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Abstract: Due to rapid development in information technology in both hardware and software,
deep neural networks for regression have become widely used in many fields. The optimization of
deep neural networks for regression (DNNR), including selections of data preprocessing, network
architectures, optimizers, and hyperparameters, greatly influence the performance of regression tasks.
Thus, this study aimed to collect and analyze the recent literature surrounding DNNR from the aspect
of optimization. In addition, various platforms used for conducting DNNR models were investigated.
This study has a number of contributions. First, it provides sections for the optimization of DNNR
models. Then, elements of the optimization of each section are listed and analyzed. Furthermore, this
study delivers insights and critical issues related to DNNR optimization. Optimizing elements of
sections simultaneously instead of individually or sequentially could improve the performance of
DNNR models. Finally, possible and potential directions for future study are provided.

Keywords: optimization; deep neural networks; regression

1. Introduction

In recent years, owing to the rapid advancements in computing power, machine
learning and deep learning have gained widespread attention. In particular, given a much
stronger capability of learning essential features from big data, deep learning models cannot
only achieve better performance than traditional machine learning models but can also
be utilized to cope with more complex problems, including clustering, classification, and
regression [1,2].

Deep neural networks for regression (DNNR) have been broadly employed in various
fields, such as climate [3], agricultural planting [4], and renewable energy forecasting [5].
Several studies have revealed that adjusting the models’ hyperparameters through algo-
rithms can achieve better performance. Xiong et al. [6] proposed an ensemble deep learning
model that combined the ant colony optimization (ACO) strategy and deep belief networks
to solve the problem of landslide susceptibility mapping. The numerical results illustrated
that the ensemble model could provide better performance due to the use of ACO for
optimizing multiple parameters simultaneously. Liu et al. [7] applied LSTM networks to
forecast subway passenger flows in China. Two months of automated fare collection data
from Beijing Metro’s Xizhimen Station and particle swarm optimization were used to train
and optimize the forecasting models. Compared with the support vector regression model,
the proposed optimized-parameter model could achieve better performance. Gao et al. [8]
designed LSTM and GRU models to forecast stock prices. Least absolute shrinkage and
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selection operator (LASSO) and principal component analysis (PCA) methods were, respec-
tively, employed to perform data preprocessing of dimension reduction. The experimental
results indicated that the proposed model could obtain satisfactory performance. Parameter
tuning plays a critical role in achieving better performance and shortening the computing
time of DNNR models [9].

Optimization is a crucial issue of DNNR models, as it directly influences their perfor-
mance and computing time. Some studies have dedicated considerable efforts to devising
approaches for optimizing DNNR models. Dong et al. [10] depicted a number of chal-
lenges related to DNNR models, including optimizing hyperparameters and preventing
overfitting. The proper determination of learning and dropout rates can improve the
performance of DNNR models. How to reduce the training time caused by constantly
adjusting parameters is a critical issue. However, resolutions for this issue have not been
provided. Additionally, studies have indicated that the optimization of DNNR models is
a non-deterministic polynomial-time hardness problem [10,11]. Wang et al. [5] reviewed
the optimization of DNNR models in renewable energy forecasting. The sections of op-
timization included data preprocessing, architectures, and hyperparameters. This study
pointed out that data preprocessing can decrease the interference when training DNNR
models and therefore improve the performance of the regression. In addition, the design of
architectures and the setting of hyperparameters can effectively prevent the value of loss
function from falling into local minima. Trial-and-error and metaheuristics were employed
to optimize three sections of DNNR models. Compared with Dong et al. [10], this study
presented various metaheuristics to optimize these parameters but there was no further
explanation of how to implement them. Abd Elaziz et al. [11] investigated metaheuristics
including swarm intelligence, evolutionary computing, natural phenomena, and human
inspiration for optimizing DNNR models. Metaheuristics introduced in this study were
used for optimizing various network models. In particular, the various combinations of
hyperparameters directly affect the performance of DNNR models. Akay et al. [12] pro-
vided an overview of DNNR optimization problems, including architecture optimization,
hyperparameter optimization, training, and feature selection. This study illustrated that
simplifying the network architectures and data sizes are feasible alternatives to reduce the
training time. In addition, this investigation explored the use of metaheuristics in DNNR
models and pointed out future directions for their integration. Zhan et al. [13] provided
more explicit discussions and explanations of the hyperparameters for each training stage
of a DNNR model, namely, data preprocessing, model searches, training, and evaluation.
This study indicated that combining optimization sections is more suitable for optimizing
DNNR models than only optimizing individual sections.

