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Abstract: Skeleton-based human action recognition based on Neural Architecture Search (NAS.)
adopts a one-shot NAS strategy. It improves the speed of evaluating candidate models in the
search space through weight sharing, which has attracted significant attention. However, directly
applying the one-shot NAS method for skeleton recognition requires training a super-net with a large
search space that traverses various combinations of model parameters, which often leads to overly
large network models and high computational costs. In addition, when training this super-net, the
one-shot NAS needs to traverse the entire search space of the complete skeleton recognition task.
Furthermore, the traditional method does not consider the optimization of the search strategy. As
a result, a significant amount of search time is required to obtain a better skeleton recognition network
model. A more efficient weighting model, a NAS skeleton recognition model based on the Single
Path One-shot (SNAS-GCN) strategy, is proposed to address the above challenges. First, to reduce the
model search space, a simplified four-category search space is introduced to replace the mainstream
multi-category search space. Second, to improve the model search efficiency, a single-path one-shot
approach is introduced, through which the model randomly samples one architecture at each step
of the search training optimization. Finally, an adaptive Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) is proposed to obtain a candidate structure of the perfect model automatically.
With these three steps, the entire network architecture of the recognition model (and its weights) is
fully and equally trained significantly. The search and training costs will be greatly reduced. The
search-out model is trained by the NTU-RGB + D and Kinetics datasets to evaluate the performance
of the proposed model’s search strategy. The experimental results show that the search time of the
proposed method in this paper is 0.3 times longer than that of the state-of-the-art method. Meanwhile,
the recognition accuracy is roughly comparable compared to that of the SOTA NAS-GCN method.

Keywords: neural architecture search; graph convolution neural network; skeleton action recognition;
search space

1. Introduction

Skeleton-based human action recognition has grown in popularity as a research topic
in computer vision in recent years. It has been extensively employed in various domains,
including human–computer interaction and stage performance arts. A Graph Convolu-
tional Network (GCN) [1,2] is the mainstream method for skeleton recognition, which
excels in handling non-Euclidean data and has produced outstanding outcomes in human
skeleton recognition. However, when creating a 10-layer network that alternates between

Electronics 2023, 12, 3156. https://doi.org/10.3390/electronics12143156 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143156
https://doi.org/10.3390/electronics12143156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3308-6157
https://orcid.org/0000-0002-5543-6675
https://doi.org/10.3390/electronics12143156
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143156?type=check_update&version=1


Electronics 2023, 12, 3156 2 of 22

a spatial GCN and temporal GCN, it is typically necessary to use a GCN for the skeletal
recognition directly. To find the perfect network layout and training settings, and to achieve
an adequate recognition accuracy, a significant amount of manual training and intricate ab-
lation experiments are frequently needed. Some researchers have suggested using the GCN
and the NAS (Neural Architecture Search) to automatically determine the best network
layout and parameters to increase the model’s recognition effectiveness. For instance, the
literature (Pérez-Rúa, Juan-Manuel et al.) [3] proposed a multi-modal skeleton recognition
model based on neural architecture search, which achieved a high recognition accuracy
in the skeleton recognition task. However, to introduce NAS into the skeleton recognition
task, factors such as the number of layers of the skeleton recognition model, the selection of
the optimization modules in the model, and the categories and weights of the dataset need
to be considered. As a result, NAS should initially offer a vast search space for the skeleton
identification operation. The optimal model parameters, however, take a while to converge
because there are too many candidate operations in the search space.

Training thousands of models is difficult or impossible for a traditional machine
learning task. To solve the problem of architecture search for models, the researchers
propose the idea of sharing weights between models: instead of the traditional method of
training thousands of individual models from scratch, a super network is proposed, which
can be trained to simulate any architecture in the search space. To make the search more
flexible, instead of deciding whether a particular layer is convolutional, average pooling,
or maximum pooling, the method changes the search space to mix all of the above choices
in one search process. The search time is reduced by assigning weights to each component
of the search space when training the skeleton model (Peng, Wei et al., 2020) [4]. A simple
example of a search space is shown in Figure 1, where one can apply a 3 × 3 convolution,
5 × 5 convolution, or max-pooling layer at specific locations in the network. The search
space contains three different operations; the one-shot model adds their outputs together.
The implementation idea is to treat all operations, such as convolution, average pooling,
and maximum pooling, as channels and allow the controller to select a mask over these
channels. It is possible to train a single model containing all three operations, rather than
training three separate models. By allowing the parameters to be shared between all the
architectures in the search space, thus avoiding the need to train each architecture from
scratch, it is more computationally efficient than a standard NAS.
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Figure 1. One-shot NAS method.

However, the weight-sharing method based on NAS must traverse the whole net-
work’s search space, which causes the search process to be overtrained in the NAS search
area, and results in the absence of optimization and an automated optimization strategy.
Therefore, the NAS has to thoroughly search the ideal network topology and training
parameters for the skeleton identification challenge. This thesis considers the field of
a GCN based on a Single Path One-Shot Neural Architecture Search (SNAS-GCN) for
human skeleton recognition as the main subject of its study. In this paper, a simplified,
four-category NAS search space for skeleton recognition tasks is proposed. Subsequently, to
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reduce the search training time of the super-net and obtain an excellent skeleton recognition
model in a relatively short period, the weight-sharing search is replaced by a single path
random search, which is a single path one-shot search strategy. Applying SNAS-GCN to
the skeletal identification job is not simple. Skeleton recognition jobs have complicated
and bloated search spaces due to the different types of models (RNN, CNN, and GCN)
and data inputs (skeleton data and RGB data). A challenging problem in this domain
is optimizing the search process in the NAS space. In addition, many combinations of
network layers and parameters are applied to the skeleton recognition task. Obtaining
the optimal combination and optimal network structure using an optimization-seeking
algorithm is another challenge. To quickly identify the ideal neural network in the search
space, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is presented. With
the proposed SNAS-GCN strategy, a graph convolutional network for skeleton recognition
is constructed rapidly. In evaluating the performance of the search strategy proposed in
this paper, the model approach took 18 h less than the NAS-GCN model to train a skeleton
recognition network with a roughly comparable accuracy on the NTU-RGB + D [5] and
Kinetics [6] datasets.

