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Abstract: The fusion of infrared and visible images produces a complementary image that captures
both infrared radiation information and visible texture structure details using the respective sensors.
However, the current deep-learning-based fusion approaches mainly tend to prioritize visual quality
and statistical metrics, leading to an increased model complexity and weight parameter sizes. To
address these challenges, we propose a novel dual-light fusion approach using adaptive DenseNet
with knowledge distillation to learn and compress from pre-existing fusion models, which achieves
the goals of model compression through the use of hyperparameters such as the width and depth
of the model network. The effectiveness of our proposed approach is evaluated on a new dataset
comprising three public datasets (MSRS, M3FD, and LLVIP), and both qualitative and quantitative ex-
perimental results show that the distillated adaptive DenseNet model effectively matches the original
fusion models’ performance with smaller model weight parameters and shorter inference times.

Keywords: infrared image; visible image; image fusion; adaptive DenseNet; knowledge distillation

1. Introduction

The fusion of infrared and visible images presents an opportunity to leverage the
unique advantages of each imaging sensor. Infrared imaging sensors are capable of detect-
ing infrared radiation emitted by objects and temperature variations with less susceptibility
to harsh weather conditions and illumination [1–3]. Nonetheless, the resolution of infrared
sensors is comparatively lower, and the texture details are deficient. Conversely, visible
imaging sensors can capture texture structure details and color information, but their perfor-
mance is compromised under varying light conditions and weather situations. The fusion
of infrared and visible images yields a synergistic outcome in the form of a complementary
image that encompasses both infrared radiation information and visible texture structure
details. Therefore, fused images have immense potential for deployment in low-light and
adverse weather environments. With the advantages of infrared and visible image fusion,
there are diverse measurement and detection applications across various fields. In the
realm of medical image measurement tasks, by fusing images captured by multiple sensors
with different spectral ranges, we can obtain more comprehensive and accurate measure-
ments of biological tissues and structures [4]. Additionally, the fusion of infrared and
visible images can provide detailed and accurate information on environmental condition
measurement, enabling land cover mapping, vegetation analysis, and detection of environ-
mental changes [5]. Furthermore, robotics measurement and control also can utilize the
superior quality of the fused images to enhance navigation, object recognition, and obstacle
avoidance in low-light and adverse weather conditions [6]. Additionally, security systems
can exploit the benefits of fused images for facial recognition, access control, and intrusion
detection, leading to a more reliable and robust representation of the scene [7,8]. Overall,
infrared and visible image fusion has significant potential in a wide range of measurement
and detection applications, offering enhanced accuracy, efficiency, and reliability. Moreover,
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current optical vision stereo measurements based on deep learning require efficient feature
extraction methods to support them [9].

With the huge demand for fusion measurement applications, many image fusion
methods have been developed and proposed to address the challenge of fusing infrared
and visible images. Based on the different feature extraction and fusion strategies, these
methods can be classified into conventional fusion methods and end-to-end deep learning
methods. According to the hand-crafted feature decomposition and generation rules,
conventional fusion methods mainly consist of multiscale transform-based [10], sparse
representation-based [11–13], saliency-based [14–17], fuzzy set-based [18–20], and hybrid-
based [21–23] methods. To summarize, conventional methods for image fusion typically
comprise three primary stages. Initially, a specific transformation is utilized to extract
features from the source images, commonly referred to as the feature extraction stage.
Subsequently, fusion strategies are applied to combine these features in the feature fusion
phase. Lastly, the merged features are used to reconstruct the fused image by applying the
corresponding inverse transformation in the feature reconstruction stage.

Recently, conventional methods have been integrated with deep learning techniques
due to their ability to effectively leverage multi-modal features and facilitate efficient fusion.
In general, deep-learning-based end-to-end fusion methods can be categorized into four
distinct groups, namely those founded on auto-encoders (AEs) [3,24–26], convolutional
neural networks (CNNs) [27–29], generative adversarial networks (GANs) [30–33], and
transformer architectures [34–37]. AE-based techniques utilize an auto-encoder to execute
both feature extraction and feature reconstruction, while feature fusion is carried out
via specific fusion strategies. In contrast, CNN-based approaches can achieve feature
extraction, feature fusion, and feature reconstruction, obtaining unique fusion results
through well-designed network architectures and loss functions. Diverging from CNN-
based methods, GAN-based techniques introduce generative adversarial mechanisms to
the realm of infrared and visible image fusion. Such fusion methods typically incorporate
generators and discriminators. On the other hand, transformer-based methods harness
self-attention mechanisms to extract global features for the completion of fusion tasks.

While existing fusion approaches have shown promising performance, most of them
tend to prioritize the visual quality and statistical metrics of the fused images by altering
the deep network structure and enhancing the layers. Thus, the fusion training network
becomes increasingly convoluted and the model’s reasoning parameters undergo a surge,
without duly considering the requirement of real-time performance when computational
resources on edge devices are scarce. Drawing inspiration from the successful application
of knowledge distillation (KD) technology in recommender systems and natural language
processing, we have developed an adaptive distillation paradigm for real-time infrared and
visible image fusion tasks. KD is a model agnostic technique that facilitates the transfer
of knowledge from a pre-trained large teacher model to a smaller, yet powerful, student
model. Therefore, we utilize previously trained large models based on deep learning, such
as MCnet, MCTNet, and TCPMFNet [38–42], which have demonstrated effectiveness in
image fusion work, as teacher models. This paper combines the strengths of previous large
models and KD and proposes a lightweight infrared and visible image fusion method that
integrates an adaptive mechanism and knowledge distillation. By collecting visible and
infrared image pairs from multiple public dual-light datasets, including MSRS, M3FD, and
LLVIP, we innovatively constructed a typical dual-light dataset covering multiple complex
scenes, and the proposed approach yields satisfactory fusion results on this created dataset.
The primary contributions of this study are as follows.