In the previous survey literature collected by this study, the limited literature discussed
investigating the optimization of DNNR models in terms of three sections [5,13] and
platforms [10]. Additionally, the impact of different platforms used for training the DNNR
models has received limited attention in the literature. Moreover, the selection of optimizers
has a significant influence on computational time. Therefore, the research gap arises in the
following aspects. First, the optimization of four sections of DNNR models and platforms
for developing DNNR models were investigated in this study. This study aims to depict
the combinatorial optimization and various characteristics of platforms when developing
DNNR models. Secondly, an analysis of the relationship between platforms and optimizers
is presented. Lastly, to achieve optimal performance, this study delved into parameters in
each optimization section and statistically providing appropriate settings. Table 1 illustrates
a comparative analysis between this investigation and relevant survey studies, highlighting
the specific optimization sections under scrutiny.

In this investigation, four deep neural networks for regression models (Shickel et al. [14]),
namely, CNN, LSTM, GRU, and DBN, were employed to explore optimization tasks in
DNNR. This study was conducted using the keywords “deep neural networks”, “regres-
sion”, and “optimization” to first search the literature published between 2019 and 2023.
Then, the collected articles were organized based on the metadata of parameters used in
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four optimization sections. The third step involved an in-depth analysis of the impact and
challenges of parameters for model optimization, along with the optimization algorithms
employed. Finally, the findings and future research directions were derived from the
collected literature. Figure 1 presents the flowchart and four optimization sections for the
DNNR models investigated in this study. The selection of data preprocessing procedures
is dependent on data patterns and is interactively related to the other three optimization
sections, namely, the architectures, optimizers, and hyperparameters of DNNR models.
Data used for the DNNR models were divided into training data and testing data. The
training data were used to model the DNNR, and the testing data were employed to ex-
amine the performance of the DNNR models. Then, optimization methods were used
to determine the parameters of the architectures, optimizers, and hyperparameters for
training the DNNR models. Well-trained DNNR models were obtained when the stop
criteria were reached. Finally, the testing data were used to evaluate the performance of the
DNNR models.

Table 1. A comparison with the related survey literature.

Literature Platforms Sections of Optimization

This study

1. TensorFlow with Keras
2. PyTorch
3. Caffe
4. Theano with Keras
5. Matlab

1. Data preprocessing
2. Architectures
3. Optimizers
4. Hyperparameters

[10] TensorFlow Hyperparameters

[5,13] Unavailable
1. Data preprocessing
2. Architectures
3. Hyperparameters

[11,12] Unavailable 1. Architectures
2. Hyperparameters
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Figure 1. Optimization of deep neural networks for regression.

The rest of this study is organized as follows. Section 2 depicts four sections of
optimization of the DNNR models. Section 3 illustrates the optimization of the DNNR
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models, systematically and globally. Finally, conclusions and future work are addressed
in Section 4.

2. Sections of Optimization of Deep Neural Networks for Regression

The performance and accuracy of DNNR models are highly influenced by the selec-
tion and combinations of parameters, such as data preprocessing, architectures, hyper-
parameters, and optimizers. Therefore, to improve the performance of DNNR models,
combinatorically optimizing four sections at the same time is a challenging issue worthy
of further investigation. Table 2 lists the metadata of parameters and data types based on
four sections.

Table 2. Metadata of parameters.

Sections Parameters Data Types

Architectures

Number of layers Integer
Number of nodes Integer

Number of kernel sizes Integer
Number of pooling Integer

Optimizers Optimizers
Categories

(Adadelta, Adagrad, Adam, Adamx, Ftrl, Nadam, RMSprop, SGD,
SparseAdam, Adamax, ASGD, LBFGS, NAdam, RAdam, Rprop, Nesterov)

Hyperparameters

Learning rates Real
Number of epochs Integer

Batch sizes Integer
Iterations Integer

Dropout rates Real

Data preprocessing Tasks
Categories

(missing values, dimensionality reduction, removing outliers, feature
selection, decomposition, normalization)

2.1. Data Preprocessing

Data preprocessing is highly related to the effectiveness and efficiency of DNNR
models and thus is an essential factor in searching for proper hyperparameters for DNNR
models [5,15]. Table 3 lists six data preprocessing methods commonly used in recent studies.
It can be observed that normalization is one of the most frequently used data preprocessing
methods for DNNR models.