The contributions of this paper include the following two points:

• To improve the search efficiency and reduce the NAS search time, the optimization
operation of the NAS search space is simplified. Secondly, a single-path one-shot
weight-sharing model is proposed to replace the original weight-sharing strategy.

• To automatically sample candidate networks from the super-net, a new covariance
matrix adaptation evolution strategy is employed.

2. Related Work
2.1. Skeleton Recognition Based on GCN

Human action recognition based on skeleton data has attracted more attention due to
its robustness to changes in human scale, viewpoint, and background. With the develop-
ment of deep learning, traditional methods use recurrent neural networks (RNN) [5,7,8]
and convolutional neural networks (CNN) [9–12] to compute and analyze skeleton data.
However, the method based on RNNs and CNNs has a high complexity, and the model’s
ability to deal with the skeleton structure needs to be improved [13]. A graph convolution
network (GCN) can better capture the space–time relationship between bodies and extract
the advanced features of the human skeleton. Therefore, in recent years, researchers have
proposed a skeleton recognition model based on a graph convolution network (GCN).
(Yan, Sijie, 2018) [1] proposed the spatiotemporal graph convolutional network (ST-GCN)
model, which extracts human body feature information by introducing the Spatio-temporal
map convolution network and solving the problem of the previous model only being able
to deal with temporal features, but not extract spatial features. (Shi et al., 2019) proposed
a two-stream adaptive graph convolutional network (2s-AGCN) [2] model based on the
ST-GCN model, which improves performance by collecting the dual information of joints
and bones. (Liu, Ziyu et al., 2020) [14] proposed an MS-G3D model based on multi-scale
expansion. By eliminating the dependence between distances, it can directly model cross
Spatio-temporal joints, which solves the problem of the previous methods not being able to
capture complex Spatio-temporal relationships.

The above methods all adopt the skeleton recognition model based on a GCN. Al-
though the GCN model has achieved good advantages in processing non-Euclidean data,
implementing an efficient neural network usually requires the manual setting of the net-
work parameters and a long training time. (Peng, Wei et al., 2020) [4] proposed the
GCN-NAS model based on neural architecture search. The shortcoming of the previous
GCN model only setting parameters manually is solved by introducing a neural architec-
ture search of a dynamic graph. The limitation of the previously fixed graph is broken
and the accuracy of the skeleton recognition is improved. By building an automatic search
strategy for neural architectures, this paper hopes to solve the problem of the amount of
time one needs to spend designing models for skeleton recognition networks.
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2.2. Neural Architecture Search

Because neural architecture search can automatically find the optimal network model,
this method provides a new possibility to avoid manually designing the network structure
in the field of image vision [15–19]. For example, NAS algorithms based on reinforce-
ment learning (RL) (Zoph, Barret, 2016) [19] can replace manually designed networks.
However, such methods need to consume hundreds of GPUs for their search training. To
reduce the search training time of traditional NAS methods, researchers have proposed
a one-shot neural architecture search strategy [20]. For example, Brock et al. (2017) [15]
proposed a SMASH model based on one-shot neural architecture search, which generates
suboptimal weights by introducing an auxiliary network. The overall search speed is
improved because the generated suboptimal weights are related to the weights of normal
training in accuracy. In addition, (Pham et al., 2018) [18] proposed a neural structure search
(ENAS) method based on sub-model weight sharing, which finds the neural network
structure by introducing a controller to search the optimal sub-network in an ample search
space. (Luo et al., 2018) [21] proposed an automatic neural network design method based
on continuous optimization based on ENAS. This method maps the neural architecture
to a constant vector space and solves the problems that could not be optimized in the
continuous space in the past. (Zhu, Hui et al., 2019) [22] also proposed the EENAS method
based on ENAS, which accelerates the search process by introducing a pre-learning strategy,
thereby reducing the amount of computation. (Chu, Xiangxiang. 2021) [23] presented
a uniformly sampled FairNAS technique, whose sampling and training procedures may
completely use the search space’s potential and deliver the best results among similar
one-off models. (Liang, Tingting et al., 2021) [24] proposed a new search space in which
each candidate is closely connected by a directed acyclic graph. Therefore, the effective
method has been excellent and the method’s mobility has been dramatically improved
compared to the previous methods, and advanced results can be obtained on multiple
datasets. In addition, this method proposes an efficient one-shot search algorithm to find
the optimal path structure.

The above methods are all one-shot neural architecture search methods based on
super-nets. This class of methods must first train a super-net and then use evolutionary
algorithms to find the optimal candidate paths. However, the super-net needs to design
a complex search space, which leads to a too-large network model and a long search training
time. To quickly find the optimal neural network under the framework of one-shot neural
architecture search, Guo [25] proposed a single-path sampling strategy to train the super
network, which solves the problem of the search space of the previous model being too
complex, and further reduces the search training time. (Bender et al., 2018) [26] introduced
the dropout strategy, which solves the problem of the previous super network being too
complicated by randomly deleting operations with low weights in the training process.

