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Abstract: Accurate recognition of characters imprinted on ship bodies is essential for ensuring
operational efficiency, safety, and security in the maritime industry. However, the limited availability
of datasets of specialized digits and characters poses a challenge. To overcome this challenge, we
propose a generative adversarial network (GAN) model for augmenting the limited dataset of special
digits and characters in ship markings. We evaluated the performance of various GAN models, and
the Wasserstein GAN with Gradient Penalty (WGAN-GP) and Wasserstein GAN with divergence
(WGANDIV) models demonstrated exceptional performance in generating high-quality synthetic
images that closely resemble the original imprinted characters required for augmenting the limited
datasets. And the evaluation metric, Fréchet inception distance, further validated the outstanding
performance of the WGAN-GP and WGANDIV models, establishing them as optimal choices for
dataset augmentation to enhance the accuracy and reliability of recognition systems.

Keywords: data augmentation; generative adversarial networks; Fréchet inception distance;
ship-marking characters and digits

1. Introduction

The recognition of characters and digits imprinted on ship bodies is of significant
importance owing to their distinctive features and role in conveying crucial information.
Ship markings, governed by standardized regulations, serve as identifiers offering crucial
operational details [1–4]. Automatic recognition of these characters is essential for various
reasons. It facilitates efficient ship documentation and tracking, enhancing maritime safety
and security. Moreover, it aids in identifying vessels involved in incidents or illegal activi-
ties, supporting investigations and law enforcement. In the unfortunate event of accidents,
accurate character identification provides insights for investigations and reconstructions.
Imprinted character images from damaged components reveal origins and potential con-
tributing factors. Precision in identification is vital for precise tracking, maintenance, and
replacement of ship parts.

Figure 1 illustrates old ship markings, representative of our dataset sources. The
dataset comprises cropped images of degraded numbers and letters from ship imprints.
These real-world scenarios require recognition models resilient to degraded imprints.
Unlike larger and well-maintained ships that often repaint their identification markings,
older or smaller vessels face corrosion and fading, posing challenges to recognition systems.
Seawater and environmental factors worsen the degradation.
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Figure 1. Old ship markings from sources similar to those of our dataset.

In our work, we adopt data augmentation, utilizing cutting-edge generative adversar-
ial networks (GANs), as a promising approach, to enhance the automatic identification of
imprinted characters on ships. By specifically employing GANs for data augmentation, we
present a pragmatic solution tailored to scenarios where traditional augmentation methods
might fall short. This is especially relevant when machine learning-based algorithms are
utilized for recognition tasks. Our study thus bridges the gap between data scarcity and
machine learning, offering a new perspective that can have far-reaching implications. Ad-
ditionally, the significance of our work extends beyond the maritime sector. Our proposed
methodology, which revolves around selecting the most suitable GAN model for a specific
dataset and evaluating its performance for data augmentation, has the potential to address
data scarcity challenges across diverse domains in the field of Information Technology. For
instance, in domains such as medical imaging, where acquiring large datasets can be a
challenge due to ethical or logistical constraints, our approach could be adapted to enhance
the quality and diversity of available data [5–7].

Figure 2 depicts a whole-system-architecture chart that illustrates the information flow
and operations of a system that utilizes data augmentation for enhancing the accuracy of
ship-character identification and retrieval. The ship-character recognition system comprises
several key components, including input data, a data augmentation sub-system, an aug-
mented dataset, a machine learning model for classification, and a retrieval client interface.
The input data comprise special alphanumeric characters found on ship components. The
data augmentation module employs state-of-the-art GAN techniques to create variations
of the original images. The augmented dataset comprises the synthetic images produced
by the GAN. The machine learning model learns to identify the imprinted characters on
the ship components using the augmented dataset. Furthermore, the retrieval system
retrieves relevant ship-component information, such as part numbers, specifications, and
maintenance history based on the identified characters and digits.

The subsequent sections of this paper are structured as follows: First, we review and
analyze previous studies on augmentation techniques in Section 2 for extending object
detection in maritime images. Then, we present our methodology in Section 3, outlining the
experimental setup and procedures employed to evaluate the performance of cutting-edge
GAN models on ship-marking-character and -digit datasets. Following that, we provide a
comprehensive evaluation of our results, analyzing the outcomes and comparing the gener-
ated character and digit images. We also discuss the limitations encountered during the
study, shedding light on potential constraints and areas for improvement. Furthermore, we
present the potential direction of future research suggesting enhancements in the proposed
approach. Lastly, we conclude this article by summarizing our findings and highlighting
the significance of our research in advancing the augmentation of ship characters.
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Figure 2. Ship-character image recognition process.

2. Related Work

Extensive research focused on achieving reliable detection and recognition of ship
images utilizing different techniques has been performed. While considerable progress
has been made, our work contributes to this research area by providing an extensive
and diverse dataset for training recognition models. We reviewed previous studies on
ship identification and data augmentation with the aim to gain valuable insights into the
effectiveness of data augmentation approaches and their effect on improving ship-character
identification. Some of the works mentioned here explore the use of convolutional neural
networks (CNNs) and GANs in the ship application domains.