(1) We introduce an adaptive knowledge distillation network for infrared and visible
image fusion tasks, which can be trained by leveraging the knowledge from pre-
existing large fusion models and achieves a comparable performance with smaller
model parameters and a more simplified model structure.

(2) The devised knowledge distillation network exhibits the capability of adaptively
tuning hyperparameters and can be trained by various categories of pre-existing
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fusion models, encompassing CNN-based, transformer-based, and high-vision-level-
based models.

(3) The newly created dataset comprises 3288 pairs of infrared and visible images cap-
tured from multiple typical scenes, such as city roads, pedestrian crossings, parking
lots, mountain forests, and buildings in the background. The images were meticu-
lously selected to offer a broad representation of real-world scenarios, making the
dataset suitable for training and evaluating models for infrared and visible image
fusion tasks.

The paper exhibits meticulous organization, structured as follows. Section 2 presents
an exposition of related works concerning knowledge distillation and adaptive mechanisms
for infrared and visible image fusion. A detailed account of our approach and method-
ology is provided in Section 3. Section 4 comprises an explanation of the constructed
dataset, accompanied by the results and analysis of the experiments conducted offline. In
Section 5, the real-world applications of the trained adaptive DenseNet are described in
detail, including its deployment on mobile platforms. Finally, the paper draws conclusions
in Section 6.

2. Related Works

In this section, we first present some related works on knowledge distillation and
adaptive mechanisms. Subsequently, we provide an overview of various state-of-the-art
large models for infrared and visible image fusion based on different algorithms.

2.1. Knowledge Distillation

Knowledge distillation is a procedure for model compression where a small (student)
model is trained to match a large pre-trained (teacher) model [43]. Knowledge is transferred
from the teacher model to the student by minimizing a loss function aimed at matching
softened teacher logits as well as ground-truth labels [8]. Chen et al. [44] proposed cross-
stage connection paths in knowledge distillation that use low-level features in the teacher
network to supervise deeper features for the student, resulting in a much improved overall
performance. This modification reveals the great importance of designing connection paths
in knowledge distillation. Xiao et al. [45] proposed a heterogeneous knowledge distillation
network with multilayer attention embedding to address the issue of low-resolution fusion
results in infrared–visible image fusion. This method has a high-resolution fusion net-
work (teacher) and a low-resolution fusion and super-resolution network (student), where
the teacher guides the student’s ability to implement joint fusion and super-resolution.
Liu et al. [46] proposed a perceptual distillation method to train image fusion networks
without ground truths using a main autoencoder as the student network, a teacher net-
work with well-trained network representations, and a multi-autoencoder architecture
trained with self-supervision. To leverage depth maps, Zhao et al. [47] proposed a new
depth-distilled multi-focus image fusion (MFIF) framework called D2MFIF, featuring a
depth-distilled model (DDM) to transfer depth knowledge and a multi-level fusion mech-
anism to improve the final predictions. Mi et al. [48] proposed a medical image fusion
model addressing the challenges of limited publicly accessible medical image datasets by
using knowledge distillation and an explainable AI-module-based generative adversarial
network with dual discriminators. This model reduces the required dataset size for training
and generates clear fused images using small-scale datasets while helping to reduce over-
fitting. While existing image fusion methods utilizing knowledge distillation can enhance
the performance of the fusion model, increase the predictive accuracy, and decrease the
dataset size necessary for training, there exists potential for further optimization of the
deep neural network through knowledge distillation combined with adaptive mechanisms.
Additionally, compressed models ought to be tailored to facilitate portability to edge com-
puting devices and sustain high-level visual measurement tasks that necessitate real-time
image fusion. The advantages and disadvantages of knowledge distillation related works
are summarized in the Table 1.
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Table 1. Summary of knowledge-distillation-related works.

Related Works Advantages Disadvantages

Original knowledge distillation [43] Compresses a large model into a
small one

May lose some information or
performance

Cross-stage connection path in knowledge
distillation [44]

Uses low-level features to supervise
deeper features

Increase the complexity of the
distillation process

Heterogeneous knowledge distillation
network [45]

Implements joint fusion and
super-resolution

Dependent on the quality of the teacher
network

Perceptual distillation [46] Trains image fusion networks without
ground truths

Requires a high-quality pre-trained
teacher network

Depth-distilled multi-focus image fusion
(MFIF) [47]

Transfers depth knowledge to improve
fusion accuracy

Transfers depth knowledge to improve
fusion accuracy

Medical image fusion model [48] Reduces the dataset size and
overfitting risk

Limited generalization and sensitivity
to hyperparameters and loss functions

In summary, the related works utilizing knowledge distillation have been shown to
improve the performance of image fusion models by compressing large pre-trained models
and transferring knowledge from teacher to student models. However, these methods
have their limitations, including the dependence on high-quality pre-trained networks, the
increased computational cost, and the need for proper tuning of the architecture. These
limitations highlight the potential for further optimization of deep neural networks through
knowledge distillation combined with adaptive mechanisms, including the development
of compressed models that facilitate portability to edge computing devices and sustaining
high-level visual measurement tasks that require real-time image fusion.