2.3. Graph Convolutional Networks Based on Neural Architecture Search

With the rapid development of neural architecture search, the time required for the au-
tomatic design of a graph neural network is significantly reduced. Recently,
(Gao, Yang et al., 2020) [27] proposed a GraphNAS model based on neural architecture
search and designed the best graph neural architecture by introducing reinforcement
learning strategies. Furthermore, by introducing a novel parameter-sharing strategy in
(Zhou, Kaixiong et al.) [28], an automatic graph neural network (AGNN) framework is
proposed. The above methods show the possibility of applying neural architecture search
to a graph neural network. However, due to the overly complex design of the search
space, the search efficiency of traditional graph neural networks needs to be further op-
timized. To further improve the search efficiency of neural architecture search in the
field of GCNs, (Ding, Yuhui et al., 2021) [29] proposed a differentiable search DiffMG
model, which solves this problem by introducing a novel and efficient search algorithm.
(CAI, Shaofei et al., 2021) [30] proposed a graph neural structure (GNAS) based on a gra-
dient search strategy to obtain a higher performance. (Li, Guohao et al.) [31] proposed
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a greedy algorithm SGAS based on neural structure search, which can find the best archi-
tecture and reduce the search cost.

Inspired by the above research work, to improve the efficiency of neural architecture
search and better apply it to the automatic search of a skeleton recognition model, this
work designs a simplified search space and proposes a covariance adaptive improvement
strategy based on an evolutionary algorithm to find the best architecture.

3. Methods

In this section, the single-path one-shot NAS-strategy-based methods for optimizing
the GCN structure for skeleton recognition are proposed. First, the GCN-based skeleton
recognition task is described in Section 3.1. Then, the one-shot single-path NAS strategy
is described in Section 3.2. Next, the search space for the neural architecture search is
defined in Section 3.3. Finally, Section 3.4 introduces how to automatically optimize the
best GCN network from all the candidate architectures using the covariance matrix adaptive
evolutionary algorithm (CMA-ES).

The framework of the SNAS-GCN is shown in Figure 2. Three functional modules are
abstracted based on the graph neural architecture search process. The search space module
contains a predefined search space for the GCN architecture, which can be customized by
the user for a specific task. The GCN module is then used in the search space to implement
the GCN model building and training for different downstream graph tasks on known
graph data and configuration parameters. The search module implements the search
function and search management for the GCN architecture, using a search algorithm to
sample the GCN architecture for the best structure.
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3.1. GCN-Based Skeleton Recognition Network

Motion capture devices or posture estimation techniques in a video can be used to
gather skeleton data. Typically, these data consist of many frames. The joint coordinates
that make up each frame of the data are included. As a result, the two-dimensional or three-
dimensional coordinates of the human joints in each frame serve as typical representations
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of the skeleton sequence. An undirected spatiotemporal graph G = {V , E ,A} is built
using a skeleton sequence in this study. The nodes and edges of this spatiotemporal graph
represent the skeleton’s joints and bones, respectively, where V represents all the joints
in the skeleton sequence and |E | represents the edge connection. An adjacency matrix
A ∈ Rn×n represents the connection of the joints.

Spatial graph convolution and temporal graph convolution are the two main compo-
nents of the spatio-temporal graph based on the skeleton recognition model. An example
of a constructed spatio-temporal skeleton diagram, including spatial and temporal dimen-
sions, is shown in Figure 3, where the joints are represented as vertices and their natural
connections in the body are represented as spatial edges. For the temporal dimension,
the corresponding joints between two adjacent frames are connected to temporal edges.
Among these, one-dimensional convolution modeling is used in the temporal domain,
while graph convolution modeling is used in the spatial domain. The model constructs
a spatial–temporal map of the skeletal sequence in two steps. First, the joints within a frame
are connected to the edges according to the connectivity of the human body structure.
Second, in each frame, each joint will be connected to the same joint. The connections in
this setting are naturally defined and do not need to be manually assigned. A supervised
learning problem using graph data may be used to frame the skeletal recognition issue.
The robust representation of G will be learned using a GCN to improve the action class
prediction. The GCN model is built by using neural structure search, which automatically
improves the skeletal recognition model.
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The research inserts 10 GCN blocks into the network for the search and training to
be compatible with existing state-of-the-art GCN approaches, as illustrated in Figure 4.
The spatial module for each GCN block comprises channel convolution filters, which are
convolution filters with a kernel size of 9 × 1 that are applied along the temporal axis
to record temporal data. The graph is projected onto a feature space with channel 64 by
the network’s initial GCN block. The outputs of three GCN layers with 64-dimensional
channels follow. The output channels of the three layers are then multiplied by two to
obtain a total of 128 dimensions. The finished three-layer network includes 256 output
channels for different dimensions. Each GCN block is subjected to the ResNet technique,
similar to (Yan, and Xong, 2018) [1]. The collected characteristics are then used to make
a final prediction in a fully linked layer.
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3.2. A Single Path One-Shot NAS Method
3.2.1. One-Shot Weight Sharing Method

Without a loss of generality, the architecture search spaceA is represented by a directed
acyclic graph (D.A.G.). The network architecture is a ∈ A, denoted as N (a,w), with
a weight w.

The neural architecture search aims to solve two related problems. The first one is
weight optimization, as shown in Equation (1):

wa = argmin
w
Ltrain(N (a,w)) (1)

where Ltrain(·) is the loss function on the training set.
The second is architecture optimization. It finds architectures trained on the training

set and has the best accuracy on the validation set, as shown in Equation (2):

a∗ = argmax
a∈A

A.C.C.val(N (a,wa)) (2)

where ACCval(·) is the accuracy of the validation set.
Traditional NAS methods perform these two optimization problems in a nested fashion.