Table 3. A list of data preprocessing methods.

Tasks of Data Preprocessing Methods

Missing values Supplementing average value [16,17], linear interpolation [17,18], KNN [19,20]

Dimensionality reduction PCA [8], pooling layer [21], t-SNE [22], SPCA [23]

Removing outliers Pauta criterion [18], EWMA [24]

Feature selection PSO [1], LASSO [8,25], ASO [26], GA [27], MI [28], GRA [29], PCC [30], CCA [31]

Decomposition EMD [32], EEMD [33], CEEMDAN [19,27,34–38], ICEEMDAN [39], SSA [40,41],
VMD [42], SVMD [43]

Normalization [6,17,20,27,30,31,34,42,44–55]

Note: KNN = k-nearest neighbor algorithm; PCA = principal component analysis; t-SNE = t-distributed stochastic
neighbor embedding; SPCA = sparse principal component analysis; EWMA = exponentially weighted mov-
ing average; PSO = particle swarm optimization; LASSO = least absolute shrinkage and selection operator;
ASO = atom search optimization; GA = genetic algorithm; MI = mutual-information-based; GRA = grey relational
analysis; PCC = Pearson correlation coefficient; CCA = correlation coefficient analysis; EMD = empirical mode
decomposition; EEMD = ensemble empirical mode decomposition; CEEMDAN = complementary ensemble
empirical mode decomposition with adaptive noise; ICEEMDAN = improved complementary ensemble em-
pirical mode decomposition with adaptive noise; SSA = singular spectrum analysis; VMD = variational mode
decomposition; SVMD = successive variational mode decomposition.
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Before data can be used for training, it is necessary to ensure that no values are missing
to reduce model bias or avoid presenting misleading analysis results. Many methods
have been developed to cope with missing values, include supplementing the average
value [16,17], linear interpolation [17,18], and machine learning methods [19,20]. Two meth-
ods, linear interpolation and average values, were used in the study by Tsokov et al. [17].
Linear interpolation and the average value are used when the gap is small and huge,
respectively. The gap is mainly based on empirical values. Different from Tsokov et al. [17],
Shao et al. [16,19] utilized the KNN method to obtain missing values by calculating the
average value of adjacent data, which is not necessary to consider the gap of missing values.

High-dimensional data can easily cause the model to become diverse and increases
the modeling time. Consequently, data dimension reduction is necessary. Dimensionality
reduction only transforms features into a lower dimension, which can help to identify
the features that should be used in the modeling and avoid interfering with the model’s
failure to converge. The pooling layer of the convolutional neural network can reduce the
dimensionality of the data [21]. Other methods, including principal component analysis [8],
t-distributed stochastic neighbor embedding [22], and sparse principal component analy-
sis [23], can also be used to reduce dimensions. Feature selection is similar to dimensionality
reduction, but without changing the data. Zhao et al. [25] used the least absolute shrinkage
and selection operator method to select important variables for modeling, which increased
the modeling efficiency and performance.

Outliers are generally removed to exclude abnormal or anomalous data [18,24] and
improve data quality. In the study of Cheng et al. [24], the exponentially weighted mov-
ing average was employed to smooth and remove noise data. The experimental results
showed that the proposed models could perform better than without removing outliers.
Decomposition methods are used to process datasets, such as network traffic datasets [19],
solar datasets [34], and wind datasets [39], to avoid noise in model distortion. Li et al. [32]
compared the performance of DNNR models using empirical mode decomposition and
those without it. The experimental results proved that models with decomposition methods
have better accuracy.

2.2. Network Architecture Selection

The architecture of a DNNR model contains an input layer, an output layer, and hidden
layers. Each layer includes many nodes. The optimization of the architecture is based on
determining the number of layers and nodes of the DNNR model [56]. Table 4 lists the
methods, DNNR models, and parameters of the architecture for optimization. Network
architecture selection can be divided into optimal tasks and trial-and-error methods. Most
studies fix the number of layers and only optimize the number of nodes; few investigations
have considered both the number of layers and nodes at the same time.