2.2. Adaptive Mechanisms

Adaptive mechanisms refer to techniques or algorithms that enable a system to adjust
or modify its behavior in response to changes in its environment or operating conditions.
Adaptive mechanisms for image fusion have been proposed by various researchers over
the years. For example, Xia et al. [4] proposed a parameter-adaptive pulse-coupled neural
network method to obtain a better fusion effect. Lu et al. [49] proposed an image retrieval
strategy using adaptive features and information entropy theory to extract features, cal-
culate similarity, and obtain the initial results. Kong et al. [50] proposed an adaptive
normalization-mechanism-based fusion method, which injects detailed features into the
structure feature. This adaptive normalization mechanism significantly improves the fusion
performance. In brief, adaptive mechanisms for image fusion exhibit various benefits com-
pared to other algorithmic fusion methods. For instance, they can blend the effectiveness of
multiple features in an unsupervised way and outperform single-feature retrieval in terms
of accuracy and generalization. Moreover, they can enhance image fusion precision, curtail
noise interference, and refine the algorithm’s real-time performance. Conversely, various
adaptive mechanisms have been proposed to optimize deep neural network structures.
These techniques include adaptive selection of the loss function, the adaptive activation
function, and adaptive sampling [51]. Additionally, global group sparse coding has been
utilized to automatically learn inter-layer connections and determine the depth of a neural
network [52]. In recent years, novel network structures have been proposed that demon-
strate superior performance compared to traditional feedforward neural networks [53].
To summarize, the utilization of adaptive mechanisms provides a means to optimize the
hyperparameters and structure of the designed knowledge distillation network. The ad-
vantages and disadvantages of adaptive mechanism related works are summarized in the
Table 2.
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Table 2. Summary of adaptive-mechanism-related works.

Related Works Advantages Disadvantages

Parameter-adaptive pulse-coupled neural
network [4] Obtains a better fusion effect May be sensitive to parameter settings

Image retrieval using adaptive features and
information entropy [49]

Extracts features and calculates
similarity effectively May not handle complex scenes well

Adaptive normalization-mechanism-based
fusion [50]

Injects detailed features into
structure feature May introduce artifacts or distortions

Adaptive selection of the loss function,
activation function, and sampling [51]

Optimizes the performance of deep
neural networks

May require more computational
resources or tuning

Global group sparse coding [52]
Learns inter-layer connections and
determines network depth
automatically

May suffer from sparsity or
redundancy issues

Novel network structures [53] Outperforms traditional feedforward
neural networks May be difficult to design or interpret

In summary, adaptive mechanisms for image fusion have various benefits compared to
other algorithmic fusion methods. They are able to adapt to changing operating conditions,
blend the effectiveness of multiple features in an unsupervised way, and outperform
single-feature retrieval in terms of accuracy and generalization. They are also able to
enhance image fusion precision, curtail noise interference, and refine the algorithm’s
real-time performance. However, proper selection of a mechanism and optimization of
parameters can be challenging. Adaptive mechanisms for optimizing deep neural network
structures are also available, but they may increase the computational cost and require an
appropriate selection of the network structure, the loss function, the activation function,
sampling, or the coding method. In general, the utilization of adaptive mechanisms
provides a means to optimize the hyperparameters and structure of the designed knowledge
distillation network.

2.3. Typical Image Fusion Model

The application of deep-learning-based approaches to infrared and visible image
fusion has yielded significant advancements in the domain of visual detection and mea-
surements owing to the implementation of multi-layered and intricately structured deep
neural networks. Li et al. [54] introduced DenseFuse, a deep learning architecture that uses
a combination of convolutional layers, a fusion layer, and dense blocks to extract more
useful features from the source infrared and visible images, resulting in a fused image
reconstructed by a decoder that outperforms existing fusion methods in both objective
and subjective assessments. Tang et al. [55] proposed SeAFusion, a real-time image fusion
network that combines image fusion and semantic segmentation to guide high-level seman-
tic information and uses gradient residual dense blocks to enhance the fusion network’s
description ability. Xu et al. [56] proposed U2Fusion, an unsupervised and unified image
fusion network that adapts to different fusion tasks by estimating source image impor-
tance, preserving adaptive similarity, and avoiding loss of previous fusion capabilities,
thus mitigating the requirements of a ground truth and specific metrics. Wei et al. [57]
utilized a dynamic transformer module to extract local features and context information
and a Y-shaped network to maintain both thermal radiation information and scene de-
tails in infrared and visible image fusion. Wu et al. [58] proposed an end-to-end fusion
network architecture (RFN-Nest) to tackle the challenging problem of designing an ap-
propriate strategy for generating fused images, incorporating a residual fusion network,
detail-preserving and feature-enhancing loss functions, and a two-stage training strategy
including an auto-encoder and the RFN. Z-R. Jin et al. [59] proposed a simple but effective
bilateral activation mechanism (BAM) which can be applied to the activation function to
offer an efficient feature extraction model. It also introduces a Bilateral ReLU Residual Block
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(BRRB) and a BRResNet architecture to achieve state-of-the-art performance in two-image
fusion tasks, i.e., pansharpening and hyperspectral image super-resolution (HISR). Despite
the significant progress made by these fusion models in infrared and visible light fusion, the
utilization of intricate hyperparameters and significant amounts of memory render these
models inadequate for real-time processing and lightweight applications, thereby necessi-
tating model compression and parameter optimization to achieve the optimal performance
and strike a balance between model efficacy and real-time constraints. The advantages and
disadvantages of image fusion model related works are summarized in the Table 3.

Table 3. Summary of image-fusion-model-related works.

Related Works Advantages Disadvantages

DenseFuse [54] Uses dense blocks to extract
more useful features

May not preserve the contrast
and brightness of the source
images

SeAFusion [55] Combines image fusion and
semantic segmentation

May not handle complex
scenes or occlusions well

U2Fusion [56]
Adapts to different fusion
tasks by estimating source
image importance

May not be stable or robust to
noise or distortion

Dynamic transformer module
and Y-shaped network [57]

Extracts local features and
context information

May introduce artifacts or blur
in the fused image

RFN-Nest [58]
Incorporates a residual fusion
network and a two-stage
training strategy

May require a large amount of
training data and time

In summary, various deep-learning-based approaches have been proposed for infrared
and visible image fusion, utilizing multi-layered and intricately structured deep neural
networks. These models are able to extract useful features from source images, guide
high-level semantic information, adapt to different fusion tasks, and tackle the challenging
problem of generating fused images. However, they require the appropriate implemen-
tation of complex modules, the selection of hyperparameters, and significant memory
utilization. Additionally, achieving real-time processing and lightweight applications ne-
cessitates model compression and parameter optimization to strike a balance between
model efficacy and real-time constraints.