Many architectures are sampled from the A system and trained from scratch, as shown in
Equation (1). The cost of each training is high, and only a small dataset and small search
space (such as a single block) can complete this training in a short time.

To alleviate the above problems, the NAS method adopts a weight-sharing strategy. The
architectural search space A is encoded in the super-net, denoted as N (A,W), whereW
is the weight in the super-net. The super-net is trained only once. The weights are directly
inherited by all the architectures fromW . Therefore, they share weights in common graph
nodes. The architecture can be fine-tuned as needed, but it does not need to be trained from
scratch. This is achieved by dividing the training and architecture search of the super network
into two consecutive steps. Therefore, the architecture search speed is improved.

In general, the formula for these two consecutive steps of the super-net is as follows:
First, the weights of the super-net are optimized, as shown in Equation (3):

WA = argmin
W
Ltrain(N (A, W)) (3)
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Second, the search architecture of the super-net is optimized, as shown in Equation (4):

a∗ = argmax
a∈A

A.C.C.val(N (a, WA(a))) (4)

During the search process, each sampled architecture a inherits its weights from WA
to WA(a). The main differences between Equations (1), (2) and (4) are that the architecture
weights have been trained in advance, and the evaluation of ACCval(·) only requires
inference and does not need to retrain new Weights. Generally, the one-shot weight-sharing
method is essentially one-shot training and multiple inferences. Therefore, the search
efficiency is improved.

However, compared to traditional methods, the super network reduces the cost of the
architecture search by an order of magnitude, but still needs to train a large enough super
network. The super network should contain enough search space, resulting in a too-large
network model, which increases the calculation cost, and the search efficiency still needs to
be improved.

Recent one-shot approaches have attempted to use a “path dropout” strategy to
address the problem of oversized super-network models [26]. Each edge in the super-net
graph is randomly eliminated in Equation (3), and the dropout rate parameter controls
the randomness. In the above way, the joint adaptation of the node weights is reduced
during the training, thereby reducing the search time [32]. The dropout rate parameter,
however, significantly impacts this strategy’s training methodology. Because of this, the
issue of super-net training is challenging and still not fully resolved.

3.2.2. Single Path One-Shot Algorithm

The single path one-shot technique is introduced by revisiting the basic idea behind
the concept of weight sharing. The effectiveness of the architectural search in Equation (4)
critically depends on the fact that the inherited weights WA(a) do not require fine-tuning.
Second, WA(a) can correctly forecast the architecture on the validation set. The weights
WA(a) should, ideally, be close to the ideal weights wa in (1). The value of the approxima-
tion depends on how much the training loss Ltrain(N (a, WA(a))) is minimized, which
demands that the weights WA of the super-net be improved in a way that simultaneously
improves all of the designs in the search space, as demonstrated in Equation (5):

WA = argmin
W

Ea∼Γ(A)[Ltrain(N (a, W(a)))] (5)

where Γ(A) is the prior distribution ofa ∈ A during the training process. (Guo, Zichao et al.) [25]
found that a uniformly constrained sampling method can better extract the ideal architectures
from the search space. Equation (3) is realized explicitly in Equation (5). Thus, just one weight
W(a) is enabled and updated at a time throughout each optimization phase while an architecture
a is randomly selected. Memory use is effective, and being embodied as a random super-net, the
super-net is no longer effective.

A single path super-net structure is proposed to reduce the cooperative adaptation
between the node weights and achieve fast search results. Each architecture is a path, as
shown in Figure 5. As the choice block does not recognize branches, a random path must be
kept in this case. Therefore, by randomly selecting a sub-network, its validation accuracy is
evaluated during the training phase.

As shown in Figure 5, the choice block is made up of several candidate structure
alternatives. In Section 3.3, the choice block in the search space is described in detail as
consisting of a Chebyshev choice block and feature structure choice block. In a single-path
super-net, each choice block is executed one option at a time. By sampling every option
block, a single path may be found.

The simplicity of this method is used to find different architectural elements by
defining several choice blocks. To facilitate complex search spaces, two additional choice
blocks are particularly recommended.
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3.3. GCN Search Space Design

Designing a search space for single-path one-shot architecture search is a challenging
problem, because the following competing requirements must be balanced. First, the search
space should be reasonably designed and expressive enough to capture a variety of helpful
candidate architectures. Secondly, the accuracy of the validation set generated by the
one-shot model must be able to predict the accuracy generated by the independent model
training. Finally, the one-shot model must be small enough to use limited computing
resources (i.e., memory and time) for the search training [33].

To enrich the search space, this paper designs two choice blocks: the Chebyshev choice
block and the feature structure choice block, as shown in Figure 6.
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Figure 6a shows the Chebyshev choice block module, composed of a first- and second-
order Chebyshev polynomial function. Figure 6b shows the characteristic structural choice
block module. It consists of a spatial feature neural operation (spatial m), a temporal feature
neural operation (temporal m), and a spatio temporal feature neural operation (spatio temporal
m). The entire search space consists of a number of the two aforementioned choice blocks,
which are sampled by a single path to search for a better skeleton recognition network.

3.3.1. Feature Structure Choice Blocks

As shown in Figure 3, human actions can be recognized and resolved through the
temporal and spatial sequences of human joint positions. By forming a high-level represen-
tation of the skeletal sequence through the spatio-temporal map, the recognition efficiency
and accuracy can be further improved. Thus, the feature structure choice block includes
spatial feature neural operations, temporal feature neural operations, and spatio-temporal
feature neural operations.

