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Abstract: The use of Gabor filters in image processing has been well-established, and these filters
are recognized for their exceptional feature extraction capabilities. These filters are usually applied
through convolution. While convolutional neural networks (CNNs) are designed to learn optimal
filters, little research exists regarding any advantages of initializing CNNs with Gabor filters. In
this study, the performance of CNNs initialized with Gabor filters is compared to traditional CNNs
with random initialization on six object recognition datasets. The results indicated that the Gabor-
initialized CNNs outperformed the traditional CNNs in terms of accuracy, area under the curve,
minimum loss, and convergence speed. A statistical analysis was performed to validate the perfor-
mance of the classifiers, and the results showed that the Gabor classifiers outperformed the baseline
classifiers. The findings of this study provide robust evidence in favor of using Gabor-based methods
for initializing the receptive fields of CNN architectures.

Keywords: convolutional neural networks; Gabor filters; object recognition

1. Introduction

Gabor filters have been successfully applied in computer vision for various tasks, such
as recognizing objects, textures, and shapes. They have been used in tasks such as invariant
object recognition [1], building and road structure detection from satellite images [1], license
plate detection [2], traffic sign recognition [3], diagnosis of invasive ductal carcinoma
of the breast [4], edge detection [5], texture segmentation [5], image classification [5],
fingerprint and face recognition [5], texture recognition [6], and hyperspectral image
classification [7]. Gabor filters are known for their ability to extract essential activations,
their multi-orientation and multi-scale analysis capabilities, and their effectiveness in
texture classification and feature extraction [3,4,7]. They are suitable for texture recognition
in computer vision due to their optimal properties in the spatial and frequency domains [3].
Gabor filters have been widely used and have succeeded in various computer vision
applications [2,5,7–15].

However, in recent years, Vision Transformers (ViTs) [16] and CNNs [17] have over-
shadowed the use of Gabor filters. CNNs date back to the late 1990s [18] but gained popu-
larity in the early 2010s with the seminal work of Krizhevsky, Stuskever, and Hinton [19].
Since then, numerous model variations have been proposed across various sectors [20–25].
Technical limitations previously hindered the widespread use of CNNs, but these limi-
tations have been alleviated with the advent of improved computation power in CPUs,
GPUs, TPUs, and cloud computing. In comparison to manually designing wavelet or Gabor
filters, CNNs have been favored for their self-optimization through gradient descent on a
task-specific loss function, eliminating the need for expertise in filter design. Nonetheless,
the essence of Gabor filters should not be disregarded, as recent studies have explored the
symbiotic relationship between CNNs and Gabor filters, yielding intriguing results [26–28].
The past decade’s summarized research inspires further exploration into the intersecting
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fields of CNNs and Gabor filters [29]. Given the historical success of Gabor filters in vari-
ous image processing applications, it could be advantageous to consider Gabor filters an
initialization method for the low-level kernel filters in the receptive layer to improve the
general object recognition capabilities of a classic CNN.

The primary research question of this study is: Can the initialization of a receptive
convolutional layer with Gabor filters enhance the performance of CNNs on general-
purpose object recognition datasets? We hypothesize that this approach can indeed improve
performance, as Gabor filters have been shown to resemble the properties of receptive
filters, as illustrated in Figure 1.

(a)

(b)

(c)

(d)

Figure 1. Learned convolutional filters in the receptive field for general-purpose object recognition
networks (a–c). (d) Gabor filters produced with different values for λ, θ, and γ; the values for the
parameters on each row are γ = 0.1, θ = 0, and λ = 1, unless otherwise specified. There are
similarities between the learned filters by different popular CNNs and Gabor filters; these similarities
suggest that, perhaps, initializing CNNs with Gabor filters could accelerate convergence to an
optimal set of convolutional filters. Specifically: (a) is a ResNet50 subset of learned filters [30]. (b) is a
ResNet152V2 subset of learned filters [31]. (c) is a DenseNet121 subset of learned filters [32]. (d) are
Gabor filters with different parameters [29].

However, it is important to note that as we delve deeper into the network, filters
become increasingly abstract [19], and Gabor filters may not be as effective. Therefore,
our approach differs from the existing literature in that we remove any restrictions on the
Gabor filter structure. This allows the CNN the freedom of self-adaptation, enabling the
extraction of complex features on downstream convolutional layers.

Through this study, we aim to demonstrate that this innovative approach can indeed
improve the performance of CNNs in general-purpose object recognition tasks. Specifically,
we have made the following contributions:
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• By incorporating Gabor filters into the CNN, we have observed an improvement in
the performance of object classification tasks, as evidenced by increased accuracy, area
under the curve (AUC), and a loss reduction.

• Our findings indicate that a random configuration of Gabor filters in the receptive
layer leads to the superior performance of the CNN, especially when dealing with
complex datasets.

• Our research demonstrates that including Gabor filters in the receptive layers results
in the enhanced performance of the CNN in a shorter time frame.

This paper is organized as follows. Section 2 introduces the basics of Gabor filters and
the literature review. Section 3 discusses our methodology, and the results are presented in
Section 4. Conclusions and future work are discussed in Section 5.

2. Background

This section discusses the basics of Gabor filters and the state of the art concern-
ing CNNs.