3. Framework and Methodology

In this section, we present our proposed methodology and framework. Firstly, we
describe the framework of our method, followed by a comprehensive description of the
novel adaptive DenseNet and the corresponding loss function for the knowledge distillation
process. Lastly, we introduce the optimization and lightweight strategy employed in the
constructed fusion network.

3.1. The Framework of Fusion Network

The diagram in Figure 1 depicts the proposed methodology’s framework. Our ap-
proach involves treating the amalgamation of visible and infrared images as a knowledge
distillation of the neural network fitting problem. Specifically, we leverage pre-existing
fusion models and feed them with pairs of visible and infrared images to obtain fused im-
ages. As a result, we construct a dataset comprising visible–infrared image pairs as inputs
and fused images as labels. Subsequently, we perform supervised learning on our fusion
model using the Adaptive DenseNet and Huber Loss network models for convergence. To
this end, we construct an Adaptive DenseNet set that facilitates the selection of the opti-
mal DenseNet network architecture for our fitting task. Importantly, our network model
is characterized by a reduced complexity, a smaller storage size, and fewer parameters
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when compared to existing trained models, while delivering equivalent or superior image
fusion performance.
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Figure 1. The framework of the proposed approach using the trained infrared and visible images
fusion models and the novel adaptive DenseNet Set for knowledge distillation. The red box in the
image zooms in on the local area where the pedestrian is located, while the green box zooms in on
the local area where the ground object is located.

The specific steps can be divided into the following five steps:

(1) Construct a paired dataset of visible light and infrared images.
(2) Select a teacher model (SeAFusion in this case) and use its pre-trained weights to

infer the visible light and infrared images in the dataset to obtain a collection of
fused images.

(3) Combine the fused images obtained in step 2 with the original dataset to form a new
dataset with visible light and infrared images as inputs and corresponding fusion
images as labels.

(4) Use the labeled dataset from step 3 to train a student model, which is described in
detail in Section 3.3 of the manuscript. This step is the actual knowledge distillation
process, as the student model is trained to capture the information in the labeled
dataset using the fusion images obtained from the teacher model as soft labels.

(5) Obtain the student model, which is a self-adaptive DenseNet with weights trained in
step 4. The student model has similar fusion effects to the teacher model SeAFusion,
but is far superior in terms of inference speed and model size.

3.2. Adaptive DenseNet and Loss Function

The structure of the proposed adaptive DenseNet is presented in Figure 2, and it
integrates two variables that function to regulate the network structure and hyperparam-
eters of the adaptive DenseNet for implementing knowledge distillation. Input visible
and infrared image pairs are concatenated and subjected to ConvBlock processing within
dense layers (n), where n represents the number of dense layers, akin to depth in the YOLO
network. A dense layer is composed of ConvBlock and concatenation modules, with the
latter facilitating the integration of input and ConvBlock features at the next level, where
m represents the number of each dense layer output channel produced by the ConvBlock,
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similar to the width in the YOLO network. Finally, convolution and the Tanh activation
function are used to obtain the fusion output (comprising three channels).
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Importantly, the network does not have upsampling or downsampling layers, and
the convolutional layers use the following parameters: padding = 1, stride = 1, and
kernel_size = 3. This ensures that the input and output features of each dense layer differ
only in the number of channels, while the feature size remains the same.

Table 4 depicts the hierarchical structure of the network, as well as the input and output
channel counts in each layer, with examples provided for n = 2, m = 8 and n = 5, m = 16. It
is noteworthy that only the number of layers and channels are selected to adaptively tune
the performance of the designed DenseNet.

Table 4. Examples of the hierarchical structure and corresponding parameters of the network.

Layer Name
n = 2, m = 8 n = 5, m = 16

Input
Channels

Output
Channels

Input
Channels

Output
Channels

ConvBlock0 4 8 4 16
DenseLayer1 8 16 16 32
DenseLayer2 16 24 32 48
DenseLayer3 48 64
DenseLayer4 64 80
DenseLayer5 80 96
ConvBlock1 24 32 96 32

Conv 32 3 32 3

Activation Function Tanh

Our model is designed to accommodate the results produced by other fusion models;
thus, the loss function can be specified as either the mean absolute error loss (MAELoss) or
the mean square error loss (MSELoss). The MAELoss function is formulated as follows:

MAELossi =|xi − yi| (1)

where xi is the output fusion image sequence of the proposed adaptive model and yi is
the original model fusion output sequence as the label. MSELoss function is formulated
as follows:

MSELossi = (xi − yi)
2 (2)

Generally, the MAELoss exhibits greater resilience towards outliers; however, it may
experience oscillations in proximity to the global minimum of the loss function, leading
to difficulty in achieving convergence to the optimal value. While MSELoss has a faster
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convergence rate, it is more sensitive to outliers compared to MAELoss. To balance between
the two, we adopt HuberLoss in our model, which is defined by the following equation:

li =


1
2 MSELossi

2, if
∣∣∣xi − yi

∣∣∣≤ δ

δ·MAELossi − 1
2 δ2, if | xi − yi

∣∣∣> δ
(3)

where δ is typically set to a threshold value of 1. Thus, the proposed approach combines the
advantages of both MAELoss and MSELoss by using HuberLoss, which behaves similarly
to MAELoss when the loss is large and resembles MSELoss when the loss is small, thereby
reducing the impact of outliers while also promoting faster convergence. In relation to the
sample set, the mean loss is utilized to denote the loss, which can be defined as follows:

L(x, y) = mean{l1, l2 · · · li} (4)

3.3. Adaptive Optimal Strategy for DenseNet

The objective of this study is to achieve knowledge distillation by constructing an
optimal network structure to fit existing fusion algorithms. Based on DenseNet, we simplify
the problem to an adaptive optimization problem under discrete conditions, which involves
finding the optimal values of (n, m) to achieve good fitting performance while minimizing
the inference time. The mathematical model of the adaptive optimization is expressed
as follows:

Variables : (n, m)
Destination : min{ inference time for each pair images|(n, m)}
Constraints : | f (n, m)− f (nbest, mbest)| < σ, (n, m) ∈ N

(5)

where m is the number of dense layer output channels, n is the number of dense layers,
f (n, m) represents the fitting performance, f (nbest, mbest) denotes the theoretically optimal
fitting performance, σ represents the designed threshold, and N is a natural number. The
adaptive optimal strategy for DenseNet is made up of three steps:

Step 1 (Pre-Processing Stage): To begin with, the time required to perform inference
for each pair of images is calculated for a fixed (n, m) value and given typical input image
pixels in order to adaptively select the model structure with the shortest inference time
in subsequent operations. Figure 3 demonstrates the adaptive DenseNet’s inference time
per pair of images, while processing the fusion of 640 × 480 size infrared and visible light
images with varying n ∈ [2,5] and m ∈ [4,16]. In this figure, the horizontal axis represents
the number of output channels in each dense layer (i.e., m value), while the four curves
represent the number of dense layers (i.e., n value) ranging from 2 to 5. The vertical axis
shows the inference time, measured in milliseconds, required for each pair of infrared and
visible light images, and represents the average of 10,000 tests. Upon analyzing Figure 3, it
is evident that the inference time does not necessarily increase with an increase in m, while
n is constant. Moreover, when m is a power of 2, the model complexity increases without an
increase in inference time, indicating a higher cost-effectiveness. Therefore, we eliminated
the low cost-effective DenseNet network structures constructed with certain (n, m) values
during the pre-processing stage. For instance, the DenseNet network structure with n = 2
and m = 11 has a significantly lower actual complexity than that of n = 2 and m = 12, but
its inference time is significantly higher. Table 5 presents the optional adaptive DenseNet
network architectures sorted by inference time from low to high after removing the low
cost-effective (n, m) values, where each (n, m) pair corresponds to a sequence number s.
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Table 5. The optional adaptive DenseNet network architecture.

s 1 2 3 4 5 6 7 8
n 2 2 2 2 3 3 3 3
m 4 8 12 16 4 8 12 16

inference time
(ms) 0.668 0.700 0.701 0.712 0.785 0.82 0.836 0.847

s 9 10 11 12 13 14 15 16
n 4 4 4 4 5 5 5 5
m 4 8 12 16 4 8 12 16

inference time
(ms) 0.918 0.948 0.952 0.971 1.037 1.09 1.094 1.117

Step 2 (Assumption Stage): The proposed method utilizes the following assumptions
based on common knowledge in machine learning before performing an adaptive search
for optimal solutions:

A. After removing the low cost-effective (n, m) pairs, the complexity of the model is
positively correlated with the inference time, i.e., the larger the sequence number s, the
more complex the model.

B. The complexity of the model is positively correlated with its generalization fitting
capability. Specifically, given two models, A and B, if A is more complex than B and both
models converge during function fitting with adequate training and validation data, A’s
fitting performance will be at least as good as that of B. Conversely, if there are insufficient
training and validation data, neither model A nor model B may converge.

Step 3 (Solution Stage): Let f (n, m) be defined as 1 − HuberLossstable(n, m), where
HuberLossstable(n, m) represents the mean value of the HuberLoss on the validation set when
the model converges at the given values of (n, m). It is evident that as HuberLossstable(n, m)
becomes smaller, the generated images by the model are closer to the expected images,
indicating a better fitting effect. The pseudo code of the adaptive optimal search strategy is
shown in Algorithm 1. To obtain the optimal adaptive DenseNet architecture and dual-light
image fusion effect, a binary search strategy is employed to adaptively obtain the best hy-
perparameters (n, m). The hyperparameters (n, m)slow

, (n, m)smid
, and (n, m)shigh

correspond
to the network structure at s equal to 1, 8, and 16, respectively. After conducting multiple
tests, the hyperparameters for initializing the model architecture are set to (n0, m0) = (5, 16)
and (n1, m1) = (2, 4), while the initial threshold is set to σ = 0.01 ∗ [ f (n0, m0)− f (n1, m1)].
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The value of s is considered the optimal situation when it is minimized. The adaptive
DenseNet constructed based on the (n, m) values obtained from the solution is referred to
as the optimal network.

Algorithm 1: Adaptive Optimal Search

Input: train set T{visiblei, in f raredi, labeli}, val set V
{

visiblej, in f raredj, labelj }

Output: s→(n, m)s
Begin

1. Calculate f(n0, m0) and σ

2. slow = 1→ (n, m)slow

3. shigh = 16→ (n, m)shigh

4. smid = (slow + shigh)//2 = 8→ (n, m)smid

5. While slow 6= shigh do

6. if
∣∣∣f(n, m)smid

− f(n0, m0)| < σ do

7. shigh = smid
8. smid = (slow + shigh)//2
9. else do
10. slow = smid + 1
11. smid = (slow + shigh)//2
12. return smid → (n, m)smid

end

4. Offline Experimental Setup and Comparative Analysis

In this section, we first provide the experimental settings and dataset. Then, we intro-
duce six existing infrared and visible light fusion models, including DenseFuse, U2Fusion,
RFN-NEST, YDTR, SwinFusion, and SeAFusion. Next, we propose the adaptive DenseNet
structure obtained through the proposed adaptive optimization learning method. Then,
we compare the performance of the six fusion algorithms and the corresponding adaptive
DenseNet in terms of the model weight and size and the inference time. Furthermore, to
comprehensively compare the fitting performance of the adaptive Optimal DenseNet and
the original model network, we use 21 typical pairs of dual-light images in the VIFB (visible
and infrared image fusion benchmark) dataset as training and testing data and employ five
categories of 17 popular evaluation metrics in the infrared and visible light fusion field for
quantitative comparison. Finally, we qualitatively compare the fusion effect of the original
algorithm with that of the adaptive DenseNet.