It is difficult for DNNR models to generate proper parameters within an acceptable
training period when the data amount is enormous [77]; however, a number of optimal
methods have been employed to solve this problem, including grid searches, Bayesian
methods, and metaheuristics. Sen et al. [57] used a grid search to find the number of nodes
in each layer and the number of layers in CNN and LSTM networks when designing the
network architecture. Yang and Liu [35] used an improved whale optimization algorithm to
optimize the number of layers and nodes in the GRU algorithm for water quality prediction.
The results showed that the proposed model could outperform the original GRU model.
Chen et al. [55] used the particle swarm optimization algorithm to simultaneously search
for the number of hidden layers and nodes. The experimental results pointed out that the
optimized LSTM model could perform better than the standard LSTM model.
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Table 4. Architecture selection for DNNR models in terms of optimization methods.

Models CNN LSTM/GRU/DBN

Methods
Parameters Number of Layers, Kernel

Sizes, and Pooling Number of Kernel Sizes Number of Layers
and Nodes Number of Nodes Number of Layers

Grid search [57,58] [34] [30]

Bayesian [59] [2,42,53,60,61]

GA [17]

IBFO [46]

ABC [62]

SOA [33,43]

IWOA [35] [38,63,64]

IGOA [37]

SCA [65]

GWO [66] [67]

DEA [68]

PSO/IPSO
SPSO/SAPSO [69] [21] [55] [7,19,31,49,52,70,71] [72]

tSBO [25]

SSA [73] [74]

FWA [75]

BER [76]

Trial-and-error [77] [1,18,48,78–80] [27,81,82]

Note: GA = genetic algorithm; IBFO = intelligent bacterial foraging optimization; ABC = artificial bee colony;
SOA = seeker optimization algorithm; IWOA = improved whale optimization algorithm; IGOA = improved
grasshopper optimization algorithm; SCA = the sine cosine algorithm; GWO = gray wolf optimizer; DEA = differ-
ential evolution algorithm; PSO = particle swarm optimization; IPSO = improved particle swarm optimization;
SPSO = selective particle swarm optimization; SAPSO = simulated annealing particle swarm optimization;
tSBO = T-distribution stain bower bird optimization algorithms; SSA = sparrow search algorithm; FWA = fire-
works algorithm; BER = Al-Biruni Earth radius.

When the trial-and-error technique is used to select suitable network architectures,
more time is generally required for the search. Many researchers have determined the
network layer architecture based on their experience and then used optimization algorithms
to determine the number of nodes of each hidden layer [18,78–80]. Ghimire et al. [1]
indicated that an insufficient number of hidden layers could cause the DBN to fail to obtain
enough feature space and cause the model to be under-fitted, but that having too many
hidden layers could lead to overfitting. Song et al. [30] used a fixed two-layer GRU and
defined the initial learning rates, number of hidden nodes, step sizes, batch sizes, and
iterations, by experience. Gao et al. [48] used GRU to study short-term runoff predictions,
and used the trial-and-error method to determine the number of layers. This study reported
that a GRU with a single hidden layer with 20 nodes could outperform a GRU with many
hidden layers. Trial-and-error methods are not efficient and effective ways of optimizing
DNNR models due to the impossibility of enumerating all combinations of parameters.

Determining the network architecture by trial-and-error is a time-consuming task that
cannot easily reach an optimal or near-optimal combination of layers and nodes, and it
is nearly impossible to enumerate all of the combinations. Therefore, most studies set
the number of network layers first and then use optimization algorithms to search the
appropriate number of nodes for each layer.

Uzair and Jamil [83] showed that the use of three hidden layers can be used with less
training, and higher accuracy can be achieved in an acceptable time. When the number
of hidden layers is more than three, the training time increases dramatically, but only a
limited improvement in accuracy is obtained. Therefore, for DNNR models, three hidden
layers are recommended for the initial setting value, and after which, optimization methods
should be used to select the number of nodes for each hidden layer.
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2.3. Selection of Optimizers

Optimizers represent a crucial parameter within a neural network, as they can adjust
weights and biases continuously to achieve the least value in the loss function. Table 5
shows statistics about the optimizers used in the related literature. The Adam optimizer,
a stochastic gradient descent method derived from RMSProp [48,84], is extensively em-
ployed in most studies, as illustrated in Figure 2. Moreover, the Adam algorithm has the
capability to compute an adaptive learning rate for each parameter, enabling the model to
accelerate convergence and minimize fluctuations. The high computational efficiency and
low memory storage have positioned the Adam algorithm as one of the most frequently
and popularly utilized optimizers [33,51,85,86].

Table 5. Optimizers.

