
Citation: Rabzelj, M.; Južnič, L.Š.;

Volk, M.; Kos, A.; Kren, M.; Sedlar, U.

Designing and Evaluating a Flexible

and Scalable HTTP Honeypot

Platform: Architecture,

Implementation, and Applications.

Electronics 2023, 12, 3480. https://

doi.org/10.3390/electronics12163480

Academic Editor: Elias Stathatos

Received: 31 July 2023

Revised: 14 August 2023

Accepted: 14 August 2023

Published: 17 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Designing and Evaluating a Flexible and Scalable HTTP
Honeypot Platform: Architecture, Implementation,
and Applications
Matej Rabzelj 1,* , Leon Štefanić Južnič 1 , Mojca Volk 1 , Andrej Kos 1 , Matej Kren 2 and Urban Sedlar 1

1 Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
leon.stefanic-juznic@fe.uni-lj.si (L.Š.J.); mojca.volk@fe.uni-lj.si (M.V.); andrej.kos@fe.uni-lj.si (A.K.);
urban.sedlar@fe.uni-lj.si (U.S.)

2 Aviat Networks, 1236 Trzin, Slovenia; matej.kren@aviatnet.com
* Correspondence: matej.rabzelj@fe.uni-lj.si

Abstract: Digitalization of our economy and society has ushered in notable productivity increases but
has also exposed more of our infrastructures and systems to cyberattacks. This trend is exacerbated by
the proliferation of poorly designed Internet of Things (IoT) devices and cloud services, which often
lack appropriate security measures, either due to bugs or configuration mistakes. In this article, we
propose, validate, and critically evaluate a flexible honeypot system based on the Hypertext Transfer
Protocol (HTTP) that can mimic any HTTP-based service and application. This covers a large share of
IoT devices, including black box devices with no software or firmware available for emulation, as
well as cloud- and web-based services. We validate the system by implementing 14 services and by
running a 4-month experiment, collecting data from attackers. We propose a novel data enrichment
mechanism for identifying internet scanning services, as well as several other data collection and
enrichment approaches. Finally, we present some results and visualizations of the data collection
experiment, demonstrating possible applications and future use cases, as well as potential drawbacks
of such systems.

Keywords: cybersecurity; honeypot; honeynet; HTTP protocol; Internet of Things; cloud computing;
fingerprinting; data fusion

1. Introduction

The rapid development of modern technology has enabled the digital transforma-
tion of the economy and society, as well as the digitalization of domains that provide the
underlying environment for the stable and secure functioning of nations and states as a
whole. This includes essential services, such as energy, health, transport, water, banking,
communications, and also defense. Billions of Internet of Things (IoT) devices are being
used today in safety-critical applications, such as industrial control systems (ICSs), eHealth,
critical infrastructures, public protection and disaster relief (PPDR), vehicular ad hoc net-
works (VANETs), and others [1,2]. While representing essential infrastructures that create
massive volumes of data, drive industries, and create financial opportunities, the domain
has accordingly attracted the significant attention of cybercriminals and today represents
one of the most complex and lucrative cybersecurity targets. IoT and cloud computing,
in fact, represent two of the most relevant scenarios for cybersecurity, the application and
management of which are also the main barriers for its extended deployment and adoption
in different verticals [2–4]. In response, cybersecurity in both domains has seen significant
developments in recent years. While cryptography, firewalls, anti-malware and anti-virus
solutions, intrusion detection systems (IDSs), and intrusion prevention systems (IPSs) play
an important role in protecting such systems, specific deception technologies are also

Electronics 2023, 12, 3480. https://doi.org/10.3390/electronics12163480 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163480
https://doi.org/10.3390/electronics12163480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-8604-7020
https://orcid.org/0000-0003-3846-6781
https://orcid.org/0000-0003-0971-3114
https://orcid.org/0000-0002-7934-0459
https://orcid.org/0000-0003-3691-0287
https://orcid.org/0000-0003-2836-5493
https://doi.org/10.3390/electronics12163480
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163480?type=check_update&version=1


Electronics 2023, 12, 3480 2 of 26

needed, i.e., honeypots and honeynets, designed to deliver transparent observations of
cyberattack behavior and collection of more detailed and actionable intelligence [2].

The use of honeypots in information technology (IT) environments has served for
decades to detect and monitor cybersecurity trends. Some of the most well-known and
established general frameworks include a low-interaction honeypot for attack and malware
detection, Dionaea [5], SSH/Telnet honeypot Cowrie [6], and Honeytrap solution [7,8].
In IoT specifically, however, the use of honeypots and deception technology continues
to be associated with numerous challenges that originate from the fact that we are faced
with an extremely heterogeneous and highly distributed ecosystem of devices not seen
in any other domain. The complexity of tackling vulnerabilities of existing and newly
deployed IoT devices and cyberattack trends by means of using honeypots is extreme
and determined by the volume and diversity of devices that must be mimicked, both in
terms of supported services and in their physical connectivity properties [1,9]. The range
of risks is immense, and so is the range of types of cyberattacks. Some of the most common
examples of IoT characteristics creating vulnerabilities are dynamic and transient device
connectivity, weak authentication protocols, physical access to devices in unattended
premises, unprotected wireless networks connecting the devices into the system that allow
for eavesdropping, limited availability of storage, energy, and computational resources
preventing installation of more complex security protection, billions of deployed IoT devices
that are left unattended or cannot be upgraded with appropriate security mechanisms,
as well as the fact that the vulnerabilities of devices extend into the connected services and
applications, which makes wide-scaled attacks specifically challenging [1,2,9,10]. Moreover,
as many IoT devices heavily rely on the web service architecture and make use of web
technologies and protocols, such as the Hypertext Transfer Protocol (HTTP), to facilitate
remote management, configuration, and cloud communication, this also exposes them
to an immense number of threats targeting their application-layer interface. Since the
HTTP protocol is a common denominator, powering numerous IoT devices, cloud-based
services, application programming interfaces (APIs), and full-stack web applications in
the IT, IoT, and even operational technology (OT) domains, it is an alluring target for
malicious actors and security researchers alike. Such a volume and diversity of threats,
combined with limitations in installing security mechanisms and proliferation of zero-
day exploits, must be addressed with advanced security-based intelligence focusing on
proactive detection of abnormalities [1,8], which can be established through well-thought-
through combinations of technologies and methods, including the use of honeypots and
honeynets, IDS/IPS systems, application-level gateways (ALGs), and web application
firewalls (WAFs), and extended and enhanced with the power of machine learning (ML)
and artificial intelligence (AI) algorithms. In this context, IoT and HTTP honeypots play a
crucial role in capturing and analyzing incoming network requests, recording application-
layer sessions and profiling visitors to distinguish legitimate users from botnet components,
and serving crafted device or service models to deceive attackers while collecting data
about their actions.

In order to capture and study the cyber threat landscape in the cloud, IoT, and web
domain better, we propose, design, and implement a flexible HTTP honeypot system that
can mimic any HTTP-based service or application. We position the developed honeypot
platform as the main contribution of our paper and describe it in detail. We then validate its
functionality by implementing 14 different honeypot services encompassing web applica-
tions (e.g., content management systems, database administration tools), Internet of Things
devices (e.g., network cameras, network storage devices), and cloud services (e.g., database
solutions, cloud infrastructure services), and running a 4-month-long experiment collecting
attacker data. Next, we propose and demonstrate a novel honeypot-based mechanism for
identifying internet scanning services and implement several data collection and enrich-
ment approaches, including client-side browser fingerprinting, identification of Common
Vulnerabilities and Exposures (CVEs), and request header profiling. Finally, we critically



Electronics 2023, 12, 3480 3 of 26

evaluate the system’s viability for profiling and classifying the attackers by demonstrating
multiple use cases on the collected dataset.

1.1. State of the Art

We provide hereafter a short review of interesting implementations of low- and
high-interaction honeypots and IDS and IPS systems, designed specifically for IoT, HTTP
services, and cloud environments, with a focus on supporting different types of capabilities
for cyberattack detection, monitoring, and collection of actionable cyber threat intelligence
(CTI). However, it has to be noted that the dividing line between the IoT and cloud domains
can be blurred, as both fields in many use cases converge on network protocols and
infrastructure components and appliances, such as routers, switches, network attached
storage (NAS), server-integrated Lights-Out (iLO) management interfaces, infrastructure
controllers, uninterruptible power supplies (UPS), and the rest.

Low-interaction honeypots are typically designed for simple attacks and provide less
actionable evidence for cybersecurity research [1]. Examples are numerous and extremely
diverse, including e.g., Honeycam mimicking an Internet Protocol (IP) camera [1], IoT
Honeypot exposing Telnet services [11], and HoneyIo-4 [12] capable of mimicking four
types of IoT devices (a camera, a cash registry, a printer, and gaming console), and a
honeynet built for a smart home IoT environment [13] mimicking a network video recorder,
IP cameras, an IP door phone, and a set-top box in combination with a ViPNet IDS.