All the networks were trained, validated, and tested on a high-performance worksta-
tion equipped with an Nvidia Tesla A100 GPU with 80 GB memory and an AMD Ryzen
Threadripper PRO 5995WX 64-Core CPU. The deep learning framework was PyTorch and
the CUDA version used is 11.7.

In describing the algorithm model of this paper, we distinguish between the original
and our models. For each original algorithm, we have a corresponding adaptive DenseNet
structure. For example, YDTR_ori is the original YDTR algorithm, and its model weights
were trained by its authors. YDTR_our refers to our use of adaptive DenseNet to fit its
fusion effect.

4.1. Dataset Preparation

The datasets used for training and validation were selected from MSRS, M3FD_fusion,
and LLVIP, comprising a total of 3288 pairs of visible and infrared images [55,60,61]. These
were divided into a training set of 2562 pairs and a validation set of 726 pairs. The images
used for training and validation were cropped to a size of 640 × 480 and strictly aligned
spatially. During testing, the VIFB dataset was selected and used to comprehensively
compare the original fusion algorithms with the proposed adaptive DenseNet [62,63].

Table 6 shows the selected quantitative evaluation metrics, which include entropy (EN),
mutual information (MI), pixel feature mutual information (FMI_pixel), wavelet feature
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mutual information (FMI_w), discrete cosine feature mutual information (FMI_dct), the
peak signal-to-noise ratio (PSNR), edge-information-based indicators (Qabf), artifact-based
indicators (Nabf), the structural similarity index measure (SSIM), the multi-scale structural
similarity index measure (MS-SSIM), the mean square error (MSE), spatial frequency (SF),
the standard deviation (SD), the average gradient (AG), visual information fidelity (VIF),
the correlation coefficient (CC), and the sum of correlation differences (SCD).

Table 6. The selected quantitative evaluation metrics [62].

Theory Evaluation Metrics

Information Theory EN, MI, FMI_pixel, FMI_w, FMI_dct, PSNR, Qabf, Nabf
Structural Similarity SSIM, MS_SSIM, MSE
Image Features SF, SD, AG
Human Visual Perception VIF
Correlation CC, SCD

If the evaluation indicators are for the fused image itself, then visible and infrared
images are not needed, such as for entropy (EN):

EN = −
L−1

∑
l=0

pl log2 pl

In the formula, L represents the number of gray levels and pl represents the normalized
histogram of the corresponding gray level in the fused image.

In the case of evaluation indicators that are based on both the input and output images,
such as the correlation coefficient (CC), the average value is taken:

CC =
r(A, F) + r(B, F)

2

In the formula for CC, A represents the visible light image, B represents the infrared
image, and F represents the fused image. In addition,

r(X, F) =

M
∑

i=1

N
∑

i=1
(X(i, j)− X)(F(i, j)− F)√

M
∑

i=1

N
∑

i=1
(X(i, j)− X)

2 M
∑

i=1

N
∑

i=1
(F(i, j)− F)2

where X means the mean value of the source image.
In the qualitative comparison, the test results of man.jpg in the VIFB dataset were

selected for analysis, with a focus on comparing the details, brightness, and saliency of the
fused image.

4.2. Adaptive DenseNet Knowledge Distillation

For the current six popular dual-light fusion models, our proposed method for search-
ing the optimal structure of their corresponding adaptive DenseNet through knowledge
distillation can converge to a stable value of the loss function within 20 epochs. Moreover,
when s ∈ [1,16], at most log2(16) + 1 ≈ 5 searches are needed to find each optimal (n, m)
combination, i.e., the corresponding adaptive DenseNet structure. Table 7 presents the
model weight sizes and inference times of the corresponding adaptive DenseNet obtained
by our proposed method for the six different fusion models. The images used for testing
were all 640 × 480 resolution and consisted of pairs of three-channel infrared and visible
light images. Table 7 demonstrates that the generated adaptive DenseNet through knowl-
edge distillation significantly reduced both the inference time and the model parameter
size. SwinFusion achieved the greatest reduction, with the inference time compressed
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by 0.00057 times and the model parameters compressed by 0.002 times that of the origi-
nal algorithm. Although DenseFuse and U2Fusion both have network models based on
DenseNet, their inference times can still be reduced by less than 0.4 times. U2Fusion had
the smallest reduction in inference time, at 0.305 times lower, but its network structure is
more reasonable, with less redundancy compared to other algorithm models.

Table 7. The model size and inference time of the original fusion models and their corresponding
adaptive DenseNet.

Model

Original Ours (Adaptive DenseNet) Ratio

Inference
Time (ms)

Model
Size (KB) n m Inference

Time (ms)
Model

Size (KB)
Inference

Time Ratio
Model

Size Ratio

YDTR 63 873 2 8 0.7 42 0.011 0.048
DenseFuse 3 296 2 8 0.7 42 0.233 0.14
SeAFusion 4 667 4 8 0.95 77 0.238 0.12
U2Fusion 2.2 2590 2 4 0.67 23 0.305 0.009

RFN-NEST 55 18,730 3 16 0.85 136 0.015 0.007
SwinFusion 1920 54,025 5 8 1.1 98 0.00057 0.002

4.3. Qualitative Analysis

During the qualitative analysis, the “man.jpg” image from VIFB was selected to
demonstrate the contrast and texture details of the infrared and visible light fusion images
among the six original fusion models and their corresponding distilled models. Figure 4
illustrates the test results of all models on “man.jpg”, and typical regions of the character
and ground mark were selected for a magnified comparison. The results reveal that the
original DenseNet and U2Fusion models do not highlight the character region significantly,
whereas the distilled U2Fusion model using our proposed method shows a higher overall
contrast, which is more consistent with human visual perception. In the ground mark
region, both RFN-NEST and its corresponding distilled model lack significant texture fea-
tures and fail to exhibit clear ground markings. Overall, although the defects in the original
fusion models also appear in the distilled models, our proposed knowledge distillation
adaptive DenseNet method effectively fits the original fusion models’ performance and
achieves the goals of model compression with a shorter inference time.

