Iou score is improved by 0.15%, and Dice score is improved by 0.14%.
It can be verified that the global dependencies and inter-channel dependencies established
by the attention mechanism play an important role in achieving accurate segmentation of
small target objects in medical images. In Experiment 5, we first use multiple iterations of
DWCE Loss to adequately pre-train the network and perform preliminary optimization on
the easy-to-learn parts of the network to avoid the oscillation phenomenon when training
directly with Dice Loss in the case of small batch and then use Dice Loss to live the final
training results, and the experimental results prove the effectiveness of the hybrid loss
function. DWCE Loss has a stronger learning ability compared with the Dice Loss function,
which easily leads to the transitional fitting of the training set. In the experiment, we added
an extra dropout layer at the end of the network to reduce the degree of overfitting. The
results of the ablation experiments fully verify the effectiveness of each module and the
loss function.

Table 3. Comparative test results (LPE-UNet is the method of this paper).

Model F1 Iou Dice

UNet 0.9272 0.8740 0.9328
FCN 0.9200 0.8673 0.9289

DeepLabV3+ 0.9278 0.8744 0.9330
Attention-Unet 0.9277 0.8747 0.9332

Unet++ 0.9207 0.8657 0.9280
R2U_UNet 0.8034 0.7400 0.8506

nnUNet 0.9310 0.8790 0.9356
LPE-UNet 0.9410 0.8950 0.9446

Table 4. Ablation experiment results, where MSF, LPE, Nom, Dice represent the multi-scale feature
extraction module, the low-rank perception enhancement module, the noise optimization module,
and Dice Loss. LPE-UNet is the work we proposed.

Model F1 Iou Dice

Baseline 0.9319 0.8808 0.9366
Baseline + MSF 0.9365 0.8878 0.9406

Baseline + MSF + AGate 0.9386 0.8913 0.9425
Baseline + LPE + AGate + Dice 0.9401 0.8938 0.9439

LPE-UNet 0.9410 0.8950 0.9446

5. Discussion

In this work, we introduce a novel network framework called LPE-UNet, which is
specifically designed for segmenting small-scale calcified plaques. Given the limited area
occupied by calcified plaques, it becomes crucial to leverage rich and clean contextual
information for accurate segmentation. To address this challenge, our framework focuses
on extracting multi-scale contextual information and incorporating attention mechanisms
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to weigh the extracted features, enhancing the model’s ability to locate the target accurately.
By combining shallow and deep features at each level of the network, we aim to enhance
the detection accuracy of the framework. To achieve this, we calculate an attention matrix
for the shallow features, which serves to supplement filtered spatial detail information to
the deep features. However, the level-by-level fusion of shallow and deep features is not
the optimal choice, as the expressive power of the features can gradually dilute during the
process of feature transmission. To address this limitation, our future work aims to explore
alternative approaches by incorporating more skip connections that combine high-level
semantics from different-scale feature maps with low-level semantics. We believe that this
integration will help preserve and enhance the expressive power of the features throughout
the network, leading to improved segmentation results. Furthermore, in the context of CT
images, calcified plaques exhibit noticeable continuity; however, treating each CT image
independently discards valuable localization information. To tackle this issue, we propose
treating adjacent CT images as a single sample, enabling more effective utilization of the
inherent continuity of calcified plaques. This approach is also part of our future work, as
we anticipate that it will further enhance the segmentation performance. Through these
enhancements, we expect to achieve more accurate and robust segmentation results in our
future research endeavors.

6. Conclusions

In this paper, we propose an improved UNet network, called LPE-UNet, to achieve
the segmentation of small-scale calcified plaques. For the model, on the one hand, we
construct a filter gate mechanism on the skip connection to suppress irrelevant feature
information from interfering with the segmentation result. On the other hand, we solve
the contradiction between the use of pooling layers to enlarge the receptive field and the
loss of features in traditional networks by building a dependency enhancement module.
This also provides the model with the ability to capture and fuse multi-scale information
and model long-term dependencies and channel dependencies in the model. In addition
to improving the model, we propose a new weighted cross-entropy loss function based
on the distance between pixels in the image and pixels between lesions to weight the loss
function, which suppresses the imbalance between foreground and background classes
caused by the small segmentation targets. We use this with Dice Loss to conduct mixed
training on the model to obtain a more accurate segmentation result. The experimental
results on the calcified plaque segmentation dataset verify the feasibility and effectiveness
of the proposed network and loss function in this paper.
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