The spatial features are extracted based on the structural correlation of the spatial
node connections. To determine the connection strength between two nodes, (Shi. 2019) [2]
applied the normalized Gaussian function on the graph nodes and calculated the similarity
score as the correlation of the nodes, as shown in Equation (6):

∀i, j ∈ V , AD(i, j) =
eφ(h(xi))⊗ψ(h(xj))

∑n
j=1 eφ(h(xi))⊗ψ(h(xj))

(6)

According to the h(xi) and h
(
xj
)

of the nodes and their corresponding representations,
the correlation score AD(i, j) between them is calculated. φ(·) and ψ(·) are two projection
functions, called conv_s in Figure 7, which can be implemented by channel convolution
filters. This way, the correlation between the nodes can be captured, which is the spatial
feature “Spatial m” in Figure 7.
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The topology of the spatial feature map is the most intuitive. However, when temporal
correlations are ignored, hidden joint connections are lost. For example, if there is no
time information in the NTU-RGB + D dataset, it is difficult to tell whether a person is
touching his head or waving his hand. As a result, including temporal information in action
recognition models improves their accuracy. First, using Equation (6), the temporal feature
introduces a Gaussian function, which calculates the node correlation. Second, to extract
information from the temporal of each node, the functions φ(·) and ψ(·) are implemented
by two temporal convolutions conv_t, as shown in Figure 7. “Temporal m” is the name of
this module.
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Previous GCN approaches have been based on predefined graph structures con-
strained by temporal and spatial structures, while lacking a discussion of spatio-temporal
correlations, thus ignoring the implied joint associations. However, different layers con-
tain different semantic information, and therefore layer-specific mechanisms should be
designed to construct a spatio-temporal graph.

The Spatio-temporal module, which is denoted as “Spatio-Temporal m” in Figure 7,
can be directly constructed using “Spatial m” and “Temporal m.” After the spatial fea-
ture neural operations and temporal feature neural operations have been formulated, the
Spatio-temporal feature neural operations within the skeleton sequence must be modelled.
Through constructing the graph, the temporal dimension of the graph is built by connect-
ing the identical joints, and the graph is constructed by connecting the similar joints in
consecutive frames, which allows us to define a very simple strategy for extending the
spatial graph into the spatio-temporal domain. The same Gaussian function sampling is
required to complete the convolution operation on the spatio-temporal graph, as in the
spatial-only or time-only cases. In this way, a good convolution operation is performed on
the constructed spatio-temporal graph.

3.3.2. Chebyshev Choice Block

Chebyshev polynomials provide high-order connections to GCN networks and can
obtain high-level graph features. Therefore, (Deferrard et al.) [34] introduced a new spectral
domain graph convolution network, which accomplishes quick localization and a low
complexity, to overcome the shortcomings of the early spectral domain graph convolution
network. The convolution kernel }θ in a spectral domain graph can be approximated by
Chebyshev polynomials of order R, as shown in Equation (7):

Y = ∑R
r=0 θ′rTr

(
ˆ
L
)

X (7)

where R = 1, θ′r denotes the Chebyshev coefficient. X ∈ Rn is the input representation of G

and its n elements. The Chebyshev polynomial Tr

(
ˆ
L
)

is defined recursively as Equation (8):

Tr

(
ˆ
L
)
= 2

ˆ
LTr−1

(
ˆ
L
)
− Tr−2

(
ˆ
L
)

(8)

where, T0 = 1 and T1 =
ˆ
L. Here,

ˆ
L = 2L/λmax − In is normalized to [−1, 1], λmax = 2.

The graph Laplacian L, of which the normalized definition is L = In − D−1/2 AD−1/2 and
Dii = ∑j Aij, is used for Fourier transform. Chebyshev polynomial functions of the first or
second order are constructed on different network layers in the search space, as shown in
Figure 6. With a maximum order of 2, the function module can be built from Equation (8).

3.4. Search Strategy Algorithm

Random search for the architecture search in Equation (4) is adopted in the traditional
search strategy algorithm. However, this has a limited effect on tight search spaces. This
paper uses an evolutionary algorithm. The Covariance Matrix Adaptive Evolutionary
Strategies (CMA-ES) is one of the most powerful evolutionary algorithms in the field of
real-valued optimization, with many successful applications [35–37]. The invariance of
CMA-ES, which is attained by carefully thought-out mutation and selection operators, and
its successful adaptability to the mutation distribution, are its key benefits. The architectural
parameter a is described by a Gaussian distribution in the CMA-ES method. Then, to
update the distribution of architectures, the CMA-ES algorithm examines a collection of
designs and chooses significant samples based on their performance. From the architectural
dispersion, the optimal architecture can eventually be found.

The CMA-ES algorithm is divided into three parts, as shown in Figure 8.
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Step 1: Parameter setting
This includes the number of children λ, the number of parents µ, the recombination

weight wi = 1 . . .µ, the cumulative learning rate cσ controlled by the step size, the decay
parameter dσ of the step size update, the cumulative learning rate cc of the rank-one
update of the covariance matrix, the covariance matrix, the learning rate c1 of the variance
matrix rank-one update, and the learning rate cu of the covariance matrix rank µ update.

Step 2: Initialization
This includes choosing the distribution mean and step size. The evolutionary path

is set as: pσ = 0, pc = 0. The covariance matrix is set as C = I and the number of current
iterations is } = 0.

Step 3: Loop until the termination condition is reached
This includes 1© sampling from the population, 2© a reselection and recombination of

the samples based on their fitness, and 3© updating the internal state variables based on
the reordered samples.