4.4. Quantitative Analysis

To test the effectiveness of the proposed distillation model and the efficacy of dual-
light image fusion, we evaluated the performance using six popular fusion models and
their corresponding distilled models on 21 pairs of VIFB images. A set of 17 commonly
used metrics were employed to assess the performance. Figure 5 presents the results of
the quantitative analysis using 17 metrics on the 21 pairs of images. It can be observed
that the distribution of fusion results obtained by our proposed method using the distilled
models is similar to that of the original models with respect to the corresponding evaluation
metrics. Specifically, based on the information-theory-based EN metric, the algorithm fitted
to the U2Fusion method achieves the best performance on most image pairs, indicating
that the proposed distillation method can still enrich the information in the images when
fitting the U2Fusion fusion algorithm. This is mainly because the obtained corresponding
adaptive DenseNet not only regresses to the result of the U2Fusion algorithm, but also can
obtain information from the input visible–infrared images.

Regarding the structural similarity (SSIM) and multi-scale structural similarity (MS_SSIM)
metrics, the distilled model obtained for the DenseFuse model is extremely similar to the
original model and overall performs better. On the one hand, our network structure is
similar to DenseFuse, so the fitting degree is higher. On the other hand, DenseFuse’s fusion
strategy is a conventional strategy, which is more biased towards specific scene applications.
In contrast, the knowledge distilled model we proposed has no application restrictions, and
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therefore has stronger universality. Moreover, the original RFN-NEST algorithm performed
poorly on the three SSIM metrics. Similarly, the distilled model for RFN-NEST did not
show a relatively strong performance.
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In terms of the VIF metric based on human visual perception, the original RFN-
NEST algorithm achieves the best performance, while the results obtained by our distilled
algorithm come in second place, but both outperform the other algorithms by a significant
margin. Regarding the VIF metric based on human visual perception, the original RFN-
NEST algorithm shows the best performance, followed by the distilled algorithm we
propose, both of which show significant differences from the other algorithms. The quality
of the input image pairs also has a significant impact on the fusion results. For example, for



Electronics 2023, 12, 2773 15 of 21

image pair number 17, the RFN-NEST algorithm obtains a very low score in the MS_SSIM
metric, which directly leads to poor performance of the corresponding distilled adaptive
DenseNet on image pair number 17.
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Table 8 presents the average scores for each model corresponding to each metric.
According to Table 8, the following conclusions can be obtained. Firstly, the proposed
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knowledge distillation method effectively fits different dual-light fusion models based on
different network structures, with similar or even better performance on various evaluation
metrics compared to the original models. For example, for the YDTR algorithm, the distilled
model achieves an SSIM value of 0.915, which exceeds the original model’s 0.879. This is
because the distilled model’s network structure is based on DenseNet, which can maximize
the retention of features extracted from dual-light images at each convolutional layer.
Although the knowledge distillation process is aimed at fitting the original model, the
adaptive DenseNet distilled after the process is better at feature extraction and retention for
fusion images, resulting in a higher SSIM value than the original YDTR model. Secondly,
among the 17 evaluation metrics, the original six fusion models achieved 10 first places,
8 second places, and 7 third places, while our proposed method achieved 7 first places, 9
second places, and 10 third places. Specifically, the distilled fusion model performs poorly
in the Nabf metric, and it is found that all other original models exhibited the same problem.
Therefore, the corresponding distilled model’s poor performance in this metric is mainly
due to the original model’s low performance. In contrast, in the three image-feature-based
metrics, including SF, SD, and AG, the distilled models proposed in this study ranked first.
This is because the adaptive DenseNet network structure obtained by our proposed method
can better reflect the shallow image features and original pixel features in the fusion image
compared to other model architectures, resulting in a better performance in contrast and
texture features of the image.

Table 8. The average values for each model corresponding to each metric [62]. In the table, the
number in red with an asterisk (*) indicates that it ranks first in the index, the bold black number
indicates that it ranks second, and the bold blue number indicates that it ranks third.

Information Theory

FMI_pixel FMI_w FMI_dct Nabf EN PSNR MI Qabf

YDTR_ori 0.893 0.334 0.322 0.062 6.633 63.37 3.126 0.420
DenseFuse_ori 0.901 * 0.381 0.399 * 0.009 * 6.680 64.53 * 3.214 0.396
SeAFusion_ori 0.897 0.356 0.293 0.184 6.974 61.64 3.172 0.560
U2Fusion_ori 0.885 0.187 0.143 0.044 6.578 64.35 2.763 0.140

RFN-NEST_ori 0.896 0.333 0.231 0.081 6.606 60.58 4.602 * 0.277
SwinFusion_ori 0.900 0.394 * 0.395 0.139 6.921 61.81 3.616 0.593 *

YDTR_our 0.891 0.326 0.316 0.110 6.923 63.41 2.971 0.479
DenseFuse_our 0.895 0.358 0.351 0.088 7.032 63.82 3.097 0.506
SeAFusion_our 0.895 0.369 0.367 0.144 6.844 61.34 3.426 0.532
U2Fusion_our 0.885 0.208 0.135 0.107 7.269 * 62.88 2.857 0.210

RFN-NEST_our 0.895 0.284 0.190 0.101 6.734 60.00 3.836 0.271
SwinFusion_our 0.899 0.383 0.376 0.187 7.023 62.02 3.472 0.575