High-interaction honeypots mostly focus on mimicking entire devices rather than just
selected protocols and services, and on the delivery of self-adaptive capabilities, allowing
the honeypot to extend the range of behaviors adaptively and simulate different IoT devices
to prolong the attack duration. Some examples of IoT honeypots capable of emulating
entire devices and adapting their behavior are FIRMADYNE, ThingPot, IoTCandyJar,
Chameleon, and Honware. FIRMADYNE is an extensible, self-adaptive, and automated
framework capable of emulating commercial off-the-shelf (COTS) IoT devices based on
an instrumented kernel. It features a Web crawler for firmware discovery, emulation
capabilities, and dynamic analytics [14]. ThingPot was initially implemented to simulate
an IoT platform with all supported application-level protocols, including, e.g., a Philips
Hue smart lighting system [15], and was later extended with supervised machine learning
(ML) for adaptive capabilities and distributed denial of service (DDoS) detection [16].
IoTCandyJar combines low and high interaction capabilities, exploiting ML with a Markov
decision process for the discovery of the most suitable IoT device behaviors to extend attack
sessions [17]. Chameleon is another self-adaptive IoT honeypot that utilizes a similar low-
and high-interaction approach, which allows it to progressively improve responses for
the devices that are being queried [18]. Honware is an adaptive high-interaction example,
capable of simulating diverse IoT devices by processing a standard firmware image and
extracting and adapting the file system accordingly [19].

Other examples of honeypot implementations include SIPHON [20], a scalable IoT
honeypot platform designed specifically to mimic geographically dispersed IoT devices
through wormholes, an ML-enhanced Cowrie implementation for Secure Shell (SSH) and
Telnet observations [21], IRASSH-T, which is also focused on SSH/Telnet and presents
adaptive capabilities based on reinforcement learning for reward function optimization [22],
and a study that used three Cowrie honeypots to emulate an IoT system [23]. Numerous
other examples can be found in the literature focusing on different types of new or extended
honeypots to study various types of IoT cyberattacks, including Mirai botnet attacks, DDoS
attacks, attacks only on SSH and/or Telnet, man-in-the-middle attacks, fileless malware
attacks, and others [2]. Furthermore, numerous development efforts take the approach of
training and extending the complexity of their frameworks by starting with a combination
of a low-interaction honeypot and various types of scanning tools to discover, catalog,
and fingerprint IoT devices and device families connected to the Internet, which is then
followed by extending and fine-tuning the low-interaction honeypot into a high-interaction
one. For example, a hybrid IoT honeypot framework, IoTCMAL [24], uses low-interaction



Electronics 2023, 12, 3480 4 of 26

services such as SSH and Telnet in combination with high-interaction services hosted on
physical devices and virtual private clouds. Researchers in [25] developed a honeypot
framework U-PoT, focusing specifically on the emulation of UPnP-enabled IoT devices
and extended with capabilities for automated IoT honeypot creation based on fingerprint
documentation. Ref. [1] used IoTScanner for device discovery and IoTLearner to improve a
low-interaction honeypot with an algorithm based on neural networks for more advanced
response prediction. Other examples combine honeypots and honeynets with other tools,
such as sandboxes and IDS systems. Ref. [26] proposes an IoT-BDA framework for auto-
mated IoT botnet detection, identification, analysis, and reporting by integrating honeypots
with a sandbox, which allows for a wider range of supported configurations as well as
additional capabilities to detect anti-analysis, persistence, and anti-forensics techniques.
Similarly, IoTPOT [27,28] combines honeypot and sandbox capabilities to implement a
medium-interaction trap exposing Telnet services and a malware sandbox emulating vari-
ous embedded system environments. Honeynet is another well-known project involving
high-interaction honeypots based on COTS IoT devices to complement IDS.

The design of a concrete IoT honeypot implementation is defined by the type of IoT
devices we want to focus on and the range and type of cyberattacks that we want to
address. Our research shows that the HTTP protocol and services are some of the most
impactful attack vectors, for a number of reasons. Firstly, HTTP is one of the most widely
used application-layer protocols on the Internet and adopted by many IoT devices for
data transfer, cloud services, remote control, and user interaction through web interfaces,
all of which are critical interactions that must be protected in order to prevent unautho-
rized access and maintain the confidentiality, integrity, and authenticity of the information
being exchanged. Weak HTTP protection in IoT is often exploited, e.g., for establishing
botnets, which facilitates malicious infection and control of IoT devices, malware spread-
ing, and even organization of large-scale DDoS attacks, as well as for other cyberattack
types. In fact, a web honeypot exposing HTTP endpoints can facilitate the detection of
several different potentially malicious cybersecurity activities exploiting a broad range
of tools and attack methods. However, in the realm of web applications, visitors may
access a website for various intentions. An HTTP honeypot could receive organic visits
from users mistyping the uniform resource locator (URL) of the service, receive periodic
requests by scanners, crawlers, and bots performing site examination for indexing and
data retrieval, or encounter malevolent users performing exploratory target analysis in an
attempt to exploit the service. Therefore, research in this field makes use of user, attacker,
and service modeling to design and deploy generic-service or IoT-specific HTTP honeypots,
classify their visitors, and extract, monitor, detect, and study the activity of malicious
actors. Moreover, HTTP honeypots bear the potential to distinguish advanced persistent
threats from automated bot traffic by detecting targeted web scans and human actors
performing heuristic service investigations during the reconnaissance phase preceding a
potential attack [29]. Lastly, in addition to SSH/Telnet attacks, HTTP attacks are among
the most common occurrences detected using network telescopes and IoT honeypots and
honeynets [2,10], yet the reviewed literature shows that HTTP honeypots and honeynets
continue to be underrepresented. Some examples of HTTP honeypot implementations are
summarized in Table 1.

Table 1. Comparison of HTTP honeypot implementations.

Project Honeypot Type Level of Interaction Supported Attack Types

Dionaea [5] General Medium N/A

HoneyPy [30] General Low/Medium N/A

IoTPOT [31] IoT Hybrid Brute force attacks, Hajime, ZmEu attacks



Electronics 2023, 12, 3480 5 of 26

Table 1. Cont.

Project Honeypot Type Level of Interaction Supported Attack Types

Dowling [32] IoT Medium
Dictionary attack, brute-force attacks,
reconnaissance attacks, botnet attacks,

launch attacks, individual attacks

HoneyIo4 [12] IoT Low Reconnaissance attacks

SIPHON [20] IoT High Brute-force login attempts

Metongnon [10] IoT Low/Medium Reconnaissance attacks

Scalable VPN-forwarded
honeypots [33] IoT High N/A

Lingenfelter [23] IoT Medium Botnet attacks

Firmadyne [14] IoT, entire device emulation Reconnaissance attacks, buffer overflow

IoTCandyJar [17] IoT, entire device emulation HTTP (HEAD, OPTIONS, CONNECT),
TCP, UDP, RTSP

Pandora [34] General Low Login attempts, port scan attacks

Bartwal [35] General Hybrid HTTP attacks (XSS, SQLi, OSC), DDoS,
botnet attacks

X-POT [36] IoT, entire device emulation Hybrid N/A

HoneyCamera [37] IoT Low Login attempts, command injection,
shellshock

1.2. Motivation

HTTP has, throughout the last two decades, emerged as a universal and widely
used data exchange protocol. In addition to its applications in the IoT world, it also
powers a broad range of cloud applications and application programming interfaces. Due
to its popularity and the number of HTTP-based attacks and tools (including endpoint
enumeration, URL and payload fuzzing, structured query language (SQL) and command
injection, cross-site scripting, etc.), it has become a notable attack vector of many systems,
be it consumer-facing, professional, or even mission critical. This is supported both in the
scientific literature [38] and in our own research [39,40], where we observed large increases
in unwanted and malicious traffic throughout the years, as well as a relative increase in
HTTP-based traffic compared with other protocols. Thus, we reviewed and evaluated
various HTTP honeypot implementations (Table 1) with the aim to deploy our own HTTP
sensor network. However, since many of the aforementioned solutions were tailored to
rather specific use cases, we decided on the development of our own honeypot system. We
aimed to design a scalable and flexible HTTP honeypot platform that can mimic a wide
variety of systems in addition to IoT devices. This includes HTTP-based cloud APIs as
well as fully interactive web applications, designed to capture rich application-layer attack
data that can be fused with data collected on the underlying network stack to provide
comprehensive insight into attacker activity. For this, we aimed to bring together multiple
technologies that are commonly used in other, non-cybersecurity-related domains, such
as service modeling and data visualization, behavioral user analysis, advanced browser
fingerprinting techniques, novel scanner service identification mechanisms, cross-layer
data fusion, and open CTI data augmentation, enabling the creation of rich attacker profiles.

1.3. Structure of the Paper

The rest of the paper is structured as follows. Section 2 describes the proposed
system in terms of identified requirements, architecture, and actual implementation. It also
outlines our proposed approach towards the selection of relevant services to be modeled as
honeypots and describes some of the already supported technologies. Section 3 describes



Electronics 2023, 12, 3480 6 of 26

experimental results, including the experiment setup, structure of the data set, and different
applications that validate the approach. These include crawler and bot detection, together
with a novel approach towards crawler identification, browser and operating system
fingerprinting, identification of the used Common Vulnerabilities and Exposures (CVEs),
and different data visualizations. In Section 4, we briefly discuss some of the encountered
challenges, design decisions made, and lessons learned during the platform development
and deployment. Lastly, in Section 5, we critically assess the advantages and disadvantages
of the presented approach, conclude our work and outline prospects for future work.

2. Proposed System

In this section we outline the system requirements, and, based on these, design the
system architecture and implement a scalable and flexible platform for capturing and
analyzing attacker traffic. The proposed design has been iteratively refined throughout
multiple research and development projects and is based on a number of requirements,
engineering sessions, and discussions with national cybersecurity-related stakeholders.

2.1. Requirements Identification

Based on the literature review [41–43], we identified several stakeholder groups
that would benefit from such a solution in the space of Internet of Things, and cloud
and web services, and held multiple discussions and interviews at the national level.
Additionally, we performed an extensive review of the literature and funded research
projects to identify further requirements, which led to a high-level list of 35 functional
and 7 non-functional requirements. Functional requirements are further categorized into
9 subgroups (communication, protocols, models, logging, data enrichment, data analysis,
dynamic response, user interface, and data export), while non-functional requirements
encompass the architectural decisions and deployment strategy, as well as the detection,
usability, and security of the solution. Requirements were then prioritized as: (1) high
priority—necessary implementation for basic use cases; (2) medium priority; and (3) low
priority—possible later implementation for specialized use cases. All requirements are
shown in Figure 1.