In [8], the authors addressed the important issue of ship-type identification in maritime
surveillance. They highlighted the challenges in building large-scale marine-environment
datasets, where data collection and security concerns limit the availability of comprehensive
data. To overcome these limitations, the authors proposed a novel approach utilizing
GANs for data augmentation. By augmenting a small number of real ship images, they
improved fine-grained ship classification performance and demonstrated the effectiveness
of augmented data in training ship classification networks. This research demonstrates
the potential of augmented data for enhancing ship identification and classification for
maritime surveillance. Ref. [9] proposed a data augmentation method for extending object
detection datasets in maritime images. Their approach involved extracting the mask of the
foreground object and combining it with a new background to generate location information
and additional data. This technique aimed to enhance the learning process by incorporating
diverse and high-quality data features. Further, experimental evaluation demonstrated
the effectiveness of their method in improving the performance and robustness of object
detection models specifically tailored to maritime imagery. Ref. [10] introduced BoxPaste,
a powerful data augmentation method tailored for ship detection in Synthetic Aperture
Radar (SAR) imagery. Their approach involves pasting ship objects from one SAR image
onto another, thereby achieving considerable performance improvements in the SAR ship-
detection dataset compared with baseline methods. They also proposed a principle for
designing SAR ship detectors, emphasizing the potential benefits of lighter models. The
integration of their data augmentation scheme with RetinaNet [11] and Adaptive Training
Sample Selection (ATSS) [12] further demonstrates its effectiveness, resulting in impressive
performance gains.

In [13], the authors proposed a modification to the Faster R-CNN object detection
network to tackle the challenge of multiscale ships in SAR images. By incorporating
the constant false-alarm-rate algorithm and re-evaluating low-scoring bounding boxes,
the proposed method achieved improved detection performance. This work contributes
to the advancement of SAR ship detection using deep learning methods and provides
valuable insights for addressing the multiscale-ship-detection problem. Ref. [14] proposed
a densely connected multiscale neural network based on the faster R-CNN framework for
multiscale and multiscene SAR ship detection. Their method addressed the challenges in
detecting small-scale ships and handling complex backgrounds in SAR images. By densely
connecting feature maps and introducing a training strategy to focus on hard examples,
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their approach achieved excellent performance in multiscale SAR ship detection across
various scenes.

Data augmentation across multiple domains and the use of simple models trained on
large datasets can be highly beneficial for the performance improvement of object detection
applications. The effectiveness of this approach in improving the accuracy and robustness
of object detection algorithms was demonstrated in [15–17]. By augmenting available
data with various transformations, such as rotations, translations, and noise addition, the
models can better generalize and exhibit improved detection capabilities across various
scenarios and variations in the input data. Ref. [18] addressed the challenge of training deep
learning models that require a large number of images by employing data augmentation
as a preprocessing step. They resized dataset images to a uniform size of 256 × 256 pixels
and applied various augmentation techniques, such as right shift, image flipping, and
left shift. These methods increased dataset diversity and improved the performance of
the classifier. Image flipping, in particular, allowed for modifications in the pixel location
of pixels, enhancing the variations within the dataset and enabling more robust model
training. The authors in [19] addressed the problem of insufficient data by utilizing Con-
ditional Wasserstein GAN-Gradient Penalty (CWGAN-GP), and DenseNet and ResNet.
They employed GANs to generate underwater sonar images and expanded the dataset.
GANs have gained considerable attention due to their ability to learn complex data distribu-
tions in high-dimensional spaces. By employing CWGAN-GP&DR, the authors addressed
the overfitting issue and successfully expanded the dataset for improved model training.
Ref. [20] introduced several data augmentation techniques for improving palimpsest char-
acter recognition using deep neural networks. Palimpsests are manuscripts with overlaid
text that makes recognizing the underlying characters challenging. The authors proposed
four augmentation methods—random mask overlay, random rotation, random scaling, and
random noise addition. These methods were evaluated on a palimpsest dataset, and they
observed that the random mask overlay method achieved the best performance, improving
character recognition accuracy by up to 10%. These findings highlight the effectiveness of
data augmentation in enhancing the performance of character recognition algorithms for
palimpsest manuscripts.

In [21], the authors proposed a generative and discriminative model-based approach
for information retrieval. Their minimax game model generates text queries that are
relevant to a given document and learns to discriminate between relevant and irrelevant
documents. The model achieved state-of-the-art results in various information retrieval
tasks.

While different from our approach, the methods in these papers provide valuable
insights into scene text detection, recognition, and segmentation. Furthermore, these
studies showcase the progress made in understanding and processing textual information
in complex visual environments, contributing to our understanding of character recognition
and augmenting our knowledge in the domain of ship-character data augmentation. Our
approach emphasizes the importance of equipping recognition models with abundant data
from diverse character datasets collected from multiple ships and ship-body images. This
extensive dataset encompasses various ship markings, allowing the recognition model
to effectively learn and generalize across different ship types and marking variations.
By leveraging this rich dataset, we aim to enhance the accuracy and robustness of ship-
character recognition, enabling more effective ship identification mechanisms in real-world
scenarios.

3. Dataset and Data Augmentation Methods

This section provides an overview of the datasets, the state-of-the-art GAN techniques,
and the evaluation techniques employed in this work and offers valuable insights into the
intricacies of the methodology and its relevance in the field of ship-character recognition.
The presentation of datasets and the demonstration of the utilization of advanced GAN
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techniques enhance the understanding of the nuances of our methodology and emphasize
its importance in ship-character analysis and recognition.

