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Abstract: In the teaching process, it is important that students do not carry out exercises only by
computer simulations, but also that they carry out research in real time. In times of distance learning
during the COVID-19 pandemic, it would be necessary to find a solution so that the students can
perform such exercises individually at home. Therefore, it has become necessary to develop cheap
and simple modules of digital controllers along with analog objects with adjustable order and time
constants. This paper describes a low-cost proportional–integral–derivative (PID) controller for
teaching students control techniques and analog control objects in real time. The PID controller is
based on the cheap and widely available microcontroller modules Arduino or STM32. The advantage
of this solution is that the algorithm of the digital PID controller is calculated every constant period of
time. Both the solutions presented in the paper have been successfully tested by students in practice
during remote learning during the COVID-19 pandemic.
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1. Introduction

The student digital control laboratory aims to teach the student how to design and
implement automatic control systems. These systems have many practical uses, such as
in cars, planes, robots, factories, processes, space structures, and more. The student starts
by learning the basic software and hardware for control systems and the technologies for
sensors and actuators. Then, the student creates a control system, tests it in one of the
laboratory platforms, and checks whether it meets the design requirements.

Typically in the student digital control laboratory, programs such as Matlab, Matlab-
Simulink, Octave, LabView, Psim, Pspice, etc., are used for simulation tests. Performing
such simulation tests is a very good complement to the theoretical knowledge gained during
lectures. In the course of further research, it is necessary to supplement the knowledge
related to the implementation of digital control algorithms in real control systems.

My many years of teaching practice show that during the process of teaching about
automatic control systems, the contact of students with a live automatic control system
is also important. Such contact works better on the imagination of students and allows a
better understanding of the theoretical dependencies specific to automatic control systems.

For this purpose, ready-made modules specially designed for this type of laboratory
are used. For example, these can be modules from National Instruments NI myRIO [1] or
Speedgoat systems [2]. Unfortunately, such systems are quite expensive and it is difficult to
persuade students to use them in the case of distance learning, as was the case during the
COVID-19 pandemic.

A cheaper solution is to use modules with microcontrollers and implement digital
control algorithms using C/C++. For this purpose, a module with a microcontroller could
be used, such as AVR, ARM, TMS320F28xxx, PIC, ADUC84x, etc. [3–6]. In the case of 8-bit
AVR microcontrollers, the most popular is the Arduino platform [7], while for 32-bit ARM
micro-controllers, the most popular platforms such as Rasberry Pi, BeagleBone, STM32,
and also Arduino can be used [7–10].
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Attention should also be paid to entire families of microcontrollers from Microchip to
8-bit PIC MCUs, 16-bit MCUs, dsPIC33 digital signal controllers and 32-bit MCUs [11]. For
student activities, one can also use the Microchip University Program [12]. For rapid proto-
typing, Microchip has prepared the Curiosity Nano Platform [13]. A good implementation
of the PID controller can be found in [14].

Among the cheapest of these are Arduino and STM32, which is why they were chosen.
The low prices of microcontroller modules allow the adoption of a solution in which each
student has his/her own module with a microcontroller. There is an advantage to using
Arduino modules, i.e., the use of a simplified programming environment. This makes it
easier to work with students for whom computer science is not their main field of study,
for example, students of electrical engineering. However, Arduino software, due to its
simplifications, does introduce some limitations.

In the case of modules with STM32 microcontrollers, the manufacturer’s software
STM32CubeIDE can be used [10]. The STM32CubeIDE is an advanced C/C++ develop-
ment platform with peripheral configuration, code generation, code compilation, and
debugging capabilities for STM32 microcontrollers and microprocessors. It is based on
the Eclipse®/CDT™ framework, and the GCC toolchain for development and GDB for
debugging [10]. The development platform is no longer so simple for students, and re-
quires them to be more involved. It should be noted, however, that the capabilities of ARM
microcontrollers are much greater than those of AVR.

The paper focuses on the implementation of the proportional–integral–derivative
(PID) controller using Arduino Uno and STM32. On the Arduino website one can find
many functions with ready-made programs to implement the PID controller [15–28]. All
of these execute the PID algorithm in the main loop of the program, and the sampling
period is variable and depends on the complexity of the main program. For the correct
determination of the integral and differential, the system time is taken and the time since
the last call of the PID algorithm is calculated. This is only acceptable for slowly-varying
simple control objects. For more demanding control objects such as power electronics,
circuits, quadcopters, etc., this solution cannot be used.

