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Abstract: If we look at the chronology of transitions between successive stages of industrialization, it
is impossible not to notice a significant acceleration. There were 100 years between the industrial
revolutions from 2.0 to 3.0, and only half a century passed from the conventional 3.0 to 4.0. Assuming
that progress will inevitably continue to accelerate, and given that 2011 is the set date for the start of
the fourth industrial revolution, we can expect Industry 5.0 by 2035. In recent years, Industrial Internet
of Things (IIoT) applications proliferated, which include multiple network elements connected by
wired and wireless communication technologies, as well as sensors and actuators placed in strategic
locations. The significant pace of development of the industry of advantages in predicting threats to
infrastructure will be related to the speed of analyzing the huge amount of data on threats collected
not locally, but globally. This article sheds light on the potential role of artificial intelligence (AI)
techniques, including machine learning (ML) and deep learning (DL), to significantly impact IIoT
cyber threat prediction in Industry 5.0.

Keywords: artificial intelligence; Internet of Things; cybersecurity; Industry 4.0; Industry 5.0; deep
learning (DL); Industrial Internet of Things (IIoT); machine learning (ML); edge computing

1. Introduction

Industry 5.0 is likely to surprise us in terms of the level of cybersecurity solutions
required. In the next phase of industrialization, it should be necessary to anticipate techno-
logical trends and try to assess the adaptation of one’s own organization to the inevitable
future. It can be assumed that in the case of Industry 4.0, predicting the future was not
properly carried out. As a result, Industry 4.0 was not properly consumed by companies.
On the one hand, an attempt was made to harness the technological revolution through
simple evolutionary activities, on the other hand, the multitude of technologies behind
Industry 4.0, whose adaptation to the existing organizational framework consumes huge
resources of enterprises, creates an unsatisfactory pace of change. The Industrial Internet
of Things, intelligent sensors, industrial robots, and three-dimensional (3D) printers are
elements of the current digital transformation. Their technological maturity is undeniable.
In the case of non-hardware elements, such as big data, machine learning, or artificial
intelligence, it seems that we are still at the beginning of the road and every year we open
new doors to new possibilities [1,2].

Properly planned and managed, Industry 4.0 should be able to manage a multitude of
systems supporting individual areas: manufacturing execution systems (MES), supervi-
sory control and data acquisition (SCADA), supply chain management (SCM), customer
relationship management (CRM), supplier relationship management (SRM), transportation
management system (TMS), etc. Each new system adds another layer of complexity to data
exchange. A comprehensive enterprise management software that should integrate all these
aspects and facilitate management is enterprise resources planning (ERP). ERP systems
are currently only used for materials management and general reporting. The aggregation
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and processing of data from all Industry 4.0 subsystems, as well as the collection of data
from individual sensors is an extremely important process that requires careful planning
and protection. The success of a well-managed company lies in the accuracy of this data,
which helps in the current control of production processes, but also in the necessary future
analysis of the development of these processes. In most cases, on-premise models from
one of several leading vendors are still used to manage the entire business, with numerous
modifications to adapt the software to the needs of the company. Today’s transformation
aims to standardize data exchange primarily through an application programming interface
(API) that, built into applications, greatly facilitates data exchange, but does not provide a
path to full integration [1–4].

The digitization of more and more aspects of industrial processes and the increasing
use of automated big data collection from sensors and actuators, inference, trend analysis
and AI-based future event prediction is now providing a step change in the quality of
industrial production in many industries, but at the same time increasing the requirements
for their reliability, including resilience to unintentional (failures) and intentional (cyber
attacks). So far, the largest use of AI in Industry 4.0 is directly in manufacturing and
logistics—a trend that is likely to strengthen due to the demands of global freight transport
or global supply shortages in recent years [3–5].

AI systems in cybersecurity are able to replace specialists in less responsible tasks that
can be automated and require speed, or serve as advisory (second opinion) systems in tasks
that require a final human decision. This will not only relieve the burden on specialists, but
also accelerate the defense response or increase its precision. In the case of an AI-supported
attack, using AI in defense may be the only way to successfully repel it, avoiding data loss
or system downtime. Self-learning AI systems can more easily and quickly isolate new
types of attacks and creatively produce countermeasures mechanisms in near real-time,
only to be analyzed later by specialists. In some cases, such analysis after time will be
the only solution, as the time for an effective response may be too short, especially in
complex systems with many distributed structures. For this reason, the areas of activity
can be divided into endpoint security, network security, application security, and cloud
security [6,7].