3.1. Datasets

The dataset used in the experiments comprises ship-character images (0–9 digits and
13 letters (A, C, D, E, I, L, M, N, O, P, R, S, and T)) obtained from old or poorly maintained
ships. These images were carefully selected to support ship-character identification and
retrieval systems. These images exhibit various characteristics to capture the diverse ship
markings found on different parts of body and engine components, as depicted in Figure 3.

Figure 3. Collection of character and digit samples from the source dataset.

The images in the dataset exhibit variations in size and color, but they were pre-
processed to ensure consistency during training and analysis. Specifically, they were
normalized to grayscale and resized to 56 × 56 pixels in width and height. The images
are stored in standard formats such as JPEG or PNG. The dataset encompasses various
engraving styles commonly found on ships, including embossed, engraved, and painted
characters, either individually or in combination. These characters represent ship identifica-
tion numbers, hull markings, engine-component identifiers, and other characters relevant
to ship operations. This curated dataset serves as the foundation for evaluating and com-
paring the performance of GAN models in generating synthetic ship-character images,
thereby enabling the development of accurate and reliable ship technology applications.

3.2. State-of-the-Art GANs

We selected specific GAN models for comparison based on their application areas
and their ability to generate high-quality images in a shorter time frame compared with
photorealistic GAN models. Our selection took into account the practicality and efficiency
of generating synthetic images for our research goals. Augmenting data using GANs
and then using them for network training is a considerably useful method for avoiding
infringement of personal information and security problems in data [8]. Our experiment
was performed using the following GAN models:

• GAN [22]: GAN is a fundamental model in which a generator and discriminator are
trained in an adversarial manner. The generator aims to produce synthetic samples,
while the discriminator distinguishes between real and fake samples. GANs have
demonstrated their ability to generate realistic data across various domains.

• Auxiliary Classifier GAN (AC-GAN) [23]: AC-GAN extends the conditional GAN
framework by having the discriminator predict the class label of an image instead of
receiving it as input. This approach stabilizes training, allows the generation of large,
high-quality images, and promotes a latent space representation independent of the
class label.
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• Boundary-Seeking GAN (BGAN) [24]: BGAN focuses on learning the manifold bound-
ary of the real data distribution by minimizing the classification error of the discrimi-
nator near the decision boundary. This encourages the generator to generate samples
that lie on the data manifold, resulting in higher-quality and more realistic generated
samples.

• Boundary Equilibrium GAN (BEGAN) [25]: BEGAN optimizes a lower bound of
the Wasserstein distance using an autoencoder as the discriminator. It maintains
equilibrium between generator and discriminator using an additional hyperparameter.

• Deep Convolutional GAN (DCGAN) [26]: DCGAN utilizes CNNs as the generator and
discriminator. It introduces architectural constraints to ensure the stable training of
CNN-based GANs and demonstrates competitive performance in image classification
tasks.

• Wasserstein Generative Adversarial Network (WGAN) [15]: WGAN utilizes the
Wasserstein distance to measure the discrepancy between real and generated data
distributions. It introduces a critic network and focuses on optimizing the Wasserstein
distance for stable training.

• WGAN with GP (WGAN-GP) [27]: WGAN-GP proposes a GP to enforce the Lipschitz
constraint in the discriminator, replacing the weight clipping used in WGAN. This
penalty improves stability, prevents issues such as mode collapse, and eliminates the
need for batch normalization.

• Wasserstein divergence (WGANDIV) [28]: WGANDIV approximates Wasserstein
divergence; exhibits stability in training, including progressive growing training; and
has demonstrated superior quantitative and qualitative results.

• Deep Regret Analytic GAN (DRAGAN) [29]: DRAGAN applies a GP similar to
WGAN-GP but with a focus on real data manifold. Even though DRAGAN is similar
to WGAN-GP, it exhibits slightly less stability compared with WGAN-GP.

• Energy-based GAN (EBGAN) [30]: EBGAN models the discriminator as an energy
function that assigns low energies to regions near the data manifold. It focuses on
capturing regions close to the data distribution.

• FisherGAN [31]: FisherGAN introduces GAN loss based on the Fisher information
matrix, maximizing Fisher information to encourage diverse and high-quality sample
generation. It improves mode coverage and sample quality, enhancing the perfor-
mance of GANs in generating realistic and varied data.

• InfoGAN [32]: InfoGAN extends the GAN framework by introducing an additional
latent variable that captures the interpretable factors of variation in the generated data.
By maximizing the mutual information between this latent variable and the generated
samples, InfoGAN enables explicit control over specific attributes of the generated
data. It promotes disentangled representations and targeted generation.

• Least-squares GAN (LSGAN) [33]: LSGAN addresses the vanishing gradient problem
using the least-squares (L2) loss function instead of cross-entropy. It stabilizes the
training process and produces visuals that closely resemble real data.

• MMGAN and Non-Saturating GAN (NSGAN) [34]: NSGAN simultaneously trains
the generator (G) and discriminator (D) models. The objective is to maximize the
probability of D making a mistake. NSGAN differs from MMGAN in its generator
loss. Furthermore, the output of G can be interpreted as a probability.