Figure 1. Identified functional and non-functional requirements. Functional requirements are cate-
gorized into 9 groups: communication, protocols, models, logging, data enrichment, data analysis,
dynamic response, user interface, and data export. Non-functional requirements encompass archi-
tectural decisions, deployment strategy, detection, usability, and security of the solution. Priority is
denoted with a number next to each requirement. Priority 1 is the highest and priority 3 is the lowest.

2.2. System Architecture

We approached the platform design in accordance with the identified requirements.
We prioritized three crucial aspects narrating the system architecture: high scalability in



Electronics 2023, 12, 3480 7 of 26

terms of deployed honeypots and supported services (allowing us to deploy new sensors
swiftly in diverse environments), adaptability (enabling effortless refinements of honeypot
responses and allowing quick adaptation to the changing cybersecurity landscape), and effi-
cient data collection to facilitate analytics and enable fast learning. The integrated scalability
thus enhances the system’s coverage, and a dynamic and adaptable honeypot response
mechanism ensures the system’s agility and augments its responsiveness to emerging
threats, while the centralized data collection pipeline enables data aggregation and analysis
in a unified manner.

Accordingly, we implemented a robust microservice-based platform, combining dis-
tributed honeypot units with centralized logic, management, and data collection functional-
ities. For efficient communication between the honeypot units, the central control, and the
central data store, we favored robust communication mechanisms. Remote honeypot units
communicate with the central control system using representational state transfer (REST)
APIs with added local caching to ensure performant responses and maintain a sufficient
degree of autonomy. We employed log shipping to ensure the delivery of new data to the
central data processing system and facilitate streamlined data processing. In summary,
the devised architecture design consists of three integral components (see Figure 2):

• Honeypot units, which receive requests from attackers and form replies based on the
provisioned behavior; these can operate different modes, either autonomously, or by
proxying the attackers’ requests to the central control system, where responses can be
prepared with greater control.

• A central control system with APIs, databases and control logic; it registers and
manages honeypot nodes, acts as the source of the latest response models, and in the
proxy mode continuously receives requests from the honeypot units and prepares
responses according to the content of the request.

• The data pipeline, which ships all request logs to a storage cluster, distributes the
metadata to enrichment workers, and runs analyses.

Honeypot 
Unit

Log shipping
(Filebeat)

Honeypot 
Unit

Log shipping
(Filebeat)

Honeypot 
Unit

Log shipping
(Filebeat)

Honeypot 
Unit

Log shipping
(Filebeat)

Log collection
(Logstash)

APIs

Mgmt
data

Cached 
responses

Request middleware

Search middleware

Response middleware

Re
sp

on
se

 g
en

er
at

io
n

U
ni

t m
an

ag
em

en
t

Virtualized / 
containerized 

reference
services

Service

Management APIs

Management web GUI

NoSQL cluster
(Elasticsearch)

Message 
queue

Aggregation 
and export

Enrichment

Enriched 
metadata

EnrichmentEnrichment
workers

External data
sources

Final enriched
dataset

Analytics
(Spark, Python, 

Tableau)

Honeypot 
Unit

Request 
logging

control

data

Log shipping (Filebeat)

Backend management logic Honeypots Data pipeline and analytics

Local
cache

Service
Service

Figure 2. High-level architecture of the distributed honeypot system.

2.2.1. Central Management

The central management server is responsible for remote honeypot configuration,
as well as for generating responses to individual honeypot nodes. As such, it represents a
reference point for all models, and it allows the data to be centrally upgraded. Responses
to requests are propagated to final honeypot nodes, where they are cached; this can greatly
improve performance in the case of distant nodes (e.g., a different continent, where each
request would require a long round-trip time). In the first approximation, we assume
that the models will not change so quickly that a different way of distributing them to the
honeypot nodes would be necessary.



Electronics 2023, 12, 3480 8 of 26

The central back-end can generate a response in two ways, depending on the chosen
technology. The first, low-interaction, mode of operation relies on answers for the selected
technology that are statically stored in the database. In this case, the answers must be
previously enumerated and added to the collection, which is possible either manually, or in
an automated way by crawling a service. In both cases, we want the ability subsequently to
modify certain fields dynamically in the response (e.g., current date, time, random strings,
blockchain addresses, etc.), depending on the technology configuration. The second mode
of operation can yield high-interaction honeypots and relies on dynamically generated
responses based on proxying a request to a real reference service. This mode can support
arbitrarily complex services but requires access to the actual software behind the service.

2.2.2. Honeypot Nodes

The honeypot node acts primarily as a specialized and highly configurable HTTP
proxy, with the configuration being remotely managed by the central system; however,
if need be, the configuration can also be stored locally to make the honeypot autonomous.
The honeypot node HTTP server also performs the TLS termination, but does not answer
any requests directly; all of the HTTP requests are proxied, either to a central system, which
can serve static (cached) responses from a database of already modeled services, or to
a virtualized/containerized reference service, which can be either centrally deployed or
co-located on the node host. On the data collection part, the honeypot node HTTP server
logs all incoming requests to a rotating log file that is shipped to central storage.

2.3. Threat Impact Assessment for Service Identification

The usefulness of the platform is directly dependent on the types of supported hon-
eypots. The potential impact of any findings based on the collected data for a particular
modeled service increases with the service’s popularity, the number of its known vul-
nerabilities, and the estimated cost of the breach, but can be reduced by appropriate
countermeasures and security compliance.

Initially, we chose a number of technologies based solely on popularity, such as Word-
Press, Joomla, PhpMyAdmin (web apps), several IoT devices (HikVision webcam, HP
and Epson networked printers), cloud infrastructure (VMWare vSphere Server, Open-
Stack, MongoDB), storage appliances (various network-attached storage systems), and oth-
ers. However, to make the selection more systematic, we designed a metric called the
cyber-threat impact score [44], which could be used to prioritize the supported honeypots
even better:

cyberthreat impact score =
Vd × Bc

Ce × Ci
× Uc, (1)

Here, Vd represents the vulnerability density of the app, Bc is the estimated breach
cost, Ce is the effectiveness of the countermeasures, Ci represents the compliance index,
and Uc is the real-world install base. These factors can be difficult to determine in practice
and are subject to actual use case, intent, and capability of the owner, and number and
availability of deployed services or devices. Nonetheless, by making certain assumptions
and simplifications to the formula, a usable score to rank the technologies can be obtained:

• To estimate the vulnerability density, Vd, we first need to estimate the code base size,
which is easily doable for open-source projects only; for closed-source projects, the code
base size has to be approximated with a similar project in terms of functionality;

• For the number of known vulnerabilities, the first approximation can be obtained by
querying a CVE database;

• To estimate the breach cost, we can first estimate the risk level of the application
(low-risk applications with insignificant breach consequences to mission-critical apps
with severe service disruption as a consequence) and map it to the interval from 0 to
1; for this, we propose to use the sigmoid function; however, the initial risk should
be estimated on a per-use-case basis, which makes this impractical. To simplify the



Electronics 2023, 12, 3480 9 of 26

calculation, the factor can be assumed as a constant of 0.5 and, if need be, adjusted
upwards for intrinsically risky applications, or downwards for less risky applications.

• Effectiveness of countermeasures could be estimated based on lookups in counter-
measure databases such as [45]. This factor then signifies the average countermeasure
effectiveness for known vulnerabilities.

• The existence of countermeasures represents no guarantee that these countermeasures
are implemented. To get around this, we can assume the compliance index factor
is a constant, signifying that all known countermeasures are implemented, or that
none are.

• Finally, the installed base of the application could be estimated using market research,
download counters, etc. However, the most reliable and consistent data in our expe-
rience come from internet surveys, obtained from scanners such as Shodan, Censys,
and similar.

2.4. Implementation Details

In the following subsections, we provide the details regarding the practical implemen-
tation of the system. We discuss our main considerations and disclose the rationale behind
our choices.

2.4.1. Central Management

The central control system stores the canonical state of all configured services and gen-
erates responses to the underlying honeypot units based on the configurations. The system
is implemented in Python and includes a relational database with honeypot configuration
data, along with basic request statistics that are needed for decision logic. The honeypot
configuration data include the emulated device or service technology, service port, hit
counter, and a link to the service model table. The latter stores the honeypot URL endpoints
with the corresponding service responses, their counter, and headers. In addition, a fast
in-memory Redis store with data persistence is used to store all service assets (HyperText
Markup Language (HTML) bodies, Cascading Style Sheets (CSS) and JavaScript (JS) files,
and binary files) required for the honeypot operation.

The central system exposes two sets of APIs, one for the honeypot operation and
another for the management interface, where settings and payloads can be manually edited
(Figure 3). This is useful for streamlined manual inspection of responses, enabling on-the-
fly adaptability. The interface allows for the replacement of static text with dynamic fields
(e.g., date and time), as well as other modifications, such as the inclusion of client-side
profiling code (e.g., cookies, local storage tokens, and advanced JavaScript-based client
fingerprinting mechanisms).

(a) (b)

Figure 3. Response management graphical user interface. (a) Listing of endpoints for a specific
service. (b) Editing of a specific response with HTTP headers and body.