DNNR
Models Adam (Admax) RMSProp Unavailable

CNN [17,26,34,40,41,57,58,62,77,85,87–89] [25,39,59,66,69,90,91]

LSTM [2,7,19,31,52–54,60,61,63,68,71,75,81,86,92–94] [8,23,37,38,43,55,65,67,74,76,95–97]

GRU [18,24,30,33,46,49–51,78–80] [48,84] [36,98–100]

DBN [6,20,101] [1,28,32,42,44,45,64,70,72,73,82,102–105]

Electronics 2023, 12, x FOR PEER REVIEW 8 of 19 
 

 

low memory storage have positioned the Adam algorithm as one of the most frequently 
and popularly utilized optimizers [33,51,85,86]. 

Table 5. Optimizers. 

DNNR  
Models Adam (Admax) RMSProp Unavailable 

CNN 
[17,26,34,40,41,57,58,62,77,85,8
7–89]  [25,39,59,66,69,90,91] 

LSTM 
[2,7,19,31,52–
54,60,61,63,68,71,75,81,86,92–
94] 

 [8,23,37,38,43,55,65,67,74,7
6,95–97] 

GRU [18,24,30,33,46,49–51,78–80] [48,84] [36,98–100] 

DBN [6,20,101]  
[1,28,32,42,44,45,64,70,72,7
3,82,102–105] 

 
Figure 2. Optimizers used in DNNR models. 

As shown in Figure 3, most studies used the TensorFlow platform to develop their 
work. TensorFlow provides a comprehensive development ecosystem, which not only in-
cludes graphical debugging tools but also offers an environment for transforming re-
search projects into commercial applications. Although PyTorch owns more options for 
optimizers, the user-friendliness and extensive online resources make TensorFlow more 
commonly used for developing projects. The optimizers provided by deep learning plat-
forms are listed in Table 6. In the current TensorFlow platform, eight standard optimizer 
algorithms are provided, and among which, Adam is the most commonly used optimizer. 

Figure 2. Optimizers used in DNNR models.

As shown in Figure 3, most studies used the TensorFlow platform to develop their
work. TensorFlow provides a comprehensive development ecosystem, which not only
includes graphical debugging tools but also offers an environment for transforming research
projects into commercial applications. Although PyTorch owns more options for optimizers,
the user-friendliness and extensive online resources make TensorFlow more commonly
used for developing projects. The optimizers provided by deep learning platforms are
listed in Table 6. In the current TensorFlow platform, eight standard optimizer algorithms
are provided, and among which, Adam is the most commonly used optimizer.
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Table 6. Optimizers used for DNNR platforms.

Optimizers
Deep Learning Platforms

Caffe Matlab PyTorch TensorFlow
with Keras

Theano
with Keras

Adadelta X X X X
Adagrad X X X X

Adam X X X X X
Adamx X X X

Ftrl X X
Nadam X X

RMSprop X X X X X
SGD X X X X X

SparseAdam X
Adamax X
ASGD X
LBFGS X

NAdam X
RAdam X
Rprop X

Nesterov X
Note: X = The platform contains the optimizer.

2.4. Hyperparameter Tuning

The fine-tuning of hyperparameters is essential for training a model and is closely
related to the model’s accuracy. Fine-tuning the learning rate, batch size, and iteration can
prevent DNNR models from falling into the local optimum while reducing the modeling
time and cost [10].

In the related research on network models, except for the unique hyperparameters of
individual network models, there are five common hyperparameters, namely, the learning
rate, epochs, batch size, iteration, and dropout rate. Among them, the learning rate is an
essential parameter in most studies. It is one of the parameters of the optimizer, which
is used to determine the speed of finding the optimal weight [58]. If the learning rate is
too low, the modeling time will be longer; if the learning rate is too high, the model will
fail to converge [63]. Wang et al. [44] used DBN to predict the survival of cancer patients,
and the results showed that the learning rate had a high impact on the model’s accuracy.
Yalçın et al. [62] mentioned that setting a suitable learning rate can avoid overfitting.
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In addition, other commonly used parameters are epoch, batch size, and iteration.
Yu et al. [78] highlighted that the iteration affects whether the model becomes overtrained.
The batch size is used in gradient descent to control the number of training samples used
to update the internal parameters of a network model. Wang et al. [44] showed that
the batch size significantly impacts the accuracy in the DBN model. Iteration and epoch
are parameters related to batch size optimization. The equation is Iteration = (Dataset
size/Batch size) × Epoch. These parameters are related to the amount of training data
and will affect the model’s accuracy and training time. Table 7 shows the commonly used
methods for searching the best hyperparameters.