• RELATIVISTIC GAN (REL-GAN) [35]: It introduces a relativistic discriminator that
compares real and generated samples in a balanced manner by considering their
relative ordering. This approach reduces bias toward either real or fake samples,
resulting in improved training stability and generation quality.

• SGAN [36]: SGAN maintains statistical independence between multiple adversarial
pairs, addresses limitations in representational capability, and exhibits improved
stability and performance compared with standard methods. SGAN is suitable for
various applications and produces a single generator. Future extensions can explore
diversity between pairs and consider multiplayer game theory.
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We implemented all of the GANs listed above by adapting and optimizing them for
our dataset, executed them for our dataset, evaluated the results using well-established
metrics, and then selected the GAN models that produced diverse and high-quality images
of the imprinted characters. The selected models were used to generate additional images
of imprinted characters. During the training phase, our focus was on characters (specifically,
the letters A, C, D, E, I, L, M, N, O, P, R, S, and T) and digits (0–9). These specific characters
and digits were chosen because of their easy availability and the convenience of collecting
them from various sources. These characters and digits were grouped into classes according
to each character or digit, and each class was trained for a specific number of epochs—20,000
and then 50,000 epochs. During each epoch, the GAN models processed each training
example in the dataset, calculated the loss, and updated the model parameters using
the chosen optimization algorithm. The number of epochs determined the frequency at
which the model iteratively updated its parameters to learn from the data. An epoch was
considered complete when all the training examples had been used once for parameter
updates. Employing multiple epochs is a common practice for improving the performance
of the model by allowing it to learn from the data multiple times. To assess the performance
of the GAN models and provide a rationale for their selection, we performed visual
inspections of the generated images [37–39]. We implemented each GAN model based
on the original design proposed by the respective authors, with minimal hyperparameter
tuning. Our objective was to identify the most suitable and efficient GAN model for our
specific use case. For the training process, we trained each GAN model for 20,000 and
50,000 epochs. A relatively high number of epochs was selected to ensure adequate learning
and convergence of the models. Throughout the training process, image outputs at the
50th and 100th iterations were generated to monitor the progress and visually assess the
generated samples. Consistency with the original recommendations was maintained as
closely as possible. However, certain GAN models had unique parameters and architectural
variations. Our focus was to maintain consistency with the recommended settings and
focus on evaluating the overall performance and quality of the generated images across the
different GAN models.

3.3. Evaluation Metrics

We evaluated the results using well-established metrics, and the GAN models that
exhibited both diversity and high-quality images of the imprinted characters were selected.
Subsequently, the chosen models were utilized to generate additional images of imprinted
characters.

Evaluating the quality and fidelity of generated images in a GAN presents unique
challenges due to the absence of a universal discriminator for fair comparisons. When
assessing GAN performance, two primary properties—fidelity and diversity—must be
considered. Fidelity refers to the realism and visual quality of the generated images,
taking into account factors such as image clarity and resemblance to real samples, whereas
diversity measures the range and variety of images produced by the generator, ensuring that
it captures the entire scope of the training data or desired modeling class. Evaluating fidelity
involves comparing generated samples to their closest real counterparts and analyzing the
overall distribution of fake versus real images. Diversity evaluations require the evaluation
of the ability of the GAN model to generate diverse images rather than producing a single
realistic but limited output. Striking a balance between fidelity and diversity is crucial,
as a successful GAN should consistently generate high-quality images while covering a
wide range of possibilities. However, accurately quantifying these properties remains a
challenge, particularly without relying on memorizing the training dataset. By considering
fidelity and diversity, evaluators can gain valuable insights into the performance of the
GAN model and its capability to generate convincing and varied fake images.

Visual examination of samples is one of the most common and intuitive ways to
evaluate GANs. However, it has several limitations, including the reviewer’s biases toward
the model, its configuration, and the project objectives [40]. In addition, visual examination
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requires knowledge of what is realistic and what is not for the target domain, and it is
limited to the number of images that can be reviewed in a reasonable time.

The evaluation of GAN models encompasses various methods, such as Fréchet in-
ception distance (FID) [41], Inception Score (IS) [37], and precision and recall [42]. These
metrics provide valuable insights into different aspects of the generated images, including
their quality, diversity, and resemblance to real data.

The IS is a commonly used metric for evaluating the quality and diversity of generated
images [37]. A higher score indicates better performance with low entropy in the conditional
probability distribution and high entropy in the marginal probability distribution. However,
the IS has several limitations. It can be easily manipulated or exploited to achieve high
scores by generating one real image per classifier class, resulting in a lack of diversity.
Furthermore, it solely considers the generated samples and does not compare them to real
images. The proxy statistics used in the calculation may not accurately reflect real-world
performance and are dependent on the tasks and capabilities of the classifier. Additionally,
the IS may not provide precise results when dealing with images containing multiple objects,
as it is trained on the ImageNet dataset, which focuses on single-object classification. Given
that our imprinted digit dataset does not align with the ImageNet classes, the IS metric may
not offer meaningful insights into the quality and diversity of the generated images [43].

The FID is commonly used to evaluate GANs by measuring the similarity between
real and generated images based on their embeddings.