This article sheds light on the potential role of artificial intelligence (AI) techniques,
including machine learning (ML) and deep learning (DL), to significantly impact IIoT cyber
threat prediction in Industry 5.0.

2. Industry 5.0

In organizations such as supply networks, Industry 5.0 refers to a new level of seamless
and harmonious integration between people, automation, and machines. Automation refers
to the management, optimization and execution of processes and technologies. Therefore,
it is necessary to define, select, and implement automation. Automation can be defined in
several ways:

• Replacing or augmenting human tasks with automated tasks;
• Execution of a physical or virtual (in whole or in part) function previously performed

(in whole or in part) by a human;
• A system or method in which processes are carried out automatically or are controlled

by automatic automation or something similar;
• A person or animal that behaves monotonously, routinely, and without active intelligence;
• Replacing human activities with robots or intelligent machines that perform tasks or

functions that are monotonous, routine, and standardized.

Increased productivity, agility, profitability, better adaptability, readiness for change,
responsive work environment, and overall cost reduction are the main advantages of
Industry 5.0. If the current Industry 4.0 or future Industry 5.0 wants to incorporate machine
learning or artificial intelligence in the future, it will need to consider the need to process
huge amounts of data from multiple sources. Managing or updating such a data structure
will become an increasingly complex process [1,2,8,9].
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IoT and IIoT networks are particularly vulnerable to cyber attacks. The complexity of
the above solutions and their partial independence creates at the same time a greater num-
ber of attack vectors, i.e., channels that allow hackers to potentially access data or otherwise
use them to attack the efficiency of the system. The vulnerability may concern the IIoT de-
vices themselves (sensors, actuators, power supply, or monitoring/concentrating devices),
as well as the networks in which they communicate, as well as mobile applications, Internet
platforms and cloud databases, as well as analytical and control software coordinating the
activities of lower layers. IoT systems process a lot of data that can be useful to criminals,
ranging from raw data to financial or personal data, audio recordings, still and moving
images, or multimodal data (technical files, operation algorithms, or ready-made analyzes
using digital twins). They can be used to carry out precise phishing attacks, the target of
which may be a specific person in the enterprise, for some reason considered vulnerable
(also in a hidden way, e.g., has a sick family member). There are no universally recognized
legal regulations or security standardization. Many of the individual devices that make
up IoT networks have poor security or are not designed to connect to public networks.
The consequences of attacks on IIoT systems are potentially the most costly, because every
minute of production downtime translates into smooth operation and financial liquidity of
the company. Sometimes, such a threat in a difficult situation of a company may be enough
to extort a ransom from companies that do not want to risk losing access to electricity,
transport networks, etc. Therefore, knowledge of the rules and appropriate protection in
unobvious ways are the basic protection against real or imagined (bluff) threats in the area
of cybersecurity, and continuous monitoring of threats and counteracting their occurrence
should be the basis of every company’s cybersecurity strategy. In the case of the attack
itself, it may be too late to react effectively (Table 1) [10–12].

Table 1. ISO/OSI model vs. most frequent vulnerabilities.

ISO/OSI Layer Key Vulnerability

7 Exploit
6 Phishing
5 Hijacking
4 Reconnaissance/denial of service
3 Man-in-the-middle
2 Spoofing
1 Sniffing

Higher levels of availability, integrity, scalability, confidentiality, and interoperability
of IoT devices created new vulnerabilities. Current attack methods against the IIoT mainly
involve attacks on the devices themselves, their hardware and/or software, communication
networks, and the applications they report to. Most attacks involve a connection to a
gateway and/or cloud data server [10–12].

In fact, such cloud solutions are already being offered through platform as a service
(PaaS), software as a service (SaaS), and application as a service (AaaS) (Table 2). These
models make it easier to control poor quality and consistency of data flowing from various
platforms within the enterprise. The essence of Industry 5.0 will be to predict the future of
the product, the production process, and the cost of materials. To this end, we will be sup-
ported by AI along with data collected live, and at the same time, we will draw knowledge
from data collected in the past and stored in memory, probably in the cloud [13,14].

Platform as a service (PaaS) is a model of cloud computing where a third party
provides users with hardware and software tools over the Internet. Typically, these tools
are required for app development. Hardware and software are hosted on the infrastructure
of the PaaS provider. As a result, PaaS frees developers from installing their own hardware
and software to develop or launch a new application.
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Table 2. IaaS, PaaS, SaaS vs. cybersecurity domains.