This section describes, in detail, steps 2©and 3©of step 3 above. Then, in the step of selecting
reorganization, the new mean value of the search distribution is selected from the sample µ, the
weighted average value of the points, through which the recombination of the best offspring is
achieved to calculate the new parental status, as shown in Equations (9) and (10):

〈y〉w =
µ

∑
i=1

wiyi:λ where
µ

∑
i=1

wi = 1, wi > 0 (9)

m ← m + σ〈y〉w =
µ

∑
i=1

wixi:λ (10)
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where m is the mean and µ ≤ λ is the parent population size, i.e., the number of selected
samples. wi=1...µ ∈ R+: the positive weight coefficient for recombination, e.g., wi=1...µ = 1/µ.
Equation (10) is equivalent to calculating the mean of µ selection points.

The fitness f (x) is calculated for each new individual, as shown in Equation (11). The
reselection and reorganization are performed according to the fitness.

f (x1:λ) ≤ f (x2:λ) ≤ · · · ≤ f (xi:λ) (11)

where xi:λ: is the i-th optimal individual. According to the fitness ranking, the top µ < λ
individuals are intercepted for parameter updating.

An evolutionary path is the sequence of consecutive steps taken over many generations
for the update process in step 3, 3©. A series of consecutive sums of steps can be used
to represent an evolutionary path, and these sums are referred to as cumulative sums.
Exponential smoothing is used to create the evolutionary path pc, and pc

(0) = 0, as seen in
Equation (12):

pc ← (1− cc)pc + hσ

√
cc(2− cc)µeff〈y〉w (12)

For each step of selection, the covariance matrix adaptation increases the scale in
only one direction. The same technique as that in Equation (12) is adopted to construct
the evolutionary path pσ, as shown in Equation (13). Unlike Equation (12), however,
Equation (13) constructs conjugate evolutionary paths, because the expected length of
evolutionary path pc in Equation (12) is determined by the path’s direction. Initializing
pσ

(0) = 0, the conjugate evolutionary path is shown in Equation (13):

pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeffC
− 1

2 〈y〉w (13)

The step control is updated, as shown in Equation (14):

σ ← σ× exp
(

cσ
dσ

(
‖pσ‖

E‖N (0,I)‖ − 1
)))

. (14)

The covariance matrix is updated, as shown in Equation (15):

C ←
(
1− c1 − cµ

)
C+c1

(
pcpT

c + δ(hσ)C
)
+ cµ

µ

∑
i=1

wiyi:λyT
i:λ (15)

The above parameters are continuously updated until the optimal network structure
is obtained. More details of the CMA algorithm can be found in Algorithm 1 below.

Algorithm 1: CMA—ES algorithm

set

{\displaystyle\lambda}

λ,µ, wi = 1 . . .µ,cσ,dσ,cc,c1 and cu // number of samples per iteration, at least two,
generally >4
initialize m, σ, C = I, pσ = 0, pc = 0

{\displaystyle m}

// initialize state variables
while not terminate do // iterate

for i
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Algorithm 1: Cont.

{\displaystyle i}

in {1 . . . λ}

{\displaystyle \{1\ldots \lambda \}}

do // sample

{\displaystyle \lambda }

λ new solutions and evaluate them
xi =

{\displaystyle x_{i}={}}

sample_multivariate_normal(mean = m

{\displaystyle {}=m}

, covariance_matrix = σ2C

{\displaystyle {}=\sigma ˆ{2}C}

)

{\displaystyle f_{i}=\operatorname {fitness} (x_{i})}

fi = fitness(xi)

{\displaystyle x_{1\laots \lambda }}

x1...λ ← xs(1)...s(λ)

{\displaystyle x_{s(1)\ldots s(\lambda)}}

with

{\displaystyle s(i)=\operatorname {argsort} (f_{1\ldots \lambda },i)}

s(i) = argsort( f1...λ, i)// sort solutions

{\displaystyle m′=m}

m′ = m // need later
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Algorithm 1: Cont.

{\displaystyle m-m′}

m−m′ and xi −m′

{\displaystyle x_{i}-m′}

{\displaystyle m}

m← update_m(x1, . . . , xλ)

{\displaystyle (x_{1},\ldots,x_{\lambda })}

// move means to better solutions

{\displaystyle p_{\sigma }}

pσ← update_ps
(

pσ, σ−1C−
1
2 (m−m′)

)

{\displaystyle (p_{\sigma },\sigma ˆ{-1}Cˆ{-1/2}(m-m′))}

// update isotropic evolution path

{\displaystyle p_{c}}

pc← update_pc
(

pc, σ−1(m−m′), ‖ pσ ‖
)

{\displaystyle (p_{c},\sigma ˆ{-1}(m-m′),\|p_{\sigma }\|)}

// update anisotropic evolution path

{\displaystyle C}

C← update_C(C, pc, (x1 −m′)/σ, . . . , (xλ −m′)/σ)

{\displaystyle (C,p_{c},(x_{1}-m′)/\sigma,\ldots,(x_{\lambda }-m′)/\sigma)}

// update covariance matrix

{\displaystyle \sigma }

σ← update_sigma
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Algorithm 1: Cont.

{\displaystyle (\sigma,\|p_{\sigma }\|)}

σ, ‖ pσ ‖)// update step-size using isotropic path length

return m

{\displaystyle m}

or x1

{\displaystyle x_{1}}

3.5. Summary

The combination of an efficient search space design, a single-path one-shot super-net
strategy, and an evolutionary structural search algorithm enables the efficient and flexible
search of the skeleton recognition network. Therefore, this model is easy to train for search,
occupies little memory, and is highly competitive on large datasets. To validate the model’s
efficiency, the approach proposed by the model is evaluated in Section 4.