FID(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ) (1)

As shown in Equation (1), FID(x, g) for a ’multivariate’ normal distribution calculates
the Fréchet distance and aims for a lower value, indicating better performance [39,41,44,45].
x and g are the real and fake embeddings (activation from the Inception model) assumed
to be two multivariate normal distributions. µx and µg are the magnitudes of vectors x and
g. Tr is the trace of the matrix, and Σx and Σg are the covariance matrices of the vectors.
We assessed the quality, fidelity, and overall resemblance of the generated images to the
original characters and digits. Additionally, we used the FID as an objective evaluation
metric, which allowed us to quantitatively measure the proximity of the generated images
to the real images, thereby providing further validation and justification for selecting the
preferred GAN model [39,41,44].

A high precision value indicates that the discriminator correctly identifies a large
proportion of the generated samples as fake, minimizing false positives. On the other hand,
a high recall value indicates that the discriminator correctly identifies a large proportion
of the real samples as genuine, minimizing false negatives [42]. These metrics further
contributed to the evaluation of GAN performance and the assessment of the ability of
discriminators to distinguish between real and generated images.

The IS primarily focuses on the diversity of the generated images and does not consider
the efficiency of the generator in approximating the real image distribution. Thus, it is
limited in its ability to measure the fidelity to real images. On the other hand, the FID
can detect intra-class mode dropping and provides a more comprehensive evaluation
metric by considering the quality and diversity of the generated samples. However, the
IS and the FID have limitations in detecting overfitting. Precision and recall metrics are
impractical for real images as the underlying data manifold is usually unknown, making
them only suitable for evaluations on synthetic data, where the ground truth is available.
Thus, although precision and recall are relevant metrics in certain scenarios, they are not
widely applicable or suitable for assessing the performance of generative models on real-
world image datasets [44]. Despite these limitations, the FID is widely used for evaluating
generative models due to its robustness, reliability, and consistency in comparing model
performance, particularly when dealing with large sample sizes [44]. Particularly, its
consistency in relative model comparisons makes it a preferred choice among researchers
and practitioners in the field.



Electronics 2023, 12, 3668 9 of 20

We chose the GAN models that demonstrated low FID values and exhibited promising
results in terms of generating high-quality images. Moreover, we considered the average
training time of the models, taking into account computational efficiency and the practicality
of generating images within a reasonable time frame. Owing to the combination of visual
inspection and quantitative evaluation metrics, the selected GAN models not only produced
visually appealing images but also met the desired efficiency and performance requirements
for our research.

To identify the most suitable GAN model for our GAN augmentation task, we per-
formed an extensive evaluation of FID scores for various GANs, including ACGAN, BGAN,
BEGAN, DCGAN, DRAGAN, EBGAN, FISHERGAN, GAN, INFOGAN, LSGAN, MM-
GAN, NSGAN, RELATIVISTIC GAN, SGAN, WGAN, WGAN-GP, and WGANDIV. Each
GAN model was trained, and its generated images were subjected to FID analysis. The FID
score, which measures the dissimilarity between the feature distributions of real and fake
images, was calculated for each GAN. The lower the FID score, the closer the resemblance
between the generated and real images, indicating higher image quality [45].

4. Results and Evaluation

In our evaluation, we focused on generating the 13 available letters (A, C, D, E, I, L, M,
N, O, P, R, S, and T) and digits (0–9). To achieve optimal performance, we carefully tuned the
hyperparameters of the GAN models. The Learning Rate (LR) determines the step size at
which the model updates its parameters during training. A lower LR results in more stable
training but slower convergence. The batch size refers to the number of samples processed
in each iteration. A larger batch size can accelerate training but may require more memory.
Dropout is a regularization technique that randomly drops out a fraction of the units of
the model during training to prevent overfitting and promote generalization. The number
of epochs determines how many times the model will iteratively update its parameters to
learn from the data. An epoch is completed when all training examples have been used
once for parameter updates. We introduced random noise as input vectors for the generator
across all GANs to ensure randomness and diversity. We chose a batch size of 32 to prevent
overfitting, considering the size of our dataset. We extended the epoch count from 20,000
to 50,000 in all experiments. We also generated sample outputs periodically for visual
assessment. We evaluated the performance of all models using four different learning rates:
0.001, 0.002, 0.0001, and 0.0002. However, we used the Adam optimizer with a learning
rate of 0.0002 for both generators and discriminators for WGAN-DIV and WGAN-GP.
These adjustments were made based on empirical evaluations to determine the optimal
values that result in improved GAN performance. After training and evaluating various
models, WGANDIV, WGAN-GP, GAN, and BGAN emerged as the top-performing models,
exhibiting exceptional visual appeal in their generated outputs. Upon closer examination,
WGAN-GP and WGANDIV exhibited similar characteristics and were visually comparable
and better. These two GAN models demonstrated superior performance after being trained
for 50,000 epochs, and the optimal output could be achieved around 12,500 epochs.

Tables 1 and 2 present the FID scores achieved by each GAN model when applied to
the character and digit datasets, respectively. A lower FID score indicates higher similarity
and better quality of the generated samples, reflecting the effectiveness of the GAN model
in capturing the underlying characteristics of the dataset. Upon analyzing the results, it
was observed that WGANDIV exhibited the lowest FID score among all the evaluated GAN
models, indicating its superior image quality. This exceptional performance establishes
WGANDIV as the preferred GAN model for our data augmentation task because it excels
at generating highly realistic images. Additionally, WGAN-GP also exhibited commend-
able performance, indicating its effectiveness in producing high-fidelity images. Thus,
WGANDIV and WGAN-GP were the top-performing GAN models in our evaluation.
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Table 1. FID values for the evaluated GANs.