Cybersecurity Domain

Client level security

SaaSMonitoring

Transmission medium security

Data and storage security
PaaS

Identity and access management

Virtual image security

IaaSNetwork and perimeter security

Physical security

SaaS is an application delivery model where applications are hosted in the cloud and
delivered over the Internet to the end user. In this model, an independent software vendor
(ISV) can contract with a third-party cloud provider to host applications. Alternatively, the
cloud provider may be a software provider for larger companies such as Microsoft.

AaaS is a type of service where applications are delivered over the Internet on demand
and billed to the consumer on a per-use or monthly or yearly basis. AaaS applications are
hosted on the server, managed by the host, and delivered remotely to the user’s device,
unlike traditional applications installed on devices. Since it is hosted on a server, all updates,
configurations and security for this application are applied on the server and not on every
endpoint. From a user and business perspective, all these attributes have huge implications.

The bolder concept of real-time data processing anywhere with access to the cloud
is called data as a service (DaaS). This concept assumes that data will not only be col-
lected from the currently hermetic enterprise, but also compared with data from outside
the enterprise. Another aspect that significantly increases the probability of success is
the simultaneous analysis of suppliers’ inventory and even the current needs of end cus-
tomers. On the other hand, when talking about the use of DaaS, the concept of master data
management (MDM) should also be mentioned.

Master data management is a system acting as a central data repository. It contains
all the data that the company has and supports its management. This includes technical,
transactional/commercial, logistics, marketing, and multimedia data (digital assets and
their metadata). All data are combined so that it is consistent and always up to date. When
different systems use the same data, the data are often redundant and it is difficult to
determine which data are up-to-date. Different types of data are in different formats on
different systems, making it difficult to access. Sometimes it is difficult to extract data from
the system and it is completed manually [13–15].

The aspect of ensuring cybersecurity of the transmitted and processed data is extremely
important. The lack of susceptibility to hostile outside interference in production processes,
as well as the protection of data archives from the past and those remaining in R&D
departments, should be a key area of development of conscious management. Although
on-premises solutions are still popular, the future lies in the use of secure cloud solutions.
Large organizations with offices in many countries can secure all their data processing
needs with cloud solutions. Using cloud facilities such as freely scalable storage:

• Storage of data resources;
• Computing power;
• Cyber threat prevention and response.

Not so long ago, they enabled full integration with machine learning (ML), deep
learning (DL), or artificial intelligence (AI) for the analysis of historical and current data.
Artificial intelligence can play a vital role in this digital transformation of business. The
aforementioned multitude of data and the need to select the right data by Industry 4.0 data
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experts would be too time-consuming, and the conclusions would be outdated. AI will help
sift through vast amounts of data to obtain to the most important ones right now [15,16].

3. AI-Based Approaches

Traditional AI differs from the machine learning (ML) and deep learning (DL) dis-
cussed below, which are part of AI, as it replicates the way the human brain thinks, acts,
and functions, often based on patterns derived from nature (Figure 1).
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Advantages of AI from a cybersecurity perspective:

• Based on data or rules;
• Self-learning and tutoring;
• Greater depth of analysis than human;
• Higher speed (up to 60 times);
• Elimination of time-consuming research tasks;
• It does not hang;
• It will always give some result;
• Better understanding of cyber threats and cyber risk levels;
• Make key decisions faster;
• Better coordination of countermeasures to a detected threat;
• Scalable enterprise-grade security available almost anywhere (cloud technologies);
• Creatively complements solutions in line with the principle of “zero trust”.

The disadvantages of AI from a cybersecurity point of view:

• The need to make inferences on mobile devices;
• Societal opposition to the use of AI.

Machine learning (ML) is a form of AI that allows you to learn from data, automatically
extracting rules from it, instead of explicitly programming the behavior, constraints and
operating environment. The learned ML system uses the acquired and coded knowledge
to make decisions in similar cases (for other data). ML approaches can be categorized as
supervised, unsupervised, and reinforcement learning [17–20].

Supervised learning uses tagged datasets to train algorithms to accurately classify
data or predict outcomes. The model measures accuracy and learns to minimize error. In
data mining with supervised learning, we solve two main types of problems:

• Classification issues: uses an algorithm to classify data into specific classes, such as
spam and regular email;

• Regression, which uses extracted data relationships to predict numeric values.