The proposed solution uses a fixed sampling period. Thanks to this, the big value
of jitter and the formation of beating output signals can be avoided, which significantly
improves the quality of control. In this way, students also learn the correct methods of
programming systems working in real time.

Another problem to be solved is the realization of the controlled systems. It was
assumed that the time constants of controlled systems would be from one to several
seconds, and from one to several orders. For simplicity, it was also assumed that the
controlled systems will be powered directly by the microcontroller module. Adopting
such a solution is safe because students do not always cope well with systems powered
by many sources. In the simplest solution, simple passive RC systems were used as an
object. It is also possible to use the active version of the controlled system, using rail-to-rail
operational amplifiers, also powered by the microcontroller module. This solution allows
for the implementation of a wider range of transmittance compared to passive systems.

During the tests, it is also necessary to measure and record signals; for this purpose,
one of the cheap USB oscilloscopes can be used. The Serial Analyzer can be used if an
Arduino module is being used [7].

In Section 2, an example of converting the analog PID controller to a digital version is
presented. Simple object simulators are described in Section 3. Section 4 is devoted to the
implementation of the digital PID controller using the Arduino Uno module. Examples of
laboratory test results are also shown. Section 5 is devoted to the implementation of the
digital PID controller using the STM32 microcontroller. Also, in this case, sample results
of laboratory tests are shown. Section 6 briefly discusses the methods for selecting the
parameters of the PID controller.
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2. Realization of Digital PID Controller

A block diagram of the automatic control system is shown in Figure 1. The system
consists of a controller with transfer function G(s) of an object (plant, controlled system,
system) with transfer function H(s) and a summation node in which the setpoint X(s) is
compared with the output signal Y(s) [29–34].
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For this control system, a system of equations can be written,{
Y(s) = E(s)G(s)H(s)
E(s) = X(s)−Y(s) ,

(1)

where the following pertains:

X(s)—desired process value or setpoint;
E(s)—error value as the difference between a desired setpoint X(s) and the measured
process value Y(s), E(s) = X(s) − Y(s);
G(s)—controller transfer function;
H(s)—transfer function of controlled system (plant);
Y(s)—measured process value;
U(s)—control variable.

From the system of Equation (1) it is possible to determine the transfer function of a
closed loop control system

Y(s)
X(s)

=
G(s)H(s)

1 + G(s)H(s)
(2)

The block diagram of a PID controller is shown in Figure 1. The transfer function of
the analog PID controller transmittance of the regulator is determined by the equation

G(s) =
U(s)
E(s)

= kc

(
1 +

1
Ti

1
s
+ Tds

)
(3)

where the following pertains:

kc—controller gain, a tuning parameter;
Td—derivative time, a tuning parameter;
Ti—integral time, a tuning parameter.

For a PID controller, the control value U(s) consists of three terms: Up(s)—proportional
term, Ui(s)—integral term, Ud(s)—derivative term. The value of the PID controller control
variable can be determined using the equation

U(s) =

Up(s)︷ ︸︸ ︷
E(s)kc +

Ui(s)︷ ︸︸ ︷
kc

Ti

1
s

E(s) +

Ud(s)︷ ︸︸ ︷
kcTdE(s)s (4)
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Integral term (4) is transferred into digital form using bilinear transformation

s =
Ts

2
z + 1
z− 1

(5)

where Ts is the sampling period.

Ui(z) =

Ui(z)︷ ︸︸ ︷
kc

Ts

2Ti

(
E(z) + E(z)z−1

)
+ Ui(z)z−1 (6)

The derivative term is transferred to digital form using backward difference transformation

s =
z− 1
Tsz

(7)

Ud(z) =

Ud(z)︷ ︸︸ ︷
kc

Td
Ts

(
E(z)− E(z)z−1

)
(8)

Finally, the digital control variable can be determined from the equation

U(z) =

Up(z)︷ ︸︸ ︷
E(z)kc +

Ui(z)︷ ︸︸ ︷
kc

Ts

2Ti

(
E(z) + E(z) z−1

)
+ Ui(z)z−1 +

Ud(z)︷ ︸︸ ︷
kc

Td
Ts

(
E(z)− E(z)z−1

)
(9)

while the value of the digital control variable can be calculated using the difference equation

u(n) =

up(n)︷ ︸︸ ︷
kce(n)+

ui(n)︷ ︸︸ ︷
kc

Ts

2Ti
(e(n) + e(n− 1)) + ui(n− 1)