GAN A C D E I L M N O P R S T

ACGAN 412.8 482.6 469.5 496.6 414.3 442.6 453.5 455.1 419.7 481.0 407.9 570.5 470.2
BGAN 299.8 298.2 242.0 229.1 311.1 296.9 272.1 294.7 312.5 340.5 268.3 287.6 297.3

BEGAN 402.6 434.3 569.3 398.9 365.9 315.4 453.2 438.6 328.1 304.8 249.2 465.0 320.9
DRAGAN 375.5 472.6 416.4 442.0 512.7 450.8 485.5 469.1 430.9 437.1 472.9 467.9 462.7
EBGAN 581.3 434.9 470.3 400.4 457.3 384.8 434.6 408.9 383.9 401.7 381.0 514.4 436.1
F-GAN 525.7 499.1 441.7 497.1 462.5 530.0 553.3 498.6 447.2 491.7 502.6 551.3 526.2
GAN 242.6 316.3 258.4 218.0 316.8 273.8 280.0 260.9 300.5 232.9 245.8 295.7 229.4

INFOGAN 479.1 481.7 443.7 493.0 529.9 515.2 522.9 484.5 438.9 449.9 492.8 505.5 527.6
LSGAN 393.5 409.8 415.1 411.6 393.8 361.1 377.9 400.8 419.6 356.8 384.4 472.1 463.4

MMGAN 455.9 486.2 419.2 408.4 538.5 495.5 526.4 464.5 466.2 410.1 486.2 488.6 512.5
NSGAN 449.1 478.7 416.0 408.9 519.7 453.6 486.6 459.4 432.4 436.9 463.1 485.8 478.1

REL-GAN 300.1 359.1 383.4 393.7 368.4 385.2 376.5 432.8 434.5 391.9 373.8 468.1 421.3
SGAN 350.4 407.9 424.3 419.5 365.6 372.8 411.3 381.8 349.6 429.4 406.2 493.2 389.0
WGAN 380.3 313.5 349.5 258.5 293.2 288.5 369.9 332.6 324.9 249.7 368.6 337.1 391.5

WGAN-GP 261.7 271.8 188.6 197.8 268.6 236.5 247.8 294.2 230.0 211.2 258.8 307.8 290.3
WGANDIV 231.6 224.8 210.2 215.8 279.1 241.0 252.1 245.5 283.3 213.4 255.0 290.4 285.4

Table 2. FID values for the evaluated GANs.

GAN 0 1 2 3 4 5 6 7 8 9

ACGAN 352.2 442.7 350.9 339.7 381.0 419.9 400.543 383.9 320.8 387.5
BGAN 250.4 278.6 282.0 269.1 314.9 220.4 286.6 293.3 292.9 291.5

BEGAN 312.9 379.8 423.1 367.5 365.9 368.1 404.4 463.9 318.1 346.7
DRAGAN 320.5 355.6 394.0 377.4 375.83 357.3 359.8 357.4 383.4 368.3
EBGAN 321.8 370.4 390.0 377.4 373.4 351.3 443.6 411.7 398.0 373.9

FISHERGAN 417.3 502.9 487.3 477.9 519.3 395.5 421.6 408.1 465.4 522.7
GAN 273.9 251.1 262.2 262.1 281.3 266.8 253.0 284.1 286.1 263.2

INFOGAN 301.1 363.6 393.2 412.8 405.5 406.5 349.7 390.9 412.8 386.4
LSGAN 327.6 372.2 291.4 339.0 356.4 339.4 355.3 349.4 366.8 395.7

MMGAN 438.4 339.8 351.8 349.0 366.3 390.6 322.3 344.1 368.5 412.3
NSGAN 307.5 401.4 400.2 418.8 390.7 419.8 330.4 373.6 388.6 402.7

REL-GAN 333.1 356.1 286.6 340.3 321.5 335.1 411.5 384.3 394.4 414.6
SGAN 322.6 389.7 342.3 362.1 374.5 374.3 389.7 356.5 370.7 391.5
WGAN 247.8 305.2 318.4 353.0 342.0 339.9 383.0 383.0 395.4 330.6

WGAN-GP 224.0 305.0 236.9 229.3 246.9 240.3 231.2 256.0 262.3 289.5
WGANDIV 235.6 289.5 239.9 223.2 358.9 220.7 256.3 270.6 239.5 299.7

The success of WGAN-GP and WGANDIV can be attributed to several factors. First,
both models utilize Wasserstein distance as a loss function, which helps address the mode-
collapse issue commonly encountered in GAN training. WGAN-GP employs the gradient
penalty technique to enforce Lipschitz continuity, promoting stable training and preventing
mode collapse. On the other hand, WGANDIV incorporates an additional divergence term
that encourages the generator to produce more diverse samples, resulting in improved
quality. To further support our evaluation, we performed a detailed visual inspection of the
generated samples from the four best GAN models. Based on the original images provided
in Figure 4, Figures 5–8 provide representative images showcasing the outputs from BGAN,
GAN, WGAN-GP, and WGANDIV, respectively. Upon visual examination, it is evident
that the samples generated by WGAN-GP and WGANDIV shown in Figures 7 and 8 ex-
hibit superior quality in terms of capturing the intricate details and characteristics of the
imprinted characters and digits. The images from these models demonstrate sharper edges,
more pronounced textures, and enhanced overall fidelity compared with the other models
with very-low-quality images, as shown in Figures 9–13.