Unsupervised learning groups unlabeled datasets using discovery of patterns con-
tained in the data without human intervention (e.g., data labeling). Once trained, these
models are used to:

• Clustering, i.e., grouping unlabeled data based on their mutual similarities or differ-
ences, e.g., in image compression or segmentation materials, defects, etc.;

• Association that uses different rules to find relationships between variables in a
particular dataset, e.g., “Customers who bought this item also bought. . .”;
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• Dimensionality reduction is used when the number of features or dimensions in the
data set is too large—then it reduces the number of data while maintaining their
integrity, e.g., during data preprocessing, including image.

Reinforcement learning is an attempt to induce behavior through positive or negative
reinforcement by interacting with the environment and using the punishment/reward
function (maximizing the benefits of actions).

DL works similar to ML, but it has more possibilities due to much more complex
multi-layer network structures, a larger number of parameters, and larger sets of solutions
or autocorrect methods [17–20].

4. AI-Based Cybersecurity in Industry 4.0 and Industry 5.0

AI is not a new concept, but it comes from the 1950s, when much worse computers
did not allow for the practical implementation of some of the concepts. SWOT analysis
can help find the link between AI-powered cybersecurity and increased productivity
(Table 3) [1,17–20].

Table 3. Strengths, weaknesses, opportunities, and threats (SWOT) analysis for AI applications
inIIoT cybersecurity.

Internal

Strengths Weaknesses

Automated patterns analysis;
Possibility of an individual approach.

The need to ensure a sufficiently large
amount of data and their appropriately
high quality;
Poor understanding of today’s market,
business and marketing trends on a
global level.

External

Opportunities Threats

Comprehensive intelligent security
management;
The first-mover effect in a newly
emerging market;
Large market size.

Lack of standardization;
Higher price;
Few specialists;
The risk of market domination by
global corporations;
In some markets: algorithms and
software cannot be patented.

Main current AI applications in IIoT cybersecurity include:

• Unified automated risk and threat management;
• Access management (including AI-based biometrics and countering denial of service

(DoS) attacks);
• Vulnerability detection;
• Prevention of data loss and data breaches;
• Implementation of the antivirus policy;
• Fraud detection;
• Intrusion detection and prevention.

Systems based on three basic components (hardware, software, and service) can use
one or a combination of AI technologies listed in Table 4.

Table 4. Application of AI in IIoT cybersecurity (own version).

AI Technology Application

Decision trees
Analyzing individual data fragments according to sets of
rules, classifying them as “no change” or “suspected attack”.
The ability to automatically develop new sets of rules.

Naïve Bayes Data classification based on anomalous activities within
them based on target activity classes.
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Table 4. Cont.

AI Technology Application

K-nearest neighbor (k-NN)
Discovering patterns in large data sets. Create classes based
on the Euclidean distance between data that arealready
classified and new pieces of data.

Traditional artificial neural
networks

Early anomaly detection.
Automatic security check.
Identification, classification, and estimation of damage
caused by security breaches.

Machine learning
Data-driven approach: processes data, tests hypotheses, and
automatically extracts rules when ensuring sufficient data
quantity and quality.

Deep learning
Solving problems of much greater complexity than other
techniques, e.g., in the analysis of images or
multimodal data.

Fuzzy logic
Linguistic data analysis.
Capturing incomplete and uncertain data.
Trend analysis.

Fractal analysis Estimating “smoothness” in patterns and imaged data.
Analysis of the trend and the possibility of its changes.

Natural language processing
Processing and analyzing large amounts of natural language
data, including human–human and human–computer
interactions and sometimes emotions (affective computing).

4.1. Edge Computing

One of the solutions for improving security in Industry 4.0 and 5.0 is the use of edge
computing. The idea is that part of the analysis of the data flowing from the increasing
number of endpoints should not be carried out in centralized computing units but should be
isolated and processed “at the edge”. As we add more and more endpoints to industrial IT
networks to collect data, the connections between the endpoint and the cloud, for example,
will become more and more important. Taking into account the ideas of Industry 4.0 and
5.0, i.e., rapid access to the results of analyses of this data, it will be necessary to transfer
key areas of analysis to edge computing.

An important aspect of edge computing is decentralized computing and storage
resources, which would process data on an ongoing basis in locations with a high saturation
of endpoints where data are intensively produced.

This could be supported by layered fog computing resources, i.e., the next layer
between endpoints and data centres. Fog modes would provide storage or computing
power without the need to engage virtually unlimited cloud resources, which is still far
from the endpoint.