Structural Similarity Image Features Human Visual
Perception Correlation

SSIM MS_SSIM MSE SF SD AG VIF CC SCD

YDTR_ori 0.879 0.855 0.035 0.053 9.535 3.854 0.747 0.607 1.294
DenseFuse_ori 0.906 0.880 0.026 * 0.039 9.452 3.237 0.746 0.637 * 1.300
SeAFusion_ori 0.925 0.889 0.051 0.069 9.668 5.604 0.850 0.587 1.446
U2Fusion_ori 0.733 0.786 0.027 0.018 9.311 1.839 0.661 0.608 1.169

RFN-NEST_ori 0.666 0.567 0.069 0.025 9.375 2.416 1.223 * 0.484 0.566
SwinFusion_ori 0.938 0.899 0.051 0.067 9.559 5.373 0.874 0.585 1.455

YDTR_our 0.915 0.903 0.034 0.057 9.591 4.514 0.773 0.614 1.515
DenseFuse_our 0.938 * 0.925 * 0.030 0.053 9.805 4.335 0.823 0.636 1.530
SeAFusion_our 0.909 0.867 0.054 0.067 9.554 5.133 0.867 0.586 1.412
U2Fusion_our 0.778 0.873 0.036 0.028 9.984 * 2.954 0.796 0.607 1.539 *

RFN-NEST_our 0.658 0.539 0.076 0.027 9.600 2.662 1.187 0.443 0.267
SwinFusion_our 0.932 0.898 0.049 0.071 * 9.637 5.678 * 0.880 0.585 1.476
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5. Real-World Applications and Results Analysis

This section presents the practical implementation and analysis of our algorithm
deployed on mobile platforms. In order to demonstrate the efficacy of our approach, we
design and implement a real-time fusion detection system as per the framework illustrated
in Figure 6. The system utilizes a DJI M300 RTK unmanned aerial vehicle as the airborne
payload platform and a Zenmuse H20T as the visible light and infrared sensor payload.
In our real-time fusion and detection system scheme A, we employes an NVIDIA Jetson
Xavier NX as the computing platform and directly installed it on the drone to perform
data acquisition, visible light and infrared image fusion, and target detection of the fused
image. Subsequently, the fusion detection results were transmitted to a laptop for display.
In contrast, in the real-time fusion and detection system scheme B, a laptop functions as the
computing platform. The laptop reads the required visible and infrared images from the
DJ remote control and conducts visible and infrared image fusion, followed by detecting
targets in the fused images. The fusion detection results are displayed simultaneously.
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Figure 6. The practical implementation and framework of our algorithm deployed on mobile platforms.

In Figure 7a, the real-life application setup of the deployment experiment is depicted.
The left image displays the unmanned aerial platform with a payload section, while the
right image showcases the ground dual light image data processing section. Specifically,
the Zenmuse H20T, with infrared images on the left and visible light images on the right
in each frame, can generate a 30 fps and 1080 p video output. The laptop used in this
experiment features an Intel Core i7-12800HX CPU and an NVIDIA GeForce RTX 3070Ti
Laptop GPU with 8 GB memory. Moreover, the NVIDIA Jetson Xavier NX comprises a
six-core NVIDIA Carmel ARM processor and an NVIDIA Volta architecture graphics card
with 384 NVIDIA CUDA cores. Figure 7b displays the outcomes of the real-time fusion
detection algorithm utilizing the adaptive DenseNet fitting SeAFusion. For the detection
algorithm, yolov5s was utilized as the network structure adopting YOLOv5. Notably,
our algorithm produces comparable results to the original SeAFusion. The fusion results
demonstrate that individuals can be distinctly differentiated and the detection network can
correctly identify targets in the fused image.
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light fusion and detection.

Table 9 provides an analysis of time consumption for two real-time fusion systems.
The original fusion algorithm consumed more time than the image preprocessing time, and
the time consumed relative to detection was also significant and cannot be ignored. This
indicates that the original algorithm may not be efficient enough for practical applications.
In contrast, our proposed fusion process consumes a significantly lower proportion of time
compared to the detection process, accounting for less than one-sixth of the detection time.
Following a multi-process optimization, scheme A yields a frame rate of 10.1 fps, while
scheme B approaches the upper limit of the original video’s frame rate, achieving 28 fps.
Therefore, our algorithm may be more suitable for practical applications where efficiency is
a concern.

Table 9. Analysis of time consumption for two real-time fusion systems.

Computing
Platform

Fusion
Module

Average Time Consumption (ms)

Preprocessing Fusion Detection NMS Results
Presentation

Jetson
Xavier NX

Original
23.4

29.4
75.8 14.4 92.0Ours 7.6

Notebook
PC

Original
3.5

6.6
9.6 2.0 17.3Ours 1.6

6. Conclusions

This paper presents a novel method for infrared and visible image fusion that employs
adaptive DenseNet and knowledge distillation to compress six existing dual-light image
fusion models based on different algorithms, including DenseFuse, U2Fusion, RFN-NEST,
YDTR, SwinFusion, and SeAFusion. The proposed method involves utilizing the designed
adaptive DenseNet to learn from pre-existing fusion models and implementing the fusion
of visible and infrared images as a solution to the neural network fitting problem by using
the hyperparameters of the model’s structure, including the inference time and dense layer
number. Then, the best adaptive DenseNet networks are generated corresponding to the
respective existing fusion models. In addition, we have carefully selected a number of
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dual-light image pairs in public datasets for alignment and markinge and produced a novel
representative infrared and visible light dataset in multiple scenes to verify the performance
of various fusion models after knowledge distillation by 17 popular evaluation metrics
of dual-light fusion. The proposed method has undergone qualitative and quantitative
experimental evaluations, which have demonstrated its effectiveness in matching the
performance of the original fusion models and achieving model compression with a shorter
inference time. Furthermore, the deployment of the adaptive DenseNet on edge computing
devices has exhibited the proposed method’s efficacy in real-world applications. Despite
the exceptional outcomes, our approach presents potential avenues for further research
and enhancement. It may be imperative to explore the influence of other hyperparameters
on the knowledge distillation performance of fusion models.
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