During the evaluation process, we observed variations in the FID scores across various
numbers and characters, regardless of the GAN models used. This discrepancy in FID
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values can be attributed to the inherent complexity and diversity of the imprinted-character
and -digit datasets. Certain digits/characters inherently possess more distinctive features
and complex shapes, making their accurate generation challenging. Consequently, the
generated samples for these digits/characters may exhibit higher FID values, indicat-
ing a greater dissimilarity with respect to the real data distribution. Conversely, num-
bers/characters with simpler shapes and fewer intricate details may yield lower FID values,
indicating better alignment with the real data distribution. Despite the visual similarity
between the generated and original images, the high FID score can be attributed to fac-
tors such as sensitivity to intra-class mode dropping, smaller sample size, and dataset
characteristics [44].

Figure 4. Input samples: ’A’, ’2’, and ’0’, selected from the original dataset shown in Figure 3.

Figure 5. BGAN output samples.

Figure 6. GAN output samples.
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Figure 7. WGAN-GP output samples.

Figure 8. WGANDIV output samples.

Figure 9. InfoGAN output samples.

Figure 10. LSGAN output samples.
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Figure 11. NSGAN output samples.

Figure 12. REL-GAN output samples.

Figure 13. EBGAN output samples.

According to [44], the performance of each model is considerably influenced by the
dataset, and there is no model that strictly outperforms the others. Figure 14 shows the
original images from which Figures 15 and 16 are generated from. We observed that
compared with other letters, certain letters, such as E, L, and I, did not exhibit considerable
variations in the generated images across the top-performing GANs. This can be attributed
to their simple shapes and low representation of variations in the dataset. The letters E, L,
and I possess straightforward and uncomplicated structures, while other letters may have
more complex curves and details. The GAN models can easily and accurately generate
simpler shapes, resulting in less variation in the generated images for these letters. This
finding suggests that the style or structure of each character can influence the diversity of
the generated images. Figure 17 shows the selected data samples of the other letters and
digits.
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Figure 14. Input samples: ’I’, ’L’, and ’E’, selected from the original dataset shown in Figure 3.

Figure 15. Images of letters I, E, and L from WGANDIV model.

Figure 16. Images of letters I, E, and L from WGAN-GP model.

(a) Original letter images selected

(b) Selected letter images generated by WGANDIV

Figure 17. Cont.
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(c) Selected letter images generated by WGAN-GP

(d) Original digit images selected

(e) Selected digit images generated by WGANDIV

(f) Selected digit images generated by WGAN-GP

Figure 17. Selected data samples of the other letters and digits.

Monitoring and analyzing the sampled loss graphs in Figures 18a–d and 19a–d
(WGANDIV for ‘0’, WGANDIV for ‘2’, WGANDIV for ‘D’, WGANDIV for ‘A’; WGAN-GP
for ‘1’, WGAN-GP for ‘5’, WGAN-GP for ‘D’, and WGAN-GP for ‘R’) during training
provided valuable insights into the learning process of the GAN models. They revealed
how the model adapted and improved over time. By analyzing these plots, we can gain a
deeper understanding of the training dynamics and convergence of GAN models. The loss
plots of the discriminator and generator depicting changes in the respective losses with
the iterative training of the models provide valuable insights into the optimization process
of GAN models. At the beginning of training, the discriminator loss is typically high
due to the random initialization of the discriminator network. As the generator produces
initial samples that lack resemblance to real samples, the discriminator easily distinguishes
them as fake, resulting in a high discriminator loss. Simultaneously, the generator loss is
also high because the generated samples fail to effectively deceive the discriminator. As
training progresses, the discriminator gradually improves its discriminatory capabilities
and becomes more proficient at accurately classifying real and generated samples, resulting
in a decrease in the discriminator loss. The learning of the discriminator can be observed as
a decrease in the slope of the loss curve, indicating the increased ability of the model to
differentiate between real and generated samples. Conversely, the generator loss initially
decreases as the generator learns to produce more plausible samples that can better deceive
the discriminator. With backpropagation, the generator refines its parameters and adjusts
its output to generate samples that progressively resemble real samples. Consequently, it
becomes increasingly challenging for the discriminator to distinguish between real and gen-
erated samples, resulting in a decrease in the generator loss. The convergence of the losses
indicates the optimization progress of the GAN models. Ideally, successful training can
yield low values for discriminator and generator losses, indicating that the discriminator
accurately classifies samples and the generator produces samples that closely resemble real
ones. The convergence of the loss curves indicates that the models have reached a stable
equilibrium, where the generator effectively captures the underlying data distribution.
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(a) WGANDIV-0 loss graph (b) WGANDIV-2 loss graph

(c) WGANDIV-D loss graph (d) WGANDIV-A loss graph

Figure 18. Loss graphs of WGANDIV.