Cloud computing would process data on highly scalable resources from many regions
of the world where the company operates. The disadvantage of processing data in the
cloud is the physical distance of the endpoint from the data centre and therefore no access
to real-time data analysis.

This concept will significantly improve the security of analysis and access to data, as it
will provide the ability to change them in the central data center in the cloud. Applying the
basics of cybersecurity on the line endpoint, the edge computing centre will be much easier
than analyzing this security on the line between the central database in the cloud.

While edge computing has the potential to deliver compelling benefits across a wide
range of use cases, the technology is far from infallible. Beyond the traditional issues
of network limitations, there are several key aspects that can impact the deployment of
edge computing:
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4.1.1. Limited Capabilities

Part of the appeal of cloud computing for edge (or fog) computing is the variety and
scale of resources and services. Deploying infrastructure at the edge can be effective, but
the scope and purpose of the edge deployment must be clearly defined; even a large edge
computing deployment serves a specific purpose at a pre-determined scale with limited
resources and few services.

4.1.2. Connectivity

Edge computing can overcome typical network limitations, but even the most tolerant
edge deployment will require a minimum level of connectivity. It is critical to design an
edge deployment that can handle poor or unreliable connectivity, and to consider what
happens at the edge when connectivity is lost. Self-sufficiency, AI, and graceful failure
planning in the wake of connectivity issues are essential to successful edge computing.

4.1.3. Security

IoT devices are well-known to be insecure, so it is important to design an edge
computing deployment that prioritizes proper device management, such as policy-driven
configuration enforcement, and security of compute and storage resources, including
elements such as software patching and updates, with particular attention to the encryption
of data at rest and in transit. IoT services from major cloud providers include secure
communications, but this is not automatic when building an edge site from scratch.

4.1.4. Data Lifecycles

The continuing problem with today’s flood of data is that so much of it is useless. Most
of the data involved in real-time analytics is short-term data. It is not kept for the long term.
An organization needs to decide what data to keep and what to discard once the analysis
is complete, and the data that are kept needs to be protected according to corporate and
regulatory policies.

4.2. Blockchain

To conduct transactions in the digital currency market, a system called blockchain was
developed. Blockchain is often referred to as a fully distributed cryptographic system for
the recording and storage of a linear event log of interactions between networked actors
that is consistent and immutable. Blockchain applications are already well established in
the financial industry. More recently, they expanded into areas such as operations and SC
management. It is seen as a paradigm. It presents both a critical problem and an opportunity.
Blockchain technology can help to prevent conflicts that can arise when multiple changes
are made to a distributed database at the same time from different computers.

The data are tamper-proof because the ledger is protected by cryptographic functions
such as asymmetric keys, hashing, and digital signatures. In addition, the ledger is de-
centralized, so any small change in the data transaction is known to every member of the
blockchain, increasing the transparency of the whole system.

Although there are no detailed descriptions of this fusion of solutions, the attempt
to combine artificial intelligence, blockchains, and the Internet of Things was made many
times by scientists, tentatively called Block IoT Intelligence [21].

Considering the security and centralization issues of IoT applications in various
domains, it aims to achieve decentralized big data analytics.

It addresses existing challenges to achieve high accuracy, appropriate latencies, and security.
Blockchain is effective at decentralising and securing data, but at the same time, limits

the throughput of the system and its scalability (low blockchain read performance). Efficient
sharing techniques need to be introduced here, including for new applications, such as
autonomous vehicle networks (Table 5).
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Table 5. Application of AI vs. IIoT vulnerabilities (own version).

Type of Attack AI Technology Response

Algorithm poisoning Automatic validation with a validated dataset to remove
local models with a high negative impact on the error rate.

Man-in-the-middle (MITM)
Regular automatic supervised software updates, proper
firewall configuration, strong encryption, and refusal to
connect to unsecured Wi-Fi networks.

Bluetooth MITM
Prevent detection of IoT devices, blocking of unknown
devices, regular automatic supervised software updates,
two-factor authentication, and strong pairing methods.

Botnet Continuous virus scanning, including email attachments,
download links, and regular automatic updates.

Dataset poisoning Automatic checking, anomaly detection and data cleaning,
as well as use of micromodels.

Denial of service attack Network traffic monitoring with DoS protection, continuous
virus scanning, and intelligent firewall.

False data injection
Regular supervised software updates, firewalls,
denial of access for unsecured Wi-Fi networks, and
detection of anomalies and unusual input and output data.

Fuzzing and symbolic execution Checking and limiting all allowed inputs.

Model poisoning Particular protection of the system with the model.