2.1. Gabor Filters

The Gabor filter is a widely utilized linear filter in image processing applications such
as texture analysis, edge detection, and feature extraction [9–11]. It operates as a band-
pass filter and can extract signal patterns based on specific frequencies and orientations.
The Gabor filter is based on the concept of Gabor elementary functions (GEFs), which are
Gaussian functions modulated by complex sinusoids [33]. The filter parameters, such as
the wavelength, orientation, and spatial extent, can be adjusted to produce various filter
properties. For example, in texture segmentation, symmetric filters are typically used;
however, asymmetric filters with unequal spatial extents may be necessary for textures not
arranged in square lattices [34].

A GEF can be formulated as follows:

g(x, y) = e−
x′2+γ2y′2

2σ2 ei
(

2π x′
λ +ψ

)
, (1)

where the rotated spatial-domain rectilinear coordinates are represented by (x′, y′) =
(x cos θ + y sin θ,−x sin θ + y cos θ); θ represents the orientation of the normal to the parallel
stripes of a Gabor function, λ represents the wavelength of the sinusoidal factor, and ψ
signifies the offset. The spatial extent and bandwidth of the filter are characterized by σx and
σy. Research has shown that a symmetric filter would suffice for most texture segmentation
tasks (σx = σy). However, in instances where the texture contains texels not arranged in a
square lattice, using asymmetric filters (σx 6= σy) may prove beneficial [9]. This asymmetric
nature can be quantified by the spatial aspect ratio, γ, which is calculated as γ = σx

σy
and

satisfies γ 6= 1. As demonstrated in Figure 1d, the properties of the Gabor filter can be
altered by adjusting its parameters, λ, θ, and γ. See Appendix A for more examples.

Gabor filters are widely used in the texture segmentation and automated defect
detection of textured materials due to their reputation in feature extraction. However,
a single Gabor filter is limited in feature detection, and many filters are necessary for
meaningful results. This has been demonstrated in previous studies such as Jain et al. [11],
who used multiple features computed over different orientations and frequencies. To yield
meaningful results from the texture features provided by Gabor filters, algorithms such
as multi-channel filtering, kernel principal component analysis, and pulse-coupled neural
networks have been utilized with high success rates, as seen in the studies by Kumar and
Sherly [35], Jing et al. [36], and Li et al. [15], respectively.

The Gabor filter has been utilized in various applications, including road detection and
retinal authentication. Li et al. [15] used the Gabor filter to detect roads in different lighting
conditions by locating the vanishing point and performing edge detection. On the other
hand, El-Sayed et al. [37] employed the Gabor filter for retinal authentication by segmenting
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retinal blood vessels and using SVM for feature matching. Their method showed stability
and a high accuracy of around 96.9%.

Gornale et al. [38] presented a unique approach to gender identification by utilizing
features from the discrete wavelet transform and Gabor-based features. This methodology
demonstrated remarkable accuracy of 97%, despite most research in the field focusing on
facial features. Meanwhile, Rizvi et al. [39] demonstrated the potential of Gabor features for
object detection. Utilizing Gabor filters in conjunction with a feedforward neural network
model resulted in an accuracy of 50.71%, which was comparable to CNNs with only a
fraction of the training time.

In recent years, the Gabor filter has been widely recognized as an effective tool in im-
age processing for various applications. Avinash et al. [40] proposed using Gabor filters and
the marker-driven watershed segmentation technique in CT images to detect lung cancer in
its early stages, overcoming the limitations of previous methods. Daamouche et al. [41] also
employed Gabor filters in their unsupervised method for building detection on remotely
sensed images. Hemalatha and Sumathi [42] utilized the median and Gabor filters in
combination with histogram equalization to preprocess images and enhance their quality,
resulting in color-normalized, noise-reduced, edge-enhanced, and contrast-illuminated
images. These studies highlight the versatility of the Gabor filter in various image process-
ing applications.

In recent studies, the use of Gabor filters for eye detection and facial expression
recognition has been proposed. Lefkovits et al. used a combination of Gabor filters [43],
Viola–Jones face detection, and a self-created face classifier to enhance accuracy in eye
detection [44]. Pumlumchiak and Vittayakorn introduced a novel framework for facial
expression recognition that utilizes Gabor filter responses and maps them onto a feature
subspace through PCA, PC removal, and LDA [45]. This method was found to outperform
existing baselines. On the other hand, Mahmood et al. [46] used a combination of radon and
Gabor transforms and a neural network over self-organized maps (SOM) fused-classifier
approach to recognize six different facial expressions with an accuracy of 84.87%.

Low et al. [47] proposed a condensed Gabor filter ensemble (CGFE), which consoli-
dates the diverse traits of multiple standard Gabor filter ensembles (SGFEs) into a single one,
exhibiting superior performance compared to state-of-the-art face descriptors, including lin-
ear binary pattern variants [48,49]. Nava et al. [50] introduced a log-Gabor filtering scheme
to eliminate non-uniform coverage in the Fourier domain and strongly correlate with the
human visual system. Nunes et al. [13] expanded on this filtering scheme and developed a
local descriptor called the multi-spectral feature descriptor (MFD), which was explicitly
designed for images acquired across the electromagnetic spectrum, with computational
efficiency and precision comparable to state-of-the-art algorithms.

Liu et al. [51] presented an effective feature point matching method for infrared
and visible image matching that utilizes log-Gabor filters and distinct wavelength phase
congruency (DWPC). This method outperforms traditional approaches, such as edge-
oriented histogram descriptors, phase congruency edge-oriented histogram descriptors,
and log-Gabor histogram descriptors