Table 7. Hyperparameters for optimization.

Methods
Hyperparameters

Learning Rates Number of Epochs Batch Sizes Iterations Dropout
Rates

M
et

ah
eu

ri
st

ic
s

PSO/IPSO/SPSO/SAPSO/PPSO [7,21,49,70,72,94,102] [7,49,102] [7,44,49,52,55,71,102] [82,102]

Hyper-Opt [26] [26]

SCA [65]

IGOA [37]

SOA/MTSO [43] [33] [33] [43]

GWO [67] [66]

BER [76]

WOA/IWOA [35,63,64] [63] [35] [35,38,64] [63]

FWA [75] [75] [75]

IBFO [46] [46]

ABC [62]

GA [17]

ACO [6] [6] [6]

SSA [74] [73,74]

O
th

er
s Grid search [30] [30] [30] [34]

Bayesian [42,59,89,96,101] [2,43,53,61,101] [29,53,61,101] [42] [61,77]

Unavailable [1,8,23,27,28,84,85,92] [1,8,28,78,84,85] [1,23,28,79] [1,18,27] [42]

Note: PSO = particle swarm optimization; IPSO = improved particle swarm optimization; SPSO = selective particle
swarm optimization; SAPSO = simulated annealing particle swarm optimization; PPSO = PCA-based particle
swarm optimization; SCA = the sine cosine algorithm; IGOA = improved grasshopper optimization algorithm;
SOA = seeker optimization algorithm; MTSO = modified tuna swarm optimization; GWO = gray wolf optimizer;
BER = Al-Biruni Earth radius; WOA = whale optimization algorithm; IWOA = improved whale optimization
algorithm; FWA = fireworks algorithm; IBFO = improved bacterial foraging optimization; ABC = artificial bee
colony; GA = genetic algorithm; ACO = ant colony optimization; SSA = sparrow search algorithm.

Figure 4 divides the algorithms for finding the optimal hyperparameters into four types.
Among the studies analyzed in this research, 31 were found to use metaheuristic algorithms;
another 12 papers indicated the hyperparameters that were used but did not specify which
method they used to search for the best hyperparameters.

How to determine the initial search values of the hyperparameters is debatable. Most
studies apply different learning rate values in the Adam optimizer, in spite of the default
value in most of the popular platforms being 0.001. As a result, how to determine the initial
learning rate is a critical task. Smith et al. [106] proposed using a learning rate range test to
find the best learning rate. In the beginning, the minimal value of the initial rate was set.
After each iteration was performed, the learning rate continuously changed. When the best
model performance was achieved, the searching task could stop, and the best learning rate
could be generated.
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Parameter adjustments aim to achieve the best accuracy and reduce the time and cost
of model training. As shown in Figure 5, this study statistically analyzed hyperparameter
optimization, and the results were consistent with the conclusion of Wang et al. [44], who
found that the learning rate and batch size were the two most essential hyperparameters.
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3. The Systemic and Global Optimization of DNNR Models

When training the DNNR model, the network architectures, optimizers, and hyper-
parameters will affect the prediction accuracy. However, it is unrealistic to consider all
hyperparameters in the modeling process, because it will take too much model training
time. Concurrently optimizing four sections could provide suitable DNNR models with
higher regression accuracy. Table 8 lists the sections of optimization in terms of the architec-
tures, optimizers, hyperparameters, and data preprocessing. It can be observed that only
1 out of 74 pieces of literature conducted four sections of optimization of DNNR models [31].
Furthermore, according to a number of studies [9,17,26,40,56,60,61,76,78,81,84,98–100],
Figure 6 presents an overall optimization procedure for DNNR models.
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Table 8. Sections of optimization.

Papers Architectures Optimizers Hyperparameters Data
Preprocessing

[33] X X X X
[17,30,34,35,37,38,42,43,46,53] X X X

[2,59,61–67] X X
[48,51] X X

[6,21,26,29,44,49,52,55] X X
[57,58,60,68] X

[84–86] X
[7,70–77,82,89,94,96,101,102] X

[1,8,16,18–20,22–25,27,28,31,32,36,39–41,45,47,50,54] X

Note: X = The paper contains the optimization section.
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Data preprocessing is an essential step before data can be employed to model a DNNR.
The selection of the data preprocessing procedures is mostly dependent on the data type
and is related to the succeeding three sections of optimization.