Physical attack Secure equipment against tampering, use of kill commands,
and self-destruct.

5. Discussion

Key features of the IoT as a service (IoTaaS) paradigm include recognition of patterns
in machine-to-machine (M2M) data traffic, use of lightweight communication protocols,
vendor-specific proprietary physical and data link layer protocols, storage and processing
of data from IIoT devices by additional devices, as well as data processing in the com-
putational fog and storing them in a cloud database (often as an external service) [22,23].
Simultaneously optimizing performance and improving security and reducing costs when
communicating between machines and the Internet via IoT and collecting and analyzing
information in the cloud and at the edge requires data processing and system management
with algorithms and AI systems. Millions of terminal and intermediary devices based on
IoT operating in the open information space of Industry 5.0 bring many new threats in the
area of cybersecurity. The most common attacks on IoT infrastructure take advantage of
DDoS, scanning attacks, and false data injection. This is to cause, above all, disruption of the
operation of IoT devices (ultimately, destruction), less often to cause unauthorized access.
AI-based intrusion detection systems (IDS) and blockchain-based access control mecha-
nisms are currently being used to protect Industry 5.0 infrastructure. IDS monitors network
traffic, identifying unusual or suspicious activities and preventing the risk of hacking. The
aforementioned blockchain technology is already effectively used in almost all IoT domains
to build a decentralized, extremely difficult to make unauthorized, change in the security
structure, including the detection of fraudulent transactions [22,23]. The distributed ledger
service secures M2M transactions in the intelligent Industry 4.0 and Industry 5.0 ecosystem.
For this purpose, publishing and subscribe protocols, minimum latency and sufficient net-
work bandwidths, interoperability, scalability and mobility support, and analysis of service
availability and security constraints are used [23]. Camera sensor networks (CSNs), visual
sensors and actuators face problems with limited sensing range, allow optimal placement
of camera sensors and power consumption. Performance, tracking quality, and ranges of
motion need improvement, and it is all about reducing power consumption. This is made
possible by a pattern-based motion prediction algorithm for a moving object by applying
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data mining from the target’s past motion. The effectiveness of the proposed algorithms
is 4.6–15.2% compared to solutions without prediction [24]. The challenge is to securely
communicate vehicles, verify, and store their data. This also applies to data disclosed in
other systems in order to correctly locate or diagnose the vehicle and keep it in motion
(refuel/recharge batteries and update software). This requires increasing the memory or
reducing the upload frequency to avoid implementation and maintenance limitations [25].
The inputs to the ML models in IDS are extracted from the IoT using feature extraction
models. These models affect detection speed and accuracy. These include image filters,
transfer learning models (VGG-16, DenseNet), random forests, K-NN, SVM, and various
stacked models from other models. To date, VGG-16 combined with stacking gave the
highest accuracy (98.3%) [26]. Challenges also relate to the heterogeneity, scalability, and
complexity of IoT networks. Hence the more and more frequent implementations of a
biometric-based blockchain, e.g., an electronic health record (EHR, BBEHR) system that
uniquely identifies patients/users. This is now considered superior to the private/public
key used by most blockchain technologies [27]. Dynamic host configuration protocol
(DHCP) servers can be supplemented with Diffie–Hellman key exchange, elliptic curve
discrete logarithm problem (ECDLP), one-way hash function, blockchain technology, and
smart contract for registration and validation processes to combat internal and external
DHCP threats. This results in an average of 21.1% greater resistance to the growing number
of attacks, including for the purpose of securing IoT address management servers [28].
Automatic calculations and recognition of data in IIoT can cause security and privacy risks
when sharing the above-mentioned data information. An IDS based on the Viterbi algo-
rithm, indirect trust (measuring the probability of generating malicious activities during
recording and sending), and the blockchain mechanism for IIoT can provide the required
level of security here [29]. Heterogeneous applications make it difficult to design a globally
accepted and resilient long-range wide area network (LoRaWAN)security model, even rely-
ing on a trusted key management server (TKMS) to securely manage and distribute keys
based on lightweight algorithms [30]. The compromise of accessibility and reliability of
services with the security of mobile users, including in various vehicles (driving, flying, sur-
face, and underwater), requires reconciliation. This requires, for example, supplementing
the blockchain with solutions protecting users’ privacy [31]. The next-generation Internet
of Things (NGIOT) will include not only 5G/6G or AI for cybersecurity and data analysis,
but also the implementation of flexible solutions combining heterogeneous software and
hardware, independent of individual existing vertical markets (industries and application
groups) based on a layered and modular edge cloud design (independent functions and
cross-cutting capabilities). The cloud-native concepts in the IoT systems of the edge cloud
continuum primarily include microservices, microapplications/enablers, containerization,
and orchestration. Thus, independent software packages can be simultaneously or se-
quentially deployed and run at selected points in the hardware environment [32]. Lack
of encryption, malware, ransomware, and IoT botnets are considered the main risks of
IIoT cybersecurity. It is necessary to proactively track network traffic data; currently, it is
possible with an average increase in network bandwidth below 30 kb/s, a 2% increase in
CPU consumption, an increase in physical memory consumption by 0.2–0.42 GB, and a
13.5% increase in consumption energy [33]. Research reviews so far mainly pointed to the
uses of ML and DL for IoT security and their effectiveness in detecting attacks. SVM and
RF are most commonly used due to their high detection accuracy and memory efficiency.
Additionally, extreme gradient boosting (XGBoost), neural networks (NN), and recursive neu-
ral networks (RNN) provide high performance [34]. Industry’s rapid shift to cloud computing
raised concerns about IIoT data security as traditional security solutions fail [35]. It should also
be remembered that along with IIoT, supporting technologies (e.g., augmented reality—AR)
and cyber–physical systems are also developing, which may add their requirements to the
harmonization of functionality. Such assistive technology could be used for smart work
clothes (convergence of textiles and electronics, i-wear) with the mass integration of sensors
into textiles and the development of conductive yarn [36–40].
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5.1. Limitations of Current Solutions