+

ud(n)︷ ︸︸ ︷
kc

Td
Ts

(e(n)− e(n− 1))

(10)

The block diagram of such a digital PID controller is depicted in Figure 2.
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It was assumed that in order to simplify the implementation, the PID controller
algorithm will be implemented using floating point arithmetic. A range of variability of
variables of −1.0. . .1.0 was also assumed. In addition, saturation of the variables ui(n) and
u(n) has been added to the algorithm.

The digital control variable u(n) is typically converted to an analog form by a D/A
converter. Often, as in this case, a PWM modulator is also used as a D/A converter.
Before D/A conversion, the control variable u(n) should be scaled to the range of the D/A
converter and cast to the integer type

uN(n) = (int)((1 + u(n))0.5NL) (11)

where NL is the number of states of the digital PWM modulator or D/A converter.
The variable range uN(n) is 0 . . . NL − 1. The block diagram of the digital PID controller

with saturation, and with a PWM modulator on the output, is shown in Figure 3. This
variant of the regulator was adopted for implementation using microcontrollers. Of course,
in the literature, it is possible to find many other implementations [29–34] of the digital PID
controller that can be used here.
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For example, by performing a simple modification of the algorithm, one can eliminate
the effect of changing the setpoint on the derivative term. The block diagram of such a
solution is shown in Figure 4.
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It was assumed that the sampling frequency of fs signals is constant and that the
algorithm of the digital PID controller is calculated with the same frequency.

3. Controlled System Simulators

It was assumed that the regulator together with the controlled system must be resistant
to assembly errors, easy to implement, and cheap. Therefore, it was assumed that the
controlled system should be powered by the microcontroller module. Therefore, the
simplest RC systems were used to simulate dynamic objects. Figure 5 shows a two-stage
RC network that forms a second-order controlled system. This circuit is limited because its
quality factor Q is always less than 0.5, with R1 = R2 and C1 = C2, Q = 1/3. In this circuit,
Q approaches the maximum value of 1/2 when the impedance of the second RC stage is
much larger than the first.
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The transfer function of the two-stage RC network can also be expressed in

H(s) =
1

1 + s(R1C1 + R2C2 + R1C2) + s2(R1C1R2C2)
(12)

Larger values of the quality factor Q are attainable using a positive feedback amplifier.
Figure 6 shows an operational amplifier used in this manner. Capacitor C1, no longer
connected to the ground, provides a positive feedback path. These circuits were described
in 1955 by R. P. Sallen and E. L. Key, and hence they are generally known as Sallen–Key
filters [35,36]. The operational amplifier is a rail-to-rail input–output, and is supplied by a
microcontroller module (+5 V for Arduino, and 3.3 V for STM32).
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The transfer function of the second-order active object simulator for the position of
the switch S1 in the on position is

H(s) =

k︷ ︸︸ ︷
R3 + R4

R3

1 + s
(

R1C2 + R2C2 + R1C1(− R4
R3
)
)
+ s2(R1C1R2C2)

(13)
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where k—is the plant gain.
Using the circuits shown above, it is possible to build higher-order systems.

4. Realization of Digital PID Controller Using Arduino Module

The most popular Arduino Uno [7] module was used to implement the digital PID
controller. An internal 10-bit A/D converter is used to convert the y(t) signal and a PWM
modulator was used as an 8-bit D/A converter to convert the u(t) control variable signal.

The basic source of information about the Arduino system is the webpage arduino.cc [7],
but other sites are also worth viewing, for example, Gammon Forum contains a lot of
interesting solutions for Arduino modules [37].

In a “standard” C/C++ program, a “main” function should be present. This main
function will be called invoked, and from there, one calls up other functions and executes
the functionalities of the program. In Arduino, there is no main function. This is replaced
by two the functions setup() and loop() [7]. These two functions must be present in every
Arduino sketch. Other functions must be created outside the brackets of those two functions.
The setup() function will only run once, after each powerup or reset of the Arduino board.
It is used to initialize variables, pin modes, start using libraries, etc., whereas function loop()
loops consecutively. In the function loop(), the main program should be written, with the
understanding that the initialization is already done. In this function, one must always
keep in mind that the last line is followed by the first line. In this solution, the frequency
of invoking the loop() function depends on its length, and it is also important that this
frequency is not constant. Depending on (6) for the calculation of the control variable, there
is a sampling period Ts.