Before optimizing the section parameters of DNNR models, the search ranges have to
be defined. Then, due to the different types of section parameters, representations of the
parameters must be integrated. The parameters in the presented optimization of a DNNR
model can be represented by three types: real numbers, integers, and categories, as depicted
in Table 9. The variables of the architectures, such as the number of hidden layers and
nodes for each layer, are expressed in integers. Some hyperparameters, such as the number
of epochs, batch sizes, and iterations, are in a form of integers. The categorical types refer
to the types of optimizers and data preprocessing. The form of real numbers includes
hyperparameters, such as learning rates and dropout rates. Figure 6 presents three methods
used by DNNR models for optimization: metaheuristics, the Bayesian algorithm, and
the grid search algorithm. The three algorithms operate according to similar logic. First,
initial values are assigned randomly according to the ranges of the parameters, and new
parameter values are calculated for each iteration. Before the stop criteria are reached,
they are updated and tentative parameters are generated. Then, a training produce is
performed for the DNNR model, and training errors are generated. When the stop criteria
are reached, the finalized parameters for the DNNR modes are provided. Then, the training
of the DNNR model is conducted to generate well-trained DNNR models. Finally, testing
data are employed to measure the performance of the DNNR models. Two major issues
related to the trade-off between the computational burden and the optimization of DNNR
models (the number of parameters for optimization in sections and the search ranges of
the parameters) are highlighted in Figure 6. The use of more parameters and larger search
ranges can lead to better performance of the DNNR model; however, the computation time
could increase unacceptably.

Table 9. Variable types for optimization.

Sections of Optimization Types of Variables

Architectures Integers
Optimizers Categories

Hyperparameters Integers, real numbers
Data preprocessing Categories

4. Conclusions

It has been pointed out that the optimization of deep neural networks plays a crucial
role in improving their performance [42,45,49,59,64,88,102,103]. This study investigated the
preprocessing, network architectures, optimizers, and hyperparameters of deep neural net-
works for regression. The interactions among sections of optimization can lead to different
regression accuracies and greatly influence forecasting performance. Thus, the aim of this
investigation was to explore the optimization of DNNR models from the aspects of prepro-
cessing, network architectures, optimizers, and hyperparameters. Furthermore, this study
investigated the optimization of various sections both individually and simultaneously.

Studies [10,11] pointed out that optimizing the DNNR model is a non-deterministic
polynomial-time hardness problem. The trade-off between computational burden and
optimization has always been a crucial and challenging issue in developing deep learning
models [107,108], especially optimizing four sections simultaneously in this study. The
appropriate filtering strategy could be provided to balance the computation burden and
optimization performance. First, proper values for parameters could be obtained and
set from the literature. For example, some data preprocessing procedures are suitable
for certain types of data patterns. Additionally, three hidden layers are enough for most
problems of DNNR architectures [83]. Adam and RMSprop are often employed when
selecting optimizers [51]. The value of 0.001 is recommended to be the initial learning
rate [8,62]. The second strategy is to limit the appropriate searching ranges for parameters
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from past studies. For example, the number of hidden nodes are mostly between 1 and
100 [33]. The range of the learning rate is set to be smaller than one and larger than zero [21].
However, due to the increased computational burden when performing all optimization
tasks at the same time, proper filtered sections of optimization to strike a balance between
computation efforts and global optimization are possibly another method to motivate
future study.

The findings of this study can be illustrated as follows. First, the selection of data
preprocessing procedures mostly depends on the data type, but appropriate preprocessing
methods can generate more accurate regression results. Second, metaheuristics are the most
popular and commonly used method for the selection of architectures and the tuning of
hyperparameters. Third, the TensorFlow platform and the Adam or Adamx optimizer are
usually employed when utilizing DNNR models. Finally, the integration of variable types
is essential for optimizing DNNR models. Furthermore, although optimizing four sections
simultaneously is a challenging task with a trade-off of computation effort, it is a critical
issue to improve the overall regression performance of DNNR models. Some probable
future research directions of the optimization of deep neural networks for regression are
described as follows. To obtain accurate regression results in an acceptable training time,
the setting of proper initial values and searching ranges for simultaneously optimizing
four sections of DNNR is a direction worthy of further exploration.
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