The number of sensors, actuators, and users of data from IoT systems means that auto-
mated data transmission and access is becoming more commonplace, and the requirements in
terms of volume are increasing. Latency is therefore increasing and there are new requirements
for faster communication networks with an IIoT-optimized communication architecture.

User privacy and security issues are central to the development of the IIoT. Despite
the advancement of the use of technologies such as blockchain or LoRaWAN for the decen-
tralized achievement of a sufficiently high level of cybersecurity (authentication, privacy,
and security management), there are still many issues to be resolved or clarified here.
Unfortunately, a number of the proposed solutions were not tested under full operational
conditions. Research results are often based on simplified experiments under laboratory
conditions and/or simulations are still based on simulations and simple experiments,
and the range of hardware and software used does not cover all cases. Hardware and
software requirements need to be optimized for cost, as, for example, integrating chain or
implementing secure wireless technologies is not cheap. Such problems would be solved
by developing a fast, scalable, blockchain-based (directed acyclic graphs, reduced storage
volume) solution, providing authentication and access control for both current and future
IIoT or Internet of Vehicles (IoV) architectures [31,41–43].

5.2. Directions for Further Research

The article was written in close collaboration with experts who deal on a daily basis
with the development and use of AI technologies for cybersecurity management in an in-
dustrial environment. Qualitative and quantitative research among industry professionals
and/or endusers of the group of solutions under discussion will be the next stage of our
research in order to look from their point of view.

Further research needs to find a trade-off between the level of safety, effectiveness
and efficiency, and the energy efficiency of the system. With the wider use of quantum
computing, the immutability of the blockchain may be at risk. At the moment, the solutions
are new lattice algorithms and increasing the length of the keys, but the future is the
so-called hybrid anti-quantum technologies, combining the features of quantum computers
with new technologies to improve the security of network nodes and end devices. Deep
learning and reinforcement learning can already be integrated with blockchain technology
to increase system security [31].

The integration of blockchain with advanced biometrics poses another challenge to
ensure accuracy and privacy, with the required low cost of the system as a whole [27].
Increasingly, it is becoming necessary to introduce new, previously absent roles in IIoT
systems (as part of smart contracts): delegation of access, revocation of access, and deletion
of records at various levels of access [27]. In medical systems, it is required, for example, by
the rights of the patient, who remains the owner of the data despite making them available
throughout the system to authorized specialists.

Integration with AI remains key to improving the accuracy and efficiency of diagnostic
and maintenance processes, including automated preventive maintenance solutions. This
includes data analysis, identifying patterns and anomalies, predicting future maintenance
needs and threats, and is also for mobile solutions such as IoV. Privacy and security will
require robust, tested security mechanisms to protect the data collected by the system
and ensure only authorized access. Automatic firmware update (FOTA) will ensure that
network attacks are avoided during firmware updates. Partial integration with public
systems will allow for better monitoring of the life cycle of products (including in real
time) and the needs of users, e.g., in terms of maintenance, improvement of efficiency, and
reliability of services [25].