4. Experiments

In this section, the effectiveness and superiority of the single-path search strategy are
evaluated using experiments. NTU-RGB + D and dynamics are used in the experiment.

4.1. Dataset and Evaluation Metrics

The NTU-RGB+D dataset is a significant public human motion recognition dataset
captured by the second-generation Kinect. The dataset collects all the data patterns that
the Kinect camera can provide, including depth maps, 3D joint information, RGB frames,
and R.IR sequences. The data consist of 56,000 action sequences and 4 million frames in
60 categories of actions, 60 of which were demonstrated by 40 volunteers aged between
10 and 35. The 60 types of movements are divided into three main categories: 40 daily
activities, 9 health-related activities, and 11 pairwise interactive actions.

Kinetics is a video-based action recognition dataset that only provides raw video
clips without skeletal data. To flatten the joint positions in the dataset, all the videos
were first resized to a resolution of 340 × 256, and then the frame rate was converted into
30 fps. Secondly, each frame’s bones in the video were extracted through Openpose to
generate the Kinetics skeleton data (7.5 GB). The Kinetics dataset includes 400 human action
categories, each of which has at least 400 video clips taken from different Youtube videos,
with a duration of about ten seconds. The categories of the dataset are mainly divided
into three categories: human–object interaction, such as playing a musical instrument; and
human–human interaction, such as shaking hands, hugging, and sports, etc. They are
named person, person–person, and person–object.

4.2. Experimental Details

The experiments in this section were implemented on PyTorch (Paszke et al., 2017) [38]
with an NVIDIA RTX 3090 (with 24 G RAM) GPU. The experimental environment is
consistent with the current state-of-the-art GCN methods (Yan, Xiong, and Lin 2018;
Shi et al., 2019) [1,2].

The joint NTU-RGB + D data were searched experimentally during the search to find
the best structure. During the training process, the stochastic gradient descent (S.G.D.)
with a momentum of 0.9 was used as the optimization algorithm for the network. Cross
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entropy loss was selected as the loss function of the recognition task. During the search
and training, the weight decay was set as 0.0001 or 0.0006, respectively. For the NTU-RGB
+ D dataset, there could be up to two individuals in each dataset sample. If the number
of entities in the sample was less than 2, the second entity was filled by 0. The maximum
number of frames per sample was 300, and for samples with less than 300 frames, these
were repeated until 300 frames were reached. The learning rate was set to 0.1 and divided
by 10 at periods 30, 45, and 60. The training process ended at the 61st calendar time.

4.2.1. Ablation Study

To test the efficacy of the single-path neural structure search and confirm that the
model could search for the best GCN network, the following experience was conducted
on NTU-RGB + D using the cross-view dataset as a baseline. Each experiment showed
the time (mins) results for searching one epoch of search time. A series of baselines were
established for the experiments as a point of comparison: (1) There was a fixed choice of
one or more candidate options. Only Temporal m (T), Spatio-Temporal m (ST), and Spatial
m + Temporal m + Spatio-Temporal m (S + T + ST) were in the search space; (2) there
was the random selection of an option from the search space. An option could be chosen
and combined with cheb2. The single path search lowered the search cost as much as
was practicable while still being able to guarantee accuracy when combined with the
experimental findings, which are shown in Table 1. Second, the usefulness of including
second-order Chebyshev polynomials was demonstrated by the fact that adding cheb2 to
the search space increased the accuracy compared to the conventional approach, while
maintaining a relatively constant search time. The overall experimental findings support
the method’s efficacy and efficiency (Single Path One-Shot, SNAS-GCN).

Table 1. Performance comparison of NTU-RGB + D CV evaluation.

Methods Joint (%) Search Time per Epoch (mins)

Ours (T) 93.8 20.46
Ours (ST) 93.8 16.26

Ours (S + T + ST) 93.7 24.19

Ours (T + Cheb2) 94.2 20.53
Ours (ST + Cheb2) 94.2 16.28

Ours (S + T + ST + Cheb2) 94.1 24.22

Ours(SNAS-GCN) 94.3 17.43

The results also show that the temporal feature neural operation (T) took longer to
search than the Spatio-temporal feature neural operation (ST). First, the temporal module
involved interactions outside the same frame. In contrast, the spatial feature interactions
were limited to features of the same dimension at the same time step, resulting in a long (T)
operation search time. Second, the search time of the (S + T + ST + Cheb2) experimental
module demonstrated that, while the super-net ensured a better accuracy by simultaneously
searching all the modules, it also took longer.

4.2.2. Search Cost Analysis

The memory cost and total time cost of training a super network in search space
were adopted to measure the model’s performance. All the super networks underwent
61 iterations of training, with a batch size of 16, and were trained using an NVIDIA RTX
3090 24 G GPU. Table 2 shows the search cost of the search space; and Table 3 shows that
the modeling approach in this paper clearly used less search time than the baseline model.

1. Cost analysis of search space

The experimental results in Table 2 show that searching based on a single-path archi-
tecture is efficient compared to the search cost of the traditional method (GCN-NAS) [4]
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(experiments conducted in the same experimental environment). This is because searching
within a single path with only a few layers is far more efficient than searching the entire
architecture with many layers, and then defining the overall architecture by stacking units.

Table 2. Cost analysis of search space.

Methods Joint (%) Search Time per Epoch (mins)

Ours(S + T + ST + Cheb2) 94.1 24.22
GCN-NAS(S + T + ST + Cheb2) 94.3 25.1

Ours(7 Categories) 94.4 25.2
GCN-NAS(7 Categories) 94.6 26.1

Ours (single path NAS) 94.3 17.43

Table 3. Search costs for each baseline model.