Electronics 2023, 12, 3480 10 of 26

2.4.2. Honeypot Nodes

Distributed honeypot nodes listen for incoming network connections, forward re-
ceived HTTP requests to the central control system, cache its responses, and serve them
to end users. Simultaneously, they locally log all communications and ship the logs to the
centralized data store.

The honeypot units were developed in Python and rely on the FastAPI framework and
Uvicorn server, among other dependencies. They consist of 5 core modules handling unit
configuration, technology (service) selection, attacker requests, request logging and local log
rotation, and response caching. They are deployed as a composition of Docker containers
including the honeypot server unit, a local Redis store for caching, and a FileBeat container
for log shipping. The units support HTTP and HTTPS operation and are capable of listening
concurrently on multiple Transmission Control Protocol (TCP) ports. This is achieved using
Docker’s port-forwarding options, mapping multiple exposed host ports to a single port
on the container. This effectively mirrors the traffic and reduces central processing unit
(CPU) and memory usage by sparing the listener process of creating a new server instance
for each of the ports. Nevertheless, the honeypot units still preserve information about the
originally targeted ports, and additionally also generate a communication session identifier,
allowing for subsequent analysis of all the associated traffic within a given time window.

Lastly, we developed a novel approach toward web scanner service identification and
embedded its code into the honeypot units. Following our approach, each unit essentially
“watermarks” all outgoing responses by steganographically concealing the information on
the requesting client (e.g., their IP and user agent) in the response headers and payload
itself. This enables us to identify the source of the traffic when a particular response is found
in any of the (public) scanner databases. We further describe this mechanism in Section 3.3.

2.4.3. Data Pipeline

All raw data are collected centrally in an ElasticSearch cluster. The data delivery
process is accomplished using local Filebeat agents on the honeypot units, which forward
the data to the Logstash-based filtering and distribution component. The latter not only
stores the data in the Elasticsearch cluster but also forwards them to the RabbitMQ message
queue, serving as a near-real-time delivery mechanism for all subscribers. The subscribers
in the system are the data enrichment, enumeration, and summarisation utilities that query
the external CTI databases for each newly encountered value, and keep track of data
counters and online statistics.

Data enrichment, linking, and filtering components store their results in a relational
database; this includes resolving the source IP addresses to geolocation objects, resolving
the autonomous system (AS) information, querying IP and Domain Name System (DNS)
reputation databases (e.g., blocklists, abuse reports), cross-matching entries in structured
CVE databases, and classifying the traffic sources (VPN, Tor, proxy lists).

Finally, relevant data from all databases are periodically aggregated and exported into
a portable SQLite format. We find this the most flexible format that is well-supported in
various analytics tools. Nonetheless, certain data analysis tools may also directly query
and extract source data from the centralized Elasticsearch cluster and the accompanying
SQL and NoSQL support databases containing additional resources and aggregate data.

2.4.4. Implemented Honeypots

Device or service honeypot implementation strategies depend on their complexity.
Simple low-interaction web services are crawled in an automated manner and their re-
sponses are stored in a document database. Each service is then inspected for the presence
of potential dynamic fields (e.g., IP addresses, various identifiers, time and date, blockchain
addresses), which are replaced with dynamic variables updated by the response middle-
ware during every request. Such low-interaction service models can be iteratively refined
by listing requests without a matching response rule or by searching for anomalies in
request referer trees, re-crawling, and adding new endpoints to the dataset. Using both of



Electronics 2023, 12, 3480 11 of 26

these techniques, a large number of simple services (e.g., APIs, simple IoT devices, printers,
modems, simple web interfaces, login screens, and status pages, etc.) can be modeled.

High-interaction honeypots, on the other hand, are implemented as transparent pass-
through proxies intercepting and forwarding traffic to real containerized or virtualized
reference services or IoT devices in secure environments, for the sole purpose of providing
accurate dynamic responses whilst capturing the session data. Complex services, devices,
and services under detailed observation can be deployed in this manner to preserve their
internal states and thus act more convincingly. This method is mostly suitable for deploying
honeypots of complex open-source software (e.g., phpMyAdmin, WordPress, etc.), but can
in practice be used with any software or product (Figure 4).

(a) (b)

(c) (d)

Figure 4. Examples of implemented honeypots. (a) A full scrape of an EPSON printer with added
dynamic fields. (b) A full scrape of a VMware vCenter Server management GUI. (c) A full scrape of the
HikVision web camera with added dynamic fields. (d) Proxy mode honeypot to a real containerized
phpMyAdmin instance.

3. Experimental Validation and Results
3.1. Experiment Setup

The experiment was set up to run from 3 March to 14 July 2023 (a total of 132 days).
During that time, a total of 14 honeypot services were deployed on 14 separate IP addresses
in multiple networks. The IP addresses were not actively advertised in any database, forum,
or web page. The deployed honeypots comprised three different types: Internet of Things,
cloud services, and classic web applications. They offered various degrees of interactivity.
Low-interaction honeypots were used to emulate simple devices and web applications
consisting mostly of static websites. Where necessary, these were additionally augmented
with dynamic variable data to provide a higher level of interaction and convincingly
emulate real services. High-interaction honeypots transparently proxied all communication
to containerized complex web applications, thus preserving their state. The deployed
honeypots, along with their type and the level of interaction they provide, are listed
in Table 2.



Electronics 2023, 12, 3480 12 of 26

Table 2. Deployed honeypots, their type, and their provided level of interaction. Low-interaction hon-
eypots augmented with dynamic data variables are categorized by their provided level of interaction
as Low/Medium.

Honeypot Honeypot Type Level of Interaction

EPSON c20600, printer IoT Low/Medium

HP Color LaserJet m552, printer IoT Low/Medium

APC SmartUPS, an uninterruptible power supply IoT, Cloud Low/Medium

MongoDB v2.4 Cloud High

MongoDB v3.2 Cloud High

Openstack v17 Cloud Low/Medium

VMware vCenter Server v6.5 Cloud Low/Medium

QNAP Network attached storage system IoT, Cloud Low/Medium

QSAN Network attached storage system IoT, Cloud Low/Medium

Thecus Network attached storage system IoT, Cloud Low/Medium

IBM Storwize v7000, enterprise storage system IoT, Cloud Low/Medium

phpMyAdmin v5.1.1 Cloud, Web High

Joomla CMS v3 Web High

Joomla CMS v4 Web High

3.2. Acquired Data

The collected datasets include metadata captured at the network, transport, and ap-
plication layers, including all headers of IP packets, TCP segments, and HTTP requests
and responses. To capture the data on IP and TCP layers, p0f was used in parallel with
the honeypot unit’s web server. Such cross-layer visibility allowed us to obtain the TCP
segment and IP packet information, namely the TCP window size and IP Time-to-Live,
which can give hints about the used operating system versions. The data collected at the
HTTP layer included all headers, URLs, methods used, and the request body. For each
request, we also logged whether the response was known or missing, so iterative honeypot
improvements were possible. All collected data were timestamped for calculation of the
time to first contact and the relapse time to recurrent attacks. The general collected request
metadata are displayed in the first section of Figure 5.

All captured and enriched request metadata are listed in subsections of Figure 5.
The data were enriched in a number of ways. Firstly the IP reputation was obtained from a
number of publicly available databases and its reverse DNS record was correlated with DNS
blacklists. The IP reputation metric included various classifications, such as whether the IP
belongs to a data center, is used as a Tor exit node, is a known proxy, or has been previously
reported for abuse. In addition to that, Internet scanning services were identified using
multiple methods, as described in more detail in Section 3.3. Next, the autonomous system
information was obtained from publicly available databases, yielding the owner of the IP
address space. The IP address was also geolocated to obtain approximate visitor location,
including country, city, and longitude and latitude, where available. We also enriched the
request header information using open databases, such as a database of known user agent
(UA) strings to determine whether the UA came from a legitimate web browser, a network
utility, a software library, or whether it was generated by a poorly written algorithm in
an attempt to mimic a legitimate client. Trivial detection of the client’s operating system
and software version was also performed by analyzing the UA string. Finally, we also
developed a powerful, client-based browser fingerprinting system to obtain all available
client capabilities, record and forward information on user-generated events, and place
persistent visitor identification tokens in the client’s local storage. This was possible only



Electronics 2023, 12, 3480 13 of 26

if the client-side JavaScript was interpreted, which excluded crude web scraping and
reconnaissance tools, but yielded useful results for the detection of browser automation
scripts and human actors, potentially indicating advanced persistent threats. We describe
this system in more detail in Section 3.4.

Browser fingerprinting data
index 80434
honeypot_host_ip [censored]
honeypot_id [censored]
session_id b4d833296d2bebe6
timestamp 2023-06-06 17:08:48.885000
src_ip [censored]
src_port 40922
host_id [censored]
honeypot_type http
dst_ip [censored]
dst_port 80
honeypot_host_id cyberlab-honeypot-01
method GET
request_url http://[censored]/
request_body
honeypot_technology storwize_v7000
response_served true
response_status_code 200

rdns unknown
noise true
whitelisted true
classification malicious
name unknown
uniqueness_alert HIGH-MEDIUM
known_scanner true
scanner_id zoomeye-scan
scanner_name ZoomEye
scanner_category scanner
scanner_trust_level 3
ip_trust_level 5
is_datacenter false
is_tor false
is_proxy false
is_vpn false
is_abuser true

headers {"accept-encoding": "gzip, deflate", "accept-
language": "en-US", "upgrade-insecure-requests": 
"1", "connection": "keep-alive", "user-agent": 
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/86.0.4 240.111 
Safari/537.36", "host": ”[censored]", "accept": 
"text/html,application/xhtml+xml,application/xml;q=
0.9,image/webp,image/apng,*/*;q=0.8,application/si
gned-exchange;v=b3;q=0.9"}

user_agent Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/86.0.4 240.111 
Safari/537.36

headers_hash f3f38cb3ed49b10015e451ec05af0c2b
headers_signature bc651dc0130f7a4f
headers_software Chrome 86
headers_operating_system Linux
headers_device unknown
headers_device_type pc
headers_is_weird false

asn 38283
company_name CHINANET Sichuan province network
datacenter_name
country China
city Deyang
asn_type isp
asn_organization CHINANET SiChuan Telecom Internet Data Center
org_description CHINANET-SCIDC-AS-AP CHINANET SiChuan

Telecom Internet Data

country_name China
latitude 30.6498
longitude 104.0555
continent_code AS
region_name Sichuan
city_name Chengdu

General request metadata

IP reputation and scanner info

HTTP header data and classification

Autonomous System information

IP geolocation

Figure 5. Collected and enriched request and IP metadata constituting a rudimentary attacker profile
based on their IP address, header information, and client-side browser fingerprinting. Sensitive
information was redacted from the figure.

During the course of the honeynet operation, we captured more than 188,000 HTTP
requests. We identified 107,954 unique visitor sessions, corresponding to 17,176 unique IP
addresses originating from 26 different autonomous systems. We identified that nearly 25%
of all requests originated from 3160 different web crawler IP addresses, corresponding to
26 search engines. Nearly 30% of all source IP addresses originated or relayed malicious
traffic. Less than 1% of visiting IP addresses interpreted JavaScript code. Out of those, we
identified at least 21 bots that used known browser automation software and 15 visitor IP
addresses with client-side event patterns, indicating a high probability of human actors.
Key figures about the captured dataset are listed in Table 3.

Table 3. Key figures about the captured dataset.

Length of Data Collection Interval 132 Days (3 March 2023 to 14 July 2023)

Number of events collected (HTTP requests) 188,287

Number of unique sessions 107,954

Number of unique source IP addresses 17,176

Number of unique source ASNs 1807

Total number of identified search engines in the dataset 26



Electronics 2023, 12, 3480 14 of 26

Table 3. Cont.

Total number of IP addresses of identified search engines 3160 (18.4% of all captured IP addresses)

Total number of requests from identified search engines 45,353 (24.1% of all requests)

Total number of ASNs of identified search engines 39 (2.2% of all captured ASNs)

Total number of deployed honeypots 14

Number of unique user agent strings 3227

Total number of IP addresses with malicious traffic 5006 (29.2% of all captured IP addresses)

Total number of source ASNs with malicious traffic 1327 (73.4% of all captured ASNs)

Total number of returning visitors 1 7687

Total number of unique IP addresses that loaded JavaScript 159 (0.9% of all unique IP addresses)

Total number of sessions that loaded JavaScript 232 (0.2% of all captured sessions)

Total number of returning visitors that loaded JavaScript 40

The largest number of returning visits by an IP that loaded JS 14 (6.0% of all JS-enabled sessions)

Total number of detected IP addresses using browser automation tools (based
on client-side fingerprinting) 21 (13.2% of all JS-enabled visitor IPs)

Total number of IP addresses with a high probability of human actors (based
on client-side fingerprinting) 15

Total number of returning IP addresses with a high probability of human
actors (based on client-side fingerprinting) 2 (2 sessions by one IP, 3 by the other)

Total number of captured client-side events 26,502
1 A visitor is counted as returning if there are at least two registered sessions with the same source and destination
IP; a session expires after 10 min of inactivity.

3.3. Crawler and Bot Identification

A significant amount of captured traffic comes from bots and crawlers, either from
white-hat or grey/black-hat actors. We wanted to identify such requests to separate them
from the actual attacks and further determine which of them only performed benign
activities, as opposed to potentially harmful/malicious actions.

Through a review of the literature and related research, as well as lookups based on
the collected IP addresses, we assembled a list of 48 known scanners. Throughout the entire
data collection process, we were able to map 9955 IP addresses to these services. To do that,
we formed a heuristic method based on four techniques:

1. We manually identified well-known security scanners, search engines, and bots, and,
where provided, used the source IPs and subnets to label the requests (e.g., GoogleBot);

2. We performed a reverse DNS lookup for each IP, labeling the whitelisted scanners
based on the resolved domain;

3. We used specially crafted replies that steganographically stored the traffic source
information in the HTTP response, which effectively watermarked the responses.
Searching for our honeypot IPs on well-known vulnerability scanner databases then
often yielded enough of the actual watermark such that we were able to recover the
source of the scans;

4. We amended the data using external services and databases.

The identified IP addresses were cumulatively responsible for 24.1% of all requests,
which yielded a significant improvement in analysis. Additionally, cross-checking the IP
information obtained with the above heuristics revealed that many attackers spoof the user
agents of well-known services, such as the Baiduspider or GoogleBot. However, we also
detected cases of malicious requests originating from legitimate scanning services, namely
from ZoomEye, Fofa, and LeakIX. Moreover, even some of the IP addresses associated with
legitimate services, as well as some web providers, were caught originating or propagating



Electronics 2023, 12, 3480 15 of 26

malicious requests. These examples included the Google Global Cache infrastructure,
co-located in regional internet service provider networks, as well as various web link
preview services in chat clients, such as Skype and Telegram, regularly fetching previews
of unfiltered user-supplied links from their datacenter IP addresses, thus proxying the
potential URL parameter injection attacks.

In Figure 6 we break down the detected scanning services according to categories
encompassing desktop browsers of several operating systems, popular scanning tools,
and programming languages. Their categories were determined using the self-reported
user agent field, meaning they are subject to spoofing and thus have to be verified against
other features and metrics.

Figure 6. Scanning services categorized into groups of operating systems browsers, scanning tools,
and popular programming languages, based on the self-reported user-agent HTTP header field.
The following categories are missing from this visualization, as they were not used by any scanning
services in our observed 132-day interval: BlackBerry Browser, FreeBSD Browser, iPad Browser, Java,
Log4Shell Exploit, NetBSD Browser, Nokia Phone, OpenBSD Browser, OS/2 Browser, Perl, Roku,
SonyEricsson Phone, and SunOS and WebOS Browser.

3.4. Client-Side Browser Fingerprinting

Sophisticated attackers may employ techniques for the artificial assembly of HTTP
requests to imitate legitimate user activity and simulate browser behavior that is sufficient
to bypass modern security checkpoints, such as web application firewalls; however, this
has become increasingly difficult. Modern cloud application firewalls and bot protection
mechanisms today often complement advanced server-side client analysis, such as Trans-
port Layer Security (TLS) fingerprinting, with advanced client-side browser fingerprinting,
which can become nearly impossible for attackers to emulate due to the complexity of mod-



Electronics 2023, 12, 3480 16 of 26

ern browsers. While JavaScript execution may be a quick litmus test for the detection of real
users, modern browser APIs expose the internal state of the client and can reveal further
details on the device and its user. This includes details on the device’s screen resolution,
information about the device’s graphics processing unit and canvas rendering characteris-
tics, the number of its CPU cores, device sensors, and sensor inputs, connected external
media devices, operating system version, user locale and timezone, installed system fonts,
installed browser plugins, details on and access to in-browser storage, and precise infor-
mation on user events, such as mouse movements, key presses, clicks, tab changes, etc.
Consequently, attackers often resort to full browser emulation and use browser automation
tools in order to bypass these fingerprint-based bot detection mechanisms. To facilitate
the detection of such automation tools, we complemented our honeypot-collected meta-
data with a developed client-side fingerprinting process to determine whether browser
automation was used and profile user actions to estimate the probability of human actors.

Our solution is deployed as an obfuscated JavaScript code, served by the honeypots
and concealed within their every response. The script captures more than 66 client parame-
ters, installs a persistent visitor identifier, and listens for over 16 browser events, including
all user actions. The captured data are timestamped and periodically uploaded back to
the original honeypot server in a concealed manner, simulating the refresh of a dynamic
element on the website. The solution, combined with honeypot-retrieved visitor metadata,
enables advanced user profiling and allows for the detection of web browser automation
software, such as Selenium [46], Puppeteer [47], Playwright [48], and others.

Using heuristic analysis of the collected data, we attempted to model legitimate user
behavior by exploring the distribution, timing, and correlation of the triggered client-side
events. A sample session visualization of what we believe to be a human attacker on one
of the deployed honeypots is depicted in Figure 7. The left side of the figure portrays the
distribution of the recorded session events, while the right side depicts the event timeline
relative to the initial site visit. As noticeable, pointer movements constitute the majority
of the recorded user events, followed by scrolls and clicks. Browser-fired events, such
as blur and focus, correlate with (in)activity periods, indicating that the user switched
focus between open windows during the session. Lastly, the session duration, albeit only
spanning 120 s, remains vastly longer than the majority of bot-orchestrated visits.

Figure 7. Visualization of the user session on a deployed honeypot based on the captured client-side
events. The left side of the figure portrays the distribution of the recorded session events, while the
right side depicts the event timeline relative to the initial site visit. Recorded event types are listed in
a legend on the far right side of the figure.



Electronics 2023, 12, 3480 17 of 26

Following the heuristic analysis of randomly sampled honeypot sessions, we con-
structed a rudimentary single-dimensional representation of client event distribution (dis-
carding timing data and inter-event correlations) to demonstrate a simplistic approach
toward user/bot modeling based on the collected data. The captured event distribution is
depicted in Figure 8. Gray columns depict the occurrence of every captured client event
across all of the recorded sessions. Red columns depict client event distribution for 21 bot
sessions involving known browser automation tools, which we detected using specific
client parameters. Blue columns depict event distribution for 19 sessions of what we believe
to be real (human) users.

Figure 8. Visualization of client-side event distribution for all 232 captured sessions (gray), 21 sessions
of known bots using browser automation software (red), and 19 sessions of what we believe to be
real (human) visitors, as a rudimentary approach toward behavioral user/bot modeling. Event types
are listed on the X-axis, while their counts are shown on the Y-axis using a logarithmic scale.

As evident from Figure 8, the detected bots only triggered a limited and volumetrically
smaller subset of browser events otherwise encountered during the rest of the recorded
sessions. However, interestingly enough, a number of automated browsers triggered device
orientation changes and device motion events. Likewise, not all events were triggered,
even by suspected human visitors, indicating that none of the select visitors used a mobile
device to access the honeypots. However, we did manually investigate the suspected
user sessions and supported them with additional metrics, including measuring session
time and visualizing the locations of clicks to validate their interaction with honeypots.
Lastly, we constructed graph visualizations of event transitions for all captured sessions.
Upon their review, we identified that the bots used extremely modest event sequences
compared with their human counterparts. Visualization of event transition chains for
multiple sessions of a particular bot is depicted in Figure 9.



Electronics 2023, 12, 3480 18 of 26

Figure 9. Visualization of the captured client-side event transitions for 5 individual sessions initiated
by a known bot. The figure portrays relatively modest event sequences in comparison with the events
and their transitions typically recorded during the user sessions.

3.5. Identification of Common Vulnerabilities and Exposures

To obtain a stronger signal of the attacker’s activity and intent, we used the captured
metadata to perform cross-validation with the CVE database and the rulesets of popular
intrusion detection systems (IDSs). The CVE database includes unstructured text, and is
thus difficult to query for automated lookups; on this front, we had some limited success
with fine-tuning large language models, but we leave this approach for future work. On the
other hand, rulesets of IDS systems such as SNORT are well-structured and intended
for automation, which allowed us to cross-check every HTTP request against the entire
collection, yielding multiple relevant CVEs. The results based on our experimental run are
shown in Figure 10.

3.6. Experimental Attack Modeling and Visualization

Besides user and service modeling, we attempted to employ visual analytics in order
to understand the user journey on the web application honeypots better and discover
any potential referer tree inconsistencies indicating possible HTTP request replays with
manually altered URL endpoints. The original idea behind this approach was an attempt
at the detection of replayed HTTP requests originating from attack proxy tools, such
as Burp Suite, where an attacker would modify the source request’s parameters (e.g.,
destination URL to attempt directory traversal or file discovery) without removing its
original referer header. In combination with reliable honeypot service models, such requests
would violate the model’s referer-to-URL mappings and break the valid referer tree, thus
indicating a manual intervention during the proxied browsing session. We speculated
this would be a potentially useful reconnaissance attack indicator, demonstrating the
transition from passive web browsing to active, targeted discovery measures. Moreover,
when combined with other attack signals (e.g., honeypot HTTP request properties, request
history, and client-side user events) and their visualization, it could further provide visual
clues to the attacker’s reconnaissance journey and their transition to service exploitation.
A prototype request flow visualization is shown in Figure 11.



Electronics 2023, 12, 3480 19 of 26

Figure 10. Identified vulnerability classes on the incoming requests. One of the services—VMware
vCenter Server—is expanded in the bottom part of the figure to show the top 10 vulnerabilities that
are unique just to this specific honeypot. Multiple VMware vCenter Server vulnerabilities are seen,
such as a VMWare Sphere Client remote code execution attempt, VMware Center Server file upload
attempt, and VMware Realize Operations Manager Server Side Request Forgery attempt.

However, contrary to the expected outcomes, our prototype implementation of request
flow visualization did not result in the visualization of the prominent malicious actions but
rather revealed the deficiencies in one of our implemented service models. The dubious
attempts at referer-based threat hunting instead proved to be a surprisingly useful tool for
visualizing (virtually) unlinked resources and invalid paths of the scraped web applications.

Figure 11 depicts a recorded session of HTTP requests during the initial access to one
of the honeypot services. It portrays requests originating from the attacker’s IP address
and destined to the root path of the web service hosted at the honeypot’s IP address.
Subsequent requests then recursively use the response path as a referer when requesting
new resources. However, due to an incomplete service model, the visualization system
marked several paths as invalid or unavailable. Paths colored red indicate an illegal referer
for the requested resource, while paths colored purple indicate an illegal target URL when
using the current referer. As seen in the figure, an early service model would not foresee,
for example, users simply refreshing the page. Of course, the honeypot would normally
serve the refreshed website without issues; however, no semantic meaning regarding the
user’s action (i.e., page refresh) would be retained.



Electronics 2023, 12, 3480 20 of 26

Figure 11. Experimental request flow visualization. The left side of the Sankey diagram depicts
the attacker IP (red) originating HTTP requests to the honeypot server (cyan). Request URLs and
referers are shown in dark blue. Traffic flows from left to right, and time flow for grouped requests is
portrayed from top to bottom, where link opacity (ranging from transparent to dark gray) indicates
their relative timestamp. Individual links indicate specific requests originating at the start node (IP
address, referer) and terminating in the target node (target IP, URL). Requests colored in red and
purple depict the semantic service model’s deficiencies, indicating an illegal referer for access to the
requested resource, or an illegal target URL using the current referer, respectively.

Nevertheless, upon refinement of the semantic service models, the proposed visual-
ization was able to convey arbitrary link features within the visualized request tree. This
is shown in Figure 12, visualizing a complex user journey through a web application and
disclosing two POST requests (colored red). At the top left, the figure reveals the user’s
true origin as FOFA, a cyberspace-mapping search engine that likely indexed our honeypot.
The user then interacted relatively heavily with the printer honeypot, including by visiting
numerous configuration subpages, before ultimately attempting to alter the protected
storage settings and resetting the device to factory defaults (requests colored red). While
the shown experimental visualization is capable of conveying such features, its usefulness
remains very limited due to the high visual complexity, lacking representations of timing
data, and significant overplotting.



Electronics 2023, 12, 3480 21 of 26

Figure 12. Experimental request flow visualization depicting relatively rich interactions with a
honeypot. The referer at the top left side of the diagram reveals the visitor’s true origin (FOFA
cyberspace-mapping search engine). Request URLs and referers are shown in dark blue. Traffic flows
from left to right, and time flow for grouped requests is portrayed from top to bottom, where link
opacity (ranging from transparent to dark gray) indicates their relative timestamp. Individual links
indicate specific requests originating at the start node (IP address, referer) and terminating in the
target node (target IP, URL). Requests colored red reveal two POST requests, quickly revealing the
attacker’s attempt to alter the protected storage settings and factory reset the emulated printer.

4. Discussion

During the design and development of our solution, as well as throughout the data
collection, processing, and analysis, we faced several design decisions and challenges.
We tested various system configurations, revised the architecture design, and iteratively
improved our honeypot service models to build a robust attack monitoring platform to
conduct the experiment. Therefore, we now briefly discuss some of our findings, lessons
learned, and challenges encountered.

The implementation of HTTP honeypots based on crawling and caching of web
services has proven to be difficult. Despite the development of an automated scraping
solution, numerous challenges prevented us from automating the deployment process.
Scraped web services required manual verification of their functionality. Many services
also included dynamic content, requiring manual field examination and implementation
of dynamic variables to replicate the original application convincingly. Difficult service
modeling also limited the robustness of our early honeypot implementations, requiring
their iterative improvements. Luckily, we were able to implement these improvements
effectively due to the well-designed, centralized logging system and by using the request
flow visualizations of real visitor data to identify spotty service coverage and problematic
client-side caching policies. Moreover, we also crawled error code pages (e.g., 404, 500,
etc.) where encountered; however, it is hard to know where these codes are actually
warranted without referencing a real device. For these reasons, we plan on reserving the



Electronics 2023, 12, 3480 22 of 26

crawl-and-store caching mechanism for only the simplest systems requiring a minimal
level of interaction. For all other use cases, transparent pass-through proxying should be
used to forward the requests to either real, virtualized, or emulated devices and services.

Related to the selection of supported services, it is clear that a methodology to evaluate
and rank candidate services systematically is needed. However, the presented threat
impact assessment formula proved to be difficult to estimate in practice and thus has
to be approximated with various heuristics, assumptions, and rules of thumb. For this
reason, one of the original platform requirements called for the honeypots to select the
emulated technology dynamically from a larger pool of supported services and then lock
the responses to the particular source IP address making the contact. In this manner,
a single IP address could appear as multiple devices to multiple attackers at the same time,
and a greater number of dynamic responses could be served and tested for attractiveness,
in a sense empirically exploring the space of available services. Similarly, another goal
of the early platform implementation was an adjustable ratio between such exploration
(testing new response variations) and exploitation (obtaining more relevant attacker data).
However, after several months of operation in this mode, we aborted the experiment
to increase the realism of honeypots and make them respond in a fixed manner, so the
attacker could return to the service after an arbitrary amount of time and encounter the
same technology.

5. Conclusions

In this work, we presented an approach to the design, development, deployment,
and evaluation of a flexible and scalable HTTP honeypot platform. We introduced IoT
and HTTP honeypots and argued for their use in the detection and analysis of novel and
emerging cyber threats. We reviewed the current state-of-the-art research on honeypot
solutions and identified their applications, advantages, and drawbacks. We then described
the motivation for the design of a scalable honeypot platform with the ability to emulate a
wide range of IoT devices, cloud services, and web applications. We identified the necessary
requirements for such a system and proposed a distributed platform architecture with
centralized management and logging. Next, we detailed the technical implementation of
the platform and set up a four-month-long experiment for system validation. Lastly, we
described the captured honeypot data and presented our findings on attack interception,
bot detection, exploit identification, and attacker, user, and service modeling.

Despite many of the encountered challenges, we managed to develop a robust honey-
pot platform, adhering to all of the priority 1 and priority 2 initial identified requirements.
The platform has proven to be an invaluable source of data, enabling first-hand observations
of the dynamic cybersecurity landscape. Its distributed nature, extensibility, and scalability,
along with its integration with multiple third-party databases and threat intelligence feeds,
support a global honeynet operation with a centralized data storage mechanism for rapid
detection and analysis of potential novel threats. The implemented server-side and client-
based approaches to data collection for user and attacker modeling have proven valuable
for the detection of potential threat actors and promise their further categorization amongst
bots, scanners, crawlers, and advanced persistent threats. Browser fingerprinting yielded a
wealth of data useful for multiple purposes, including the potential for prediction of attack
escalation risks.

During the course of the conducted experiment, we used the platform to capture over
188,287 HTTP requests from 17,176 unique IP addresses targeting the 14 implemented
honeypot services. We proposed a novel approach toward internet scanner identification
and classified 3160 IP addresses belonging to various search engines. We identified 5006 IP
addresses originating malicious traffic from 1327 ASNs. We demonstrated the successful
capture of automated targeted attacks using service-specific exploits against particular hon-
eypot services and matched them with CVE entries. Furthermore, we identified 159 unique
IP addresses that interpreted the honeypot-delivered JavaScript profiling code. Based on
the latter, we captured 26,502 client-side events and proposed a rudimentary mechanism for



Electronics 2023, 12, 3480 23 of 26

the classification of browser automation tools and human visitors. We identified 15 unique
IP addresses with human actors performing web service exploration. We examined these
visitor sessions and demonstrated the detection of malicious intent in the form of actions
against honeypots that would incur data loss or denial of service on real devices. However,
we have not yet observed any human actors escalating the attack from active web recon-
naissance to exploitation using known vulnerabilities in the CVE database. Although the
dataset of such user sessions is currently still modest, it presents actual telemetry from
attackers, by definition. Conversely, the collected metadata on incoming requests from
network scanners are extensive and currently one of the most useful results of the platform,
as they constitute a rich database that is updated in an automated manner.

Within our future work, we plan on improving the mechanisms for matching the
collected data with the CVE database entries and various cyber threat intelligence feeds,
as we have identified that the current implementation can produce inconsistent results and
has low specificity (i.e., a high rate of false positives). We plan to expand the deployed
honeynet into a global, geographically dispersed HTTP sensor network to maximize the
attack surface area, capture larger datasets, and compare attacker tactics, techniques,
and procedures between the target node networks. Additionally, we plan to test further
data integrations, such as with the MITRE ATT&CK framework and other feeds of IDS and
WAF rules. One of the very promising venues of research in this field is also the extraction
of prominent attack features using machine learning approaches, including leveraging the
fine-tuned large language models on the collected datasets.

Author Contributions: Conceptualization, U.S. and M.R.; methodology, L.Š.J., M.K., M.R. and U.S.;
software, L.Š.J., M.R. and M.K.; validation, L.Š.J. and M.R.; formal analysis, M.K.; investigation,
M.R., L.Š.J., M.V. and U.S.; resources, A.K., M.V. and U.S.; data curation, L.Š.J., M.R. and U.S.;
writing—original draft preparation, M.R., M.V. and U.S.; writing—review and editing, M.R., M.V.,
A.K. and U.S.; visualization, M.R. and U.S.; supervision, U.S.; project administration, U.S.; funding
acquisition, U.S., M.V. and A.K. All authors have read and agreed to the published version of
the manuscript.

Funding: The research was supported by the Slovenian Research and Innovation Agency and
Government Information Security Office of Slovenia through the research project “Exposure of
Modern Information and Communication Infrastructures to Cyberattacks” (Grant number V2-2125)
and the research program “Decentralized Solutions for the Digitalization of Industry and Smart Cities
and Communities” (Grant number P2-0425). The APC was funded by the Slovenian Research and
Innovation Agency, grant number P2-0425.

Data Availability Statement: The data presented in this study are available upon request to the
corresponding author. The data in raw form are not publicly available due to their sensitive nature
and privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ALG Application Layer Gateway
API Application programming interface
AS Autonomous system
ASN Autonomous System number
CMS Content management system
COTS Commercial off-the-shelf
CPU Central processing unit
CSS Cascading Style Sheets



Electronics 2023, 12, 3480 24 of 26

CTI Cyber threat intelligence
CVE Common Vulnerabilities and Exposures
DB Database
DNS Domain name system
GPU Graphics processing unit
GUI Graphical user interface
HTML HyperText Markup Language
HTTPS Hypertext Transfer Protocol Secure
ICS Industrial control system
IDS Intrusion detection system
IoT Internet of Things
IP Internet Protocol
IPS Intrusion prevention system
ISP Internet service provider
IT Information technology
JS JavaScript
LLM Large language model
ML Machine learning
NAS Network attached storage
OS Operating system
OT Operational technology
PPDR Public protection and disaster relief
REST Representational state transfer
RTSP Real-Time Streaming Protocol
SQL Structured query language
SSH Secure Shell
TCP Transmission Control Protocol
TLS Transport Layer Security
UA User agent
UDP User Datagram Protocol
UPS Uninterruptible power supply
URL Uniform Resource Locator
VANET Vehicular ad hoc networks
VM Virtual machine
VPN Virtual private network
WAF Web application firewall
XSS Cross-site scripting

References
1. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A Survey of Machine and Deep Learning Methods for

Internet of Things (IoT) Security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [CrossRef]
2. Franco, J.; Aris, A.; Canberk, B.; Uluagac, A.S. A Survey of Honeypots and Honeynets for Internet of Things, Industrial Internet

of Things, and Cyber-Physical Systems. IEEE Commun. Surv. Tutor. 2021, 23, 2351–2383. [CrossRef]
3. Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv.

Tutor. 2019, 21, 1636–1675. [CrossRef]
4. Matheu, S.N.; Hernández-Ramos, J.L.; Skarmeta, A.F.; Baldini, G. A Survey of Cybersecurity Certification for the Internet of

Things. ACM Comput. Surv. 2021, 53, 115. [CrossRef]
5. Dionaea. Available online: https://github.com/DinoTools/dionaea (accessed on 21 July 2023).
6. Cowrie. Available online: https://github.com/cowrie/cowrie (accessed on 28 July 2023).
7. Honeytrap. Available online: https://github.com/honeytrap/honeytrap (accessed on 28 July 2023).
8. Kuskov, V.; Kuzin, M.; Shmelev, Y.; Makrushin, D.; Grachev, I. Honeypots and the Internet of Things. Available online:

https://securelist.com/honeypots-and-the-internet-of-things/78751/ (accessed on 21 July 2023).
9. Surber, J.G.; Zantua, M. Intelligent Interaction Honeypots for Threat Hunting within the Internet of Things. J. Colloq. Inf. Syst.

Secur. Educ. 2022, 9, 5. [CrossRef]
10. Metongnon, L.; Sadre, R. Beyond Telnet: Prevalence of IoT Protocols in Telescope and Honeypot Measurements. In Proceedings

of the 2018 Workshop on Traffic Measurements for Cybersecurity; WTMC’18, Budapest, Hungary, 20 August 2018; Association
for Computing Machinery: New York, NY, USA; pp. 21–26. [CrossRef]

http://doi.org/10.1109/COMST.2020.2988293
http://dx.doi.org/10.1109/COMST.2021.3106669
http://dx.doi.org/10.1109/COMST.2018.2874978
http://dx.doi.org/10.1145/3410160
https://github.com/DinoTools/dionaea
https://github.com/cowrie/cowrie
https://github.com/honeytrap/honeytrap
https://securelist.com/honeypots-and-the-internet-of-things/78751/
http://dx.doi.org/10.53735/cisse.v9i1.147
http://dx.doi.org/10.1145/3229598.3229604


Electronics 2023, 12, 3480 25 of 26

11. Semic, H.; Mrdovic, S. IoT Honeypot: A Multi-Component Solution for Handling Manual and Mirai-based Attacks. In
Proceedings of the 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [CrossRef]

12. Manzanares, A.G. The Construction of a Virtual, Low-Interaction IoT Honeypot; Semantic Scholar: Seattle, WA, USA, 2017.
13. Dowling, S.; Schukat, M.; Melvin, H. Data-Centric Framework for Adaptive Smart City Honeynets. In Proceedings of the 2017

Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–7. [CrossRef]
14. Chen, D.D.; Egele, M.; Woo, M.; Brumley, D. Towards Automated Dynamic Analysis for Linux-based Embedded Firmware. In

Proceedings of the Proceedings 2016 Network and Distributed System Security Symposium; Internet Society, San Diego, CA,
USA, 21–24 February 2016. [CrossRef]

15. Wang, M.; Santillan, J.; Kuipers, F. ThingPot: An Interactive Internet-of-Things Honeypot. Available online: http://arxiv.org/
abs/1807.04114 (accessed on 29 July 2023).

16. Vishwakarma, R.; Jain, A.K. A Honeypot with Machine Learning Based Detection Framework for Defending IoT Based Botnet
DDoS Attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23–25 April 2019; pp. 1019–1024. [CrossRef]

17. Luo, T.; Xu, Z.; Jin, X.; Jia, Y.; Ouyang, X. IoTCandyJar: Towards an Intelligent-Interaction Honeypot for IoT Devices. Black Hat
2017, 1, 1–11.

18. Zhou, Y. Chameleon: Towards adaptive honeypot for internet of things. In Proceedings of the ACM Turing Celebration
Conference—China, Chengdu, China, 17–19 May 2019. [CrossRef]

19. Vetterl, A.; Clayton, R. Honware: A Virtual Honeypot Framework for Capturing CPE and IoT Zero Days. In Proceedings of
the 2019 APWG Symposium on Electronic Crime Research (eCrime), Pittsburgh, PA, USA, 13–15 November 2019; pp. 1–13.
[CrossRef]

20. Guarnizo, J.; Tambe, A.; Bhunia, S.S.; Ochoa, M.; Tippenhauer, N.; Shabtai, A.; Elovici, Y. SIPHON: Towards Scalable High-
Interaction Physical Honeypots. arXiv 2017. arXiv:1701.02446.

21. Shrivastava, R.K.; Bashir, B.; Hota, C. Attack Detection and Forensics Using Honeypot in IoT Environment. In Proceedings of
the Distributed Computing and Internet Technology, Bhubaneswar, India, 10–13 January 2019; Fahrnberger, G., Gopinathan, S.,
Parida, L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 402–409.
[CrossRef]

22. Pauna, A.; Bica, I.; Pop, F.; Castiglione, A. On the Rewards of Self-Adaptive IoT Honeypots. Ann. Telecommun. 2019, 74, 501–515.
[CrossRef]

23. Lingenfelter, B.; Vakilinia, I.; Sengupta, S. Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots. In
Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
6–8 January 2020; pp. 761–767. [CrossRef]

24. Wang, B.; Dou, Y.; Sang, Y.; Zhang, Y.; Huang, J. IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing
Malware. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–7. [CrossRef]

25. Hakim, M.A.; Aksu, H.; Uluagac, A.S.; Akkaya, K. U-PoT: A Honeypot Framework for UPnP-Based IoT Devices. In Proceedings
of the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), Orlando, FL, USA, 17–19
November 2018; pp. 1–8. [CrossRef]

26. Trajanovski, T.; Zhang, N. An Automated and Comprehensive Framework for IoT Botnet Detection and Analysis (IoT-BDA).
IEEE Access 2021, 9, 124360–124383. [CrossRef]

27. Krishna, R.R.; Priyadarshini, A.; Jha, A.V.; Appasani, B.; Srinivasulu, A.; Bizon, N. State-of-the-Art Review on IoT Threats and
Attacks: Taxonomy, Challenges and Solutions. Sustainability 2021, 13, 9463. [CrossRef]

28. Pa, Y.M.; Suzuki, S.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Rossow, C. IoTPOT: A Novel Honeypot for Revealing Current IoT
Threats. J. Inf. Process. 2016, 24, 522–533. [CrossRef]

29. Baş Seyyar, M.; Çatak, F.Ö.; Gül, E. Detection of Attack-Targeted Scans from the Apache HTTP Server Access Logs. Appl. Comput.
Inform. 2018, 14, 28–36. [CrossRef]

30. Mx, P. HoneyPy. Available online: https://github.com/foospidy/HoneyPy (accessed on 30 July 2023).
31. Pa, Y.M.P.; Suzuki, S.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Rossow, C. IoTPOT: Analysing the Rise of IoT Compromises. In

Proceedings of the 9th USENIX Workshop on Offensive Technologies (WOOT 15), Washington, DC, USA, 10–11 August 2015.
32. Dowling, S.; Schukat, M.; Melvin, H. A ZigBee Honeypot to Assess IoT Cyberattack Behaviour. In Proceedings of the 2017 28th

Irish Signals and Systems Conference (ISSC), Killarney, Ireland, 20–21 June 2017; pp. 1–6. [CrossRef]
33. Tambe, A.; Aung, Y.L.; Sridharan, R.; Ochoa, M.; Tippenhauer, N.O.; Shabtai, A.; Elovici, Y. Detection of Threats to IoT Devices

Using Scalable VPN-forwarded Honeypots. In Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy, Dallas, TX, USA, 25–27 March 2019. [CrossRef]

34. Ramakrishnan, K.; Gokul, P.; Nigam, R. Pandora: An IOT Based Intrusion Detection Honeypot with Real-time Monitoring.
In Proceedings of the 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS), Bengaluru, India,
21–22 December 2021; Volume 1, pp. 1–7. [CrossRef]

35. Bartwal, U.; Mukhopadhyay, S.; Negi, R.; Shukla, S. Security Orchestration, Automation, and Response Engine for Deployment
of Behavioural Honeypots. In Proceedings of the 2022 IEEE Conference on Dependable and Secure Computing (DSC), Edinburgh,
UK, 22–24 June 2022; pp. 1–8. [CrossRef]

http://dx.doi.org/10.1109/TELFOR.2017.8249458
http://dx.doi.org/10.1109/SCSP.2017.7973836
http://dx.doi.org/10.14722/ndss.2016.23415
http://arxiv.org/abs/1807.04114
http://arxiv.org/abs/1807.04114
http://dx.doi.org/10.1109/ICOEI.2019.8862720
http://dx.doi.org/10.1145/3321408.3321589
http://dx.doi.org/10.1109/eCrime47957.2019.9037501
http://dx.doi.org/10.1007/978-3-030-05366-6_33
http://dx.doi.org/10.1007/s12243-018-0695-7
http://dx.doi.org/10.1109/CCWC47524.2020.9031234
http://dx.doi.org/10.1109/ICC40277.2020.9149314
http://dx.doi.org/10.1109/PCCC.2018.8711321
http://dx.doi.org/10.1109/ACCESS.2021.3110188
http://dx.doi.org/10.3390/su13169463
http://dx.doi.org/10.2197/ipsjjip.24.522
http://dx.doi.org/10.1016/j.aci.2017.04.002
https://github.com/foospidy/HoneyPy
http://dx.doi.org/10.1109/ISSC.2017.7983603
http://dx.doi.org/10.1145/3292006.3300024
http://dx.doi.org/10.1109/FABS52071.2021.9702656
http://dx.doi.org/10.1109/DSC54232.2022.9888808


Electronics 2023, 12, 3480 26 of 26

36. Kato, S.; Tanabe, R.; Yoshioka, K.; Matsumoto, T. Adaptive Observation of Emerging Cyber Attacks Targeting Various IoT Devices.
In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France,
17–21 May 2021. Available online: https://ieeexplore.ieee.org/document/9464004 (accessed on 30 July 2023).

37. Tabari, A.Z.; Ou, X. A First Step Towards Understanding Real-world Attacks on IoT Devices. arXiv 2020, arXiv:2003.01218.
38. ENISA Threat Landscape Report 2018. Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-

report-2018 (accessed on 29 July 2023).
39. Sedlar, U. Network Telescope: Insights from a Decade of Observations. Electrotech. Rev. Vestn. 2022, 89, 198–204.
40. Sedlar, U.; Južnič, L.Š.; Volk, M. An Iteratively-Improving Internet-of-Things Honeypot Experiment. In Proceedings of the

2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications
(CoBCom), Graz, Austria, 7–9 July 2020; pp. 1–6. [CrossRef]

41. Bauer, J.M.; van Eeten, M.J.G. Cybersecurity: Stakeholder Incentives, Externalities, and Policy Options. Telecommun. Policy 2009,
33, 706–719. [CrossRef]

42. CONCORDIA: Cyber Security Competence for Research and Innovation. In Work Package 4: Policy and the European Dimension,
Deliverable D4.3: 3rd Year Report on Cybersecurity Threats; Technical Report; European Commission: Luxembourg, 2020.

43. Fischer-Hübner, S.; Alcaraz, C.; Ferreira, A.; Fernandez-Gago, C.; Lopez, J.; Markatos, E.; Islami, L.; Akil, M. Stakeholder
Perspectives and Requirements on Cybersecurity in Europe. J. Inf. Secur. Appl. 2021, 61, 102916. [CrossRef]

44. Kren, M.; Kos, A.; Sedlar, U. Estimating Application Cyberthreat Impact Score for Honeypot Coverage Prioritization. In
Proceedings of the 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia
Applications (CoBCom), Graz, Austria, 12–14 July 2022; pp. 1–6. [CrossRef]

45. JVN iPedia. Available online: https://jvndb.jvn.jp/en/ (accessed on 7 July 2023).
46. Selenium. Available online: https://www.selenium.dev/ (accessed on 31 July 2023).
47. Puppeteer. Available online: https://pptr.dev/ (accessed on 31 July 2023).
48. Playwright. Available online: https://playwright.dev/python/ (accessed on 31 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ieeexplore.ieee.org/document/9464004
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
http://dx.doi.org/10.1109/CoBCom49975.2020.9174014
http://dx.doi.org/10.1016/j.telpol.2009.09.001
http://dx.doi.org/10.1016/j.jisa.2021.102916
http://dx.doi.org/10.1109/CoBCom55489.2022.9880757
https://jvndb.jvn.jp/en/
https://www.selenium.dev/
https://pptr.dev/
https://playwright.dev/python/

	Introduction
	State of the Art
	Motivation
	Structure of the Paper

	Proposed System
	Requirements Identification
	System Architecture
	Central Management
	Honeypot Nodes

	Threat Impact Assessment for Service Identification
	Implementation Details
	Central Management
	Honeypot Nodes
	Data Pipeline
	Implemented Honeypots


	Experimental Validation and Results
	Experiment Setup
	Acquired Data
	Crawler and Bot Identification
	Client-Side Browser Fingerprinting
	Identification of Common Vulnerabilities and Exposures
	Experimental Attack Modeling and Visualization

	Discussion
	Conclusions
	References