(a) WGAN-GP-1 loss graph (b) WGAN-GP-5 loss graph

(c) WGAN-GP-D loss graph (d) WGAN-GP-R loss graph

Figure 19. Loss graphs of WGAN-GP.
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Based on our analysis, we determined that the optimal output for the evaluated
WGAN-GP and WGANDIV models can be achieved around 12,500 epochs. At this point,
we observed the convergence of the discriminator and generator. Notably, the GANs
already exhibited promising results at approximately 12,500 epochs, indicating considerable
improvements in image quality within a relatively shorter training duration. As part of our
experimental evaluation, we analyzed the training duration for each of the assessed GAN
models on our Ubuntu server equipped with two NVIDIA TITAN RTX GPUs. The average
training time, measured in minutes, for 50,000 epochs varied across the models: WGAN
(26.62), WGAN-GP (33.18), WGAN-DIV (37.84), GAN (27.42), MMGAN (24.43), NSGAN
(28.21), BGAN (66.15), BEGAN (39.21), EBGAN (94.176), DRAGAN (100.56), SGAN (108.18),
LSGAN (104.73), INFOGAN (96.24), and REL-GAN (107.59). These differences in training
time can be attributed to several factors. Model architecture complexity, the number of
parameters, and the convergence behavior are key influencers. Models with more intricate
architectures and larger parameter spaces often require longer training times to achieve
convergence. Additionally, GANs that introduce unique regularization techniques or novel
loss functions might also require more iterations to reach an optimal balance between the
generator and discriminator networks. Moreover, variations in training time can also be
influenced by the computational resources available, such as the processing power of the
machine used for training. These varying training durations, influenced by architectural
complexity, convergence characteristics, and available computational resources, provide
insights into the different demands of the evaluated GAN models.

To assess the training stability and quality of our GAN models for generating imprinted
digits, monitoring the loss curves played a crucial role. With our evaluation, we closely
examined the loss plots of the discriminator and generator to gain insights into the learning
process and ensured effective convergence of the models. Initially, we observed high
discriminator and generator losses because the models were randomly initialized and the
generated samples did not closely resemble real imprinted digits. However, as training
progressed, we observed a gradual decrease in the discriminator loss. This revealed that
the discriminator improved its ability to accurately classify real imprinted digits from the
generated ones. Simultaneously, the generator loss exhibited a downward trend, indicating
that the generator was learning to produce imprinted-digit samples that closely resembled
the real digits. This improvement was evident as the discriminator found it increasingly
challenging to distinguish between the real imprinted digits and the generated ones. The
convergence of the loss curves served as a crucial indicator of the optimization progress of
our imprinted-digit GAN models. As the losses approached lower values and the curves
exhibited stability, we inferred that the models were reaching a stable equilibrium. This
suggested that the generator successfully captured the intricate details and style of the
imprinted digits, while the discriminator became highly accurate in differentiating real
imprinted digits from the generated ones. By monitoring the loss curves, we identified
the potential issues during training, such as fluctuations, sudden spikes, or plateaus.
These observations enabled us to address problems such as mode collapse, instability, or
inadequate training. Careful analysis of the loss plots guided our decisions regarding
hyperparameter tuning, regularization techniques, and architectural modifications. This
iterative process helped in improving convergence and generating high-quality imprinted-
digit samples that faithfully replicated the intricate details of the original engravings.

5. Limitations and Future Work

A notable limitation in our study is the technical challenge associated with mode
collapse, a phenomenon wherein a generative model, such as a GAN, fails to capture the
full diversity of the real data distribution, leading to reduced variety in the generated
samples. Within the context of our research, the presence of a relatively small dataset
encompassing only a few alphabets introduces the potential risk of exacerbating mode
collapse. This concern informed our strategic decision to concentrate on a specific subset of
characters (13 of 26 alphabet characters). By doing so, we aimed to ensure both diversity
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and realism in the augmentation process, thereby mitigating the likelihood of mode collapse
and its consequential negative impact on the quality and generalizability of the generated
samples. Despite this limitation, we hold a strong belief in the broader applicability of our
results and conclusions. Our evaluation methodology encompassed a thorough assessment
of visual quality, quantitative metrics, and the practical implications of our findings. These
evaluations consistently underscored the efficacy of our chosen approach in enhancing the
recognition of engraved characters. Consequently, the techniques applied to the selected
subset of characters offer promising avenues for broader application, substantiating the
generalizability of our approach beyond the specific character set considered in this study.
Future work could explore the incorporation of domain-specific knowledge into GAN
models, which could significantly improve the applicability of generated images. The
applicability of generated synthetic images goes beyond the maritime field. The ability
to incorporate environmental and contextual factors into GAN models could potentially
be applied to other industries that rely on image recognition, such as outdoor robotics,
agricultural monitoring, and infrastructure maintenance.

6. Conclusions

In conclusion, our research has demonstrated the efficacy of GAN models in augment-
ing limited datasets of imprinted digits and characters for ship-character recognition. The
WGAN-GP and WGANDIV models were able to generate diverse yet realistic digit images
that are seamlessly aligned with ship-related engravings. The significance of these findings
lies in their potential to significantly enhance maritime safety, operational efficiency, and
security by bolstering character recognition capabilities. Our study has made significant
progress in addressing data scarcity challenges in ship-character recognition. However,
there are still many unexplored possibilities. Future work could explore the incorporation
of domain-specific knowledge into GAN models, which could significantly improve the
applicability of generated images. The applicability of generated synthetic images goes
beyond the maritime field.
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