Method Training Time Search Time Total Time CV (Joint) (%)

MFAS [3] -- 150.91 h -- 93.46
GCN-NAS [4] 24 h 46.2 h 70.2 h 94.6
SAR-NAS [39] -- 29 h -- 94.3

Ours (Joint) 17.7 h 34.4 h 52.1 94.3

The experimental results in Table 2 show that, compared to the search costs of tradi-
tional methods (GCN-NAS) [4] (experiments conducted in the same experimental environ-
ment), a search based on a single-path architecture is effective. This is because searching in
a single path with only a few layers is much more efficient than searching in an entire archi-
tecture with many layers, and then defining the whole architecture through stacked units.

This study demonstrates that a simplified search space using single-path search can
produce good search results in a GCN architecture search. The model in this paper was based
on single-path grid search, but with simplified operations and fast optimization seeking.

The above comparison indicates that using a simplified search space with a single-path
search can produce good search results in GCN architecture searches. It can be seen that
the model proposed in this article has a simple operation and fast optimization speed.

2. Comparison of search costs with the baseline model

The GCN-NAS model was compared with the model proposed in this paper in the
same empirical setting with the same experimental parameters, such as the number of
epochs and batch sizes. The experimental results showed that the model approach of the
article was less time-consuming and had approximately the same accuracy.

Due to the different search spaces and data types, as well as the fact that the source
code of the papers is not publicly available, the MFAS and SAR-NAS methods could not be
reproduced in this experiment. Various papers have found that the MFAS method takes
150.9 h to search on four NVIDIA Tesla P100 16 GB GPUs, while the SAR-NAS method takes
29 h to search on one NVIDIA TitanXP 12 G GPU. By analogy, the search times required for
these two experiments are also too long.

4.2.3. Comparison with State-of-the-Art (SOTA)

This section first searches the network on the NTU-RGB + D dataset to obtain a better
performance. The initial learning rate was 0.1 and the learning rate was updated at 30, 45,
and 60 epochs, respectively. An NVIDIA RTX 3090 24 G GPU was used for the training.
A data expansion was performed using clipping and rotation angles to reduce the network
overfitting. The searched models were compared with seven SOTA skeleton-based action
recognition methods, including a CNN-based method, a GCN-based method, and a GCN-
and NAS-based method. Table 4 shows the performance results of the method in this paper
for NTU-RGB + D.
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Table 4. Comparison of SNAS-GCN with other methods on NTU-RGB + D60 in terms of accuracy,
search time consumed.

Architecture CS (%) CV (%) Time-Consuming Search

HCN [40] 86.5 91.1 --
ST-GCN [1] 81.5 88.3 --

AS-GCN [41] 86.8 94.2 --
DARTS [42] 83.9 92.0 --

SAR-NAS [39] 86.4 94.3 29 h+
MFAS [3] -- 93.46 150.91 h+

2S-AGCN [2] 88.5 95.1 --
NAS-GCN [4] 89.4 95.7 70.2 h

2s HA-GCN [43] 91.5 96.6 --

Ours (Joint) 87.1 94.3 52.1 h
Ours (Bone) 86.0 94.0 --

Ours(Joint + Bone) 89.0 95.0 --

Regarding the NTU-RGB + D and Kinetics skeleton datasets, Tables 4 and 5 show
the results for these two datasets, respectively. As can be seen from Tables 4 and 5, the
search model achieved the best results on both datasets for all the evaluation metrics, which
demonstrates the effectiveness of the approach proposed in the article.

Table 5. Performance of SNAS-GCN versus other methods on the Kinetics dataset.

Model Top-1 (%) Top-5 (%)

ST-GCN [1] 30.7 52.8
AS-GCN [41] 34.8 56.5
DARTS [42] 32.1 54.0

2S-AGCN [2] 36.1 58.7
SAR-NAS [39] 33.6 56.3

NAS-GCN (Joint) [4] 35.5 57.9
NAS-GCN (Bone) [4] 34.9 57.1

NAS-GCN [4] 37.1 60.1
2s HA-GCN [43] 37.4 60.5

Ours (Joint) 35.6 57.9
Ours (Bone) 34.8 57.0

Ours (Joint + Bone) 37.0 60.0

Table 4 shows that the MFAS modelling approach used more than 150 hours for search-
ing, but the recognition accuracy still has a disadvantage compared to the model in this
paper. Compared to the SAR-NAS method, the model in this paper shows a substantial im-
provement in recognition accuracy while maintaining search efficiency. Table 5 shows that
the models trained by a single-path neural architecture search are well ahead of traditional
methods and slightly below the latest techniques in terms of their recognition accuracy.

5. Conclusions

This work studied the skeleton action recognition task based on neural architecture
search. It explored finding the best model quickly and automatically through neural
architecture search. The main contributions of this paper include: firstly, a simplified
four-category search space was constructed instead of a traditional eight-category search
space. The simplified search space reduced the complexity of the super network. Secondly,
a single-path one-shot weight-sharing strategy was proposed to reduce the search time
of neural architecture search in the super network, thus reducing the computational cost.
Finally, an evolutionary strategy algorithm was proposed, which could automatically select
the best architecture from all the training architectures. The NTU-RGB + D and Kinetics
datasets’ experimental results verified the proposed method’s effectiveness. Compared
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to the latest NAS-GCN method, the search time of the proposed method in this paper
was 0.3 times longer than that of the SOTA method, while the recognition accuracy was
approximately the same.

It is hoped to deploy this model in embedded systems and apply it to various applica-
tion scenarios, such as stage performances and human–computer interaction. In addition,
it is hoped to continue simplifying the evolutionary algorithm and improving the search
speed of the NAS.
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