As previously mentioned in paragraph 1, all functions found on the page Arduino.cc
that implement the digital PID controller are invoked in the loop() function, where a
constant sampling period cannot be ensured [15–29,37–51]. Typically, the period value is
determined based on the system time reading. This solution results in a very high-value
jitter and worsens the parameter qualities of the processed signals [52–57].

To solve this problem, a solution is proposed that provides a constant sampling period
of Ts. A sampling period equal to the period of the PWM modulator for pin 5 is assumed,
and this period is equal to 1.024 ms. The A/D converter is directly triggered by the
microcontroller counter, and an interrupt is generated when the conversion is complete. In
this interrupt, the entire algorithm of the regulator is calculated and a new value of u(n) is
sent to the PWM modulator. The timing diagram of data flow in the digital PID controller
is depicted in Figure 7. The advantage of this solution is that the algorithm of the digital
PID controller is calculated every constant period of time.
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The block diagram of the controller based on Arduino Uno is depicted in Figure 8.
A skeleton version of the program that implements the PID controller is shown in Listing 1,
while a detailed version of the program is included in Appendix A. The setup() function
includes the initialization of all hardware. The entire program of the PID controller has
been placed in the function ISR (ADC_vect), which handles the interrupt generated by the
A/D converter. The loop() function, in this case, can be left empty. The ISR (ADC_vect)
function can be used instead of loop(), but it must be kept in mind that the time it takes
to execute the entire algorithm cannot be longer than the sampling period. Therefore, one
should check the execution time with an oscilloscope.
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Listing 1. A skeleton version of the program that implements the PID controller. 

void setup() { 
// Pin initialization  
// timer initialization  
// ADC initialization 
// interrupt initialization 

} 
 
ISR (ADC_vect) // ADC interrupt, fs= 976.165 Hz 
 { 

// ADC reading 
// PID controller calculation 
// PWM update 

} 
 
EMPTY_INTERRUPT (TIMER1_COMPB_vect); 
 
void loop() { // empty main loop 
 } 

Figure 9 shows the time waveform for pin 13 of the microcontroller; it is set to logic
one at the beginning of the interrupt handling procedure and reset at the end. It shows that
despite the use of a floating point for calculations, the entire interrupt handling procedure
takes about one-fifth of the sampling period.

Figure 10 shows a simplified schematic diagram of the experimental control system. In
the system, a cascade connection of two RC networks was used as a controlled system. Both
networks have the ability to adjust the time constant using potentiometers. Additionally, a
second PWM modulator (pin 6) and R3C3 network have been used as an additional analog
output. In this case, the PWM modulator is used to image the e(t) signal. The view of the
control system is shown in Figure 11. It should be noted that the entire system is supplied
with a DC voltage of +5 V; therefore, all signals are in the range of 0. . .+5 V.
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An example of experimental time waveforms using a PI controller (closed-loop) with
a first-order object for a step change of setpoint x(t) from 0.2 to 0.8 is shown in Figure 12,
which shows the time waveforms of the controller error e(t) and the measured value of the
process y(t).
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By modifying the program from Listing A1, it can also be used to identify the param-
eters of the controlled system; for example, performing a test for a step response of an
open-loop system.

For programming and debugging, the typical Arduino IDE 2 (Integrated Development
Environment) is used. Among the many useful features of this environment, the Serial
Plotter function should be mentioned [7]. It allows us to visualize the variables sent by
the serial port. Figure 13 shows the step response of the controlled system. With the Serial
Plotter function, it is possible to test the control systems without an oscilloscope. A skeleton
version of the program for Serial Plotter visualization of the open-loop system step response
is described in Listing 2.
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Listing 2. A skeleton version of the program for Serial Plotter visualization of the open-loop system
step response.

Electronics 2023, 12, 3235 11 of 24 
 

 

 

Listing 2. A skeleton version of the program for Serial Plotter visualization of the open-
loop system step response. 

// fsk – Serial Plotter sampling frequency 
#define fsk 10 
const float fs=976.165; // sampling frequency 
const int Nk=fs/fsk;  
ISR (ADC_vect) // ADC interrupt, fs= 976.165 Hz 
 { 

// ADC reading 
U=1; 
// PWM update 
 
if (counter++>Nk) {  
Serial.println(y); 
counter=0; 
} 

} 

 
Figure 13. Time waveform of step response of second-order controlled system y(t), drawn by Serial 
Plotter for fsk = 10 Hz. 

5. Realization of Digital PID Controller Using STM32G491RE-Nucleo 
The STM32 family of 32-bit microcontrollers is based on the ARM Cortex®-M proces-

sor from the STMicroelectronics company. STM32 microcontrollers combine very high 
performance, real-time capabilities, digital signal processing, low power and connectivity, 
while maintaining full integration and ease of development [10]. 

The company’s offer includes a whole range of development boards [10]. A low-cost 
module equipped with a 12-bit A/D converter and a 12-bit D/A converter, STM32G491RE-
Nucleo, was chosen to implement the digital PID controller. The STM32 Nucleo-64 devel-
opment board with STM32G491RE microcontroller supports Arduino and ST morpho 
connectivity [10,58]. Figure 14 shows the view of the STM32G491RE-Nucleo board. 

5. Realization of Digital PID Controller Using STM32G491RE-Nucleo

The STM32 family of 32-bit microcontrollers is based on the ARM Cortex®-M pro-
cessor from the STMicroelectronics company. STM32 microcontrollers combine very high
performance, real-time capabilities, digital signal processing, low power and connectivity,
while maintaining full integration and ease of development [10].

The company’s offer includes a whole range of development boards [10]. A low-cost
module equipped with a 12-bit A/D converter and a 12-bit D/A converter, STM32G491RE-
Nucleo, was chosen to implement the digital PID controller. The STM32 Nucleo-64 de-
velopment board with STM32G491RE microcontroller supports Arduino and ST morpho
connectivity [10,58]. Figure 14 shows the view of the STM32G491RE-Nucleo board.
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For programming and debugging, the typical STM32CubeIDE ver. 1.11.2. (Integrated
Development Environment) is used. STM32Cube includes STM32CubeMX, a graphical soft-
ware configuration tool that allows the generation of C initialization code using graphical
wizards, according to the hardware configuration of our board. For example, if we have the
STM32G491RE-Nucleo, which is based on the STM32G491RE microcontroller, and we want
to use its user LED (marked as LD2 on the board), then STM32CubeMX will automatically
generate all source files containing the C code required to configure the microcontroller
(clock, peripheral ports, and so on) and the GPIO connected to the LED.
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The block diagram of the digital PID controller based on STM32G491RE-Nucleo is
depicted in Figure 15. The microcontroller is powered by +3.3 V, so all signals in the system
are in the range of 0. . . +3.3 volts.
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As in the case of the implementation of the digital controller using Arduino, the
entire algorithm is executed when handling the interrupt from the A/D converter. Due
to the assumed sampling frequency of f s = 10 kHz, the time available for calculations is
less than 100 µs. A timing diagram of data flow in the digital PID controller based on
STM32G491RE-Nucleo is shown in Figure 16.
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The following is a list of hardware initialization of the digital PID controller based on
STM32G491RE for STM32CubeMX during the generation of C initialization code:
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1. Initialization of A/D converter—single-ended input pin PA0, Triger Conversion
Source, Timer 3, Triger Out event, ADC1 and ADC2 global interrupt;

2. GPIO—GPIO_Output PA10, Output Push Pull;
3. D/A converter—OUT1 mode, Connected to external pin only;
4. Timer 3—Clock source, Internal Clock, Channel1, Output Compare No Output,

Counter period, 16000-1, auto-reload preload, enable, Trigger Event Selection TRGO—
Update Event;

5. Initialization of interrupt system.

The STM32CubeMX interface for pin assignment of the STM32G491RE microcontroller
is depicted in Figure 17.
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As with Arduino, a digital PID controller has been implemented. A simplified skeleton
version of the program that implements the PID controller is shown in Listing 3. However, it
should be noted that using the STM32CubeMX development environment is more complex
than in the case of Arduino, and despite creating precise instructions on how to configure
the microcontroller, it sometimes causes problems for students. Unfortunately, the listing
of such a program containing the necessary initialization of the microcontroller hardware
is several pages long, and it is easy to get lost in it.

Figure 18 shows the time waveforms for the case of processing a sinusoidal input
signal y(t) with a frequency of 1 kHz and an amplitude of 1 V (the input signal has a +1.5 V
offset) to an analog output u(t).
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Listing 3. A simplified skeleton version of the program that implements the PID controller.
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As in the case of the Arduino module, the program has been modified to determine 
the step response of the open-loop system. The open-loop step response of the second-
order object is depicted in Figure 19. If the student does not have an oscilloscope, the ca-
pabilities of the Development Environment STM32CubeIDE can be used for imaging var-
iables y(n). 
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As in the case of the Arduino module, the program has been modified to determine the
step response of the open-loop system. The open-loop step response of the second-order
object is depicted in Figure 19. If the student does not have an oscilloscope, the capabilities
of the Development Environment STM32CubeIDE can be used for imaging variables y(n).
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Examples of experimental time waveforms of a PI controller (closed-loop) with a sec-
ond-order object for a step change of setpoint x(t) from 0.2 to 0.7 are shown in Figures 20–
22. They show the time waveforms of the control variable u(t) and the measured value of 
the process y(t) for different controller parameters.  

 
Figure 20. Time waveforms of the PI controller, closed-loop step response of second-order object, 
u(t)—green, y(t)—blue, for x(t) = 0.2 → 0.7, Ti = 3.0, kc = 1.0. 

Figure 19. Time waveforms of the open-loop step response of the second-order object, u(t)—green,
y(t)—blue.

Examples of experimental time waveforms of a PI controller (closed-loop) with
a second-order object for a step change of setpoint x(t) from 0.2 to 0.7 are shown in
Figures 20–22. They show the time waveforms of the control variable u(t) and the measured
value of the process y(t) for different controller parameters.
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6. Tuning the PID Controller 
After successfully implementing a digital PID controller, the first question is how to 

tune a PID controller. That is, what should be the values of the three basic parameters of 
the regulator kc, Ti and Td. Probably the first, and certainly the best known, are the Zeigler–
Nichols rules. Published in 1942 [59], Zeigler and Nichols described two methods of tun-
ing a PID loop. Over several decades of using regulators, many rules have been created to 
address the question of how to tune a PID controller. This problem is so ubiquitous that 
thousands of publications on this subject can be found in the literature [30–34,54,60]. The 
description of even the most important ones would exceed the scope of this publication 
many times, which is why only one very simple method will be presented.  

One of the simpler methods of determining digital PID controller parameters is the 
method called Direct Synthesis tuning rules [61], based on first-order model approxima-
tion. In this method, it is necessary to know the gain of the object in the open loop kp and 
the time constant τp. The excitation value of the regulator kc is determined from the equa-
tion 

Figure 21. Time waveforms of the PI controller, closed-loop step response of second-order object,
u(t)—green, y(t)—blue, x(t) = 0.2→ 0.7, Ti = 0.5, kc = 2.0.
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6. Tuning the PID Controller

After successfully implementing a digital PID controller, the first question is how to
tune a PID controller. That is, what should be the values of the three basic parameters of
the regulator kc, Ti and Td. Probably the first, and certainly the best known, are the Zeigler–
Nichols rules. Published in 1942 [59], Zeigler and Nichols described two methods of tuning
a PID loop. Over several decades of using regulators, many rules have been created to
address the question of how to tune a PID controller. This problem is so ubiquitous that
thousands of publications on this subject can be found in the literature [30–34,54,60]. The
description of even the most important ones would exceed the scope of this publication
many times, which is why only one very simple method will be presented.

One of the simpler methods of determining digital PID controller parameters is the
method called Direct Synthesis tuning rules [61], based on first-order model approximation.
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In this method, it is necessary to know the gain of the object in the open loop kp and the
time constant τp. The excitation value of the regulator kc is determined from the equation

kc =
1

kpτratio
(14)

where τratio defines the speed of response.
While the value of the integral time Ti parameter is τp, the value of derivative time

Td = 0. Depending on the requirements, the value of τratio is selected from the range 1 to 4.
For a value of 1, the response of a closed system will be the fastest, and for a value of 4, the
response will be the slowest. For the control objects under consideration, the usefulness of
this method has been confirmed in practice.

7. Students Tasks

The primary purpose of the automatic control laboratories is to provide students
enrolled in the fundamental automatic control course with a practical understanding
of feedback control principles, especially in the real-time process. Through hands-on
experimentation, students will learn how to determine the dynamic properties of real
systems and adjust the PID controllers accordingly. It is possible to find examples of
laboratory tasks on the web pages of many universities, for example [62–64], or in some
papers [44–51], [65–69].

Typically, student assignments are divided into five basic stages: identification of the
process, calculation of the PID controller parameters, implementation of the PID controller,
testing of the closed-loop with PID controller, and analysis of the results.

7.1. Identification of the Process

At the beginning of the laboratory exercise, the task of students is to identify the
parameters of the tested object, which are determined by the gain of the object in the
open-loop kp and the time constant τp, and time delay τd. These parameters are determined
from a unit-step response of the process. Examples of object step responses are shown in
Figures 13 and 19.

My didactic practice shows that in order to deepen the knowledge of students, it is
required that they also implement a simple hysteresis regulator, as shown in Figure 23.
Examples of waveforms for such a controller are shown in Figure 24.
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7.2. Calculation of the PID Controller Parameters

In the next step, the student’s task is to calculate the values of the PID controller
parameters kc, ki and kd for the given control parameters and the selected method. They are
also encouraged to check the obtained results by performing simulation tests, for example
using Matlab or Matlab-Simulink.

7.3. The PID Controller Implementation

The PID controller is implemented by students based on algorithms presented in
Sections 2–5. Students are also encouraged to create their implementations of the PID
controller. For the more talented students, it is recommended they implement the PID
controller with autotuning.

7.4. Testing of Close Loop with PID Controller

During the tests of the closed-loop system, the quality parameters of the regulation are
examined, such as rise time, overshoot, settling time, steady-state error, stability, etc. Typi-
cally, these parameters are determined from a unit-step response of a closed-loop system.

7.5. Analysis of the Results

Finally, students are required to prepare a written report on the research carried out
and an analysis of the research results obtained.

The solutions presented in the paper have been successfully tested in practice during
distance learning during the COVID-19 pandemic. These methods were used during the
distance learning of the classes in Design of Industrial Control Systems, Digital Signal Pro-
cessors and Microcontrollers, and Foundations of Digital and Microprocessor Engineering,
and they were successfully used by over one hundred graduate or undergraduate students.
Currently, these laboratory tasks are conducted under on-site conditions.

The laboratory also serves students specializing in systems identification, providing
them with practical experience in evaluating the strengths and weaknesses of various
methods for modeling real dynamic systems.

In addition to regular instruction, the automatic control laboratory continuously
supports master’s and bachelor’s thesis research, as well as student projects.
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8. Conclusions

In the paper, the original implementation of the digital PID controller using the most
popular and simple Arduino Uno module is presented. The developed systems are a cheap
alternative to more expensive professional systems designed for the implementation of
control systems.

The proposed system removes the main disadvantage of the available implementations
of the digital PID controller for Arduino modules, which is the variable sampling period.
The advantage of this solution is that the algorithm of the digital PID controller is calculated
every constant period of time. An identical solution was presented for STM32 modules on
the example of the STM32G491RE module.

Of course, the solutions shown in the paper can be successfully used to test other
control algorithms. For example, both implementations of Arduino and STM32 were used
to test the control system with a hysteresis regulator.

When using Arduino Uno modules with an 8-bit AVR microcontroller, it can only
be used to control slow-variable processes with a time constant of the order of seconds.
However, when using STM32 modules, the capabilities of ARM processors are much greater,
and they can be applied to objects with a time constant of milliseconds.

It should be emphasized that using the Arduino IDE development environment is
very simple and does not cause problems for students.

Both the solutions presented in the paper have been successfully tested in practice
by students during remote learning during the COVID-19 pandemic. It should be noted
that even after the end of the pandemic, the developed solutions remain very useful in the
process of teaching students automatic control techniques.

The solutions presented in the paper can also be successfully applied to other applica-
tions, such as motor control, digital signal processing, power electronics, etc.
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Abbreviations

A/D Analog-to-digital converter
D/A Digital-to-analog converter
DSP Digital signal processor or digital signal processing
MCU Microcontroller unit
PID Proportional–integral–derivative controller
PWM Pulse width modulation
e(t) Error value
f Frequency
f s Sampling frequency
kc Controller gain
τd Controlled system time delay
τp Controlled system time constant
τratio Defines the speed of response of control system
t Time
Td Derivative time
Ti Integral time
Ts Sampling period
x(t) Desired process value or setpoint
y(t) Measured process value
u(t) Control variable
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Appendix A

The program implementing PID controller for Arduino Uno is shown in Listing 3.

Listing A1. Program implementing PID controller for Arduino Uno.
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ISR (ADC_vect) // ADC interrupt 
 { 
 digitalWrite(LED_BUILTIN, HIGH);  // turn the LED on (HIGH is the voltage level) 
 y=float(ADC/1024.0); // range of ADC 0...1023,  
 // ---- PID controller ------ 
 e=(x-y); 
 ui=Kc/Ti*Ts/2*(e+e_1)+ui_1; // integral term 
 if(ui>1) ui=1; else if(ui<-1) ui=-1; 
 ud=Kc*Td/Ts*(e-e_1); // derivative term 
 u=e*Kc+ui+ud; 
 u=u+x; // works faster 
 ui_1=ui; 
 e_1=e; 
 // --- end of PID controler 
  
 if(u>1) u=1; else if(u<0) u=0; 
 upwm=(int)(u*255+0.5); 
 out=(int)((e+1)*127+0.5); 
 analogWrite(U_PWMP, upwm); 
 analogWrite(Out_PWMP, out); 
 digitalWrite(LED_BUILTIN, LOW);   // turn the LED off by making the voltage LOW   
 }  // -------------------- end of ADC_vect ------------------------------------------- 
  
EMPTY_INTERRUPT (TIMER1_COMPB_vect); 
  
void setup () 
 { 
 pinMode(LED_BUILTIN, OUTPUT); 
 pinMode(U_PWMP, OUTPUT); 
 pinMode(Out_PWMP, OUTPUT); 
 // reset Timer 1 
 TCCR1A = 0; 
 TCCR1B = 0; 
 TCNT1 = 0; 
 TCCR1B = bit (CS11) | bit (WGM12);  // CTC, prescaler of 8 
 TIMSK1 = bit (OCIE1B);  // WTF? 
 OCR1A =  2047; // 976.165Hz  
 OCR1B =  2047; // 976.165Hz - sampling frequency  
 ADCSRA =  bit (ADEN) | bit (ADIE) | bit (ADIF);  // turn ADC on, want interrupt on com-
pletion 
 ADCSRA |= bit (ADPS2);  // Prescaler of 16 
 ADMUX = bit (REFS0) | (adcPin & 7); 
 ADCSRB = bit (ADTS0) | bit (ADTS2);  // Timer/Counter1 Compare Match B 
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 ADCSRA |= bit (ADATE);  // turn on automatic triggering 
 }  // end of setup 
 
void loop () { // empty main loop 
 } 
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67. Uğur, M.; Savaş, K.; Erdal, H. An internet-based real-time remote automatic control laboratory for control education. Procedia Soc.
Behav. Sci. 2010, 2, 5271–5275. [CrossRef]

68. Rossiter, J.A.; Dormido, S.; Vlacic, L.; Jones, B.L.; Murray, R.M. Opportunities and good practice in control education: A survey.
IFAC Proc. Vol. 2014, 47, 10568–10573. [CrossRef]

69. Barber, R.; Horra, M.; Crespo, J. Control Practices using Simulink with Arduino as Low Cost Hardware. IFAC Proc. Vol. 2013, 46,
250–255. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://e2e.ti.com/blogs_/b/industrial_strength/posts/teaching-your-pi-controller-to-behave-part-i
https://e2e.ti.com/blogs_/b/industrial_strength/posts/teaching-your-pi-controller-to-behave-part-i
https://doi.org/10.1109/NILES50944.2020.9257888
https://doi.org/10.1016/j.sbspro.2010.03.859
https://doi.org/10.3182/20140824-6-ZA-1003.00264
https://doi.org/10.3182/20130828-3-UK-2039.00057

	Introduction 
	Realization of Digital PID Controller 
	Controlled System Simulators 
	Realization of Digital PID Controller Using Arduino Module 
	Realization of Digital PID Controller Using STM32G491RE-Nucleo 
	Tuning the PID Controller 
	Students Tasks 
	Identification of the Process 
	Calculation of the PID Controller Parameters 
	The PID Controller Implementation 
	Testing of Close Loop with PID Controller 
	Analysis of the Results 

	Conclusions 
	Appendix A
	References