The proposed approach is designed with currently known limitations. However, as
part of future research, it is worth using the constraint pattern recognition model to find
optimal values, e.g., in the area of energy saving [24,44,45].
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Researchers, industry professionals, and policymakers should collaborate to advance
the state of knowledge in this critical domain (Table 6).

Table 6. Summary of future research on AI in IIoT management of cybersecurity for Industry 4.0 and
Industry 5.0.

Area of Future Research Expected Tasks, Products and Services

AI-based threat detection
and prevention

Advanced AI algorithms for real-time threats detection and
prevention in IIoT environments. Use of ML and DL
techniques to improve the accuracy of intrusion detection
systems (IDS) and intrusion prevention systems (IPS) in
industrial environments.

AI-based threats analysis platforms that continuously
monitor and assess global cyberthreats and security
vulnerabilities relevant to IIoT environments. They should
provide industrial organizations with both real-time threats
information and useful insights/observations for further
analysis by experts or other cybersecurity systems.

Adaptive security systems

AI-based adaptive security systems that can dynamically
adapt security measures based on the evolving threat
landscape and the specific needs of Industry 4.0 and 5.0
processes. Integration of AI with software-defined
networking (SDN) and network function virtualization
(NFV) to create self-defense networks.

Privacy-preserving AI for IIoT

AI models and techniques that can perform data analysis
and anomaly detection while maintaining the privacy of
sensitive industrial data and compliance with data
protection regulations. Using federated learning and
homomorphic encryption for secure and privacy-respecting
AI-based analysis of distributed IIoT data.

Cyber-physical
security integration

Develop AI systems that can monitor and respond to cyber
and physical threats in Industry 4.0 and 5.0 environments in
a coordinated manner.

Robustness and resilience testing

Development of AI-based testing methodologies to assess
the robustness and resilience of IIoT systems to cyber
attacks, including adversarial testing of AI models used
in cybersecurity.

Standardization and regulation
Industry standards and regulatory frameworks specific to
AI in IIoT cybersecurity to provide a common basis for
cybersecurity practices across industry sectors.

Human aspects of
IIoT cybersecurity

User training, threat awareness building, behavioral aspects,
and how AI can incorporate and help mitigate
human-related security risks.

Develop AI-based decision support systems to help
industrial cyber security experts make informed decisions
during an attack.

Improve the explainability and transparency of AI models
used in IIoT cybersecurity and generate
human-understandable explanations for AI security
decisions. Build trust in AI-based security systems.

Anticipating future
research directions

Develop AI models that can predict emerging threats and
vulnerabilities in the context of evolving
Industry 5.0 technologies.
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6. Conclusions

AI tools are critical to ensuring the cybersecurity of IIoT, Industry 4.0, and Industry 5.0
systems and giving them time to reach their full potential. The current accuracy of detecting
cybersecurity threats in IoT is as high as 97–99% (mainly in the case of DDoS attacks) [44,45].
This accuracy will further increase as the aforementioned group of AI systems develops,
specializes and modularizes, and in some cases, develops an infrastructure of global AI
systems overseeing entire groups of AI-based tools.

AI can adapt current and future decision-making models, analytics frameworks, and
practices based on new data. In this way, they learn about changes in IIoT behavior,
adapt to them, and are able to more easily detect any anomalies, classify them, react,
and sometimes even predict threats. This makes AI-based solutions more dynamic and
easier to use effectively compared to other means of cybersecurity, especially in the face
of dynamic changes in the goals and strategies used by attackers. In this way, AI-based
cybersecurity systems will adapt faster and better to changing industrial infrastructures,
including beyond the current paradigms of Industry 4.0 and Industry 5.0. Creative threat
prediction, i.e., the creative search for and testing of security gaps and vulnerabilities,
will become the foundation for responding to threats that may come from cyberspace in
the future.

Therefore, AI is not only a present tool, but also a tool for the future, ready for
challenges and threats that we do not know yet, but for which we already have to prepare.
Organizations can develop AI models that will play a key role in proactively identifying
and addressing emerging threats and vulnerabilities in evolving Industry 5.0 technologies,
ultimately enhancing the security and resilience of industrial systems. This is the only valid
direction for the development of cyber defense AI systems in a situation where AI systems
of a potential aggressor, often unknown or difficult to clearly identify in hybrid warfare,
may be behind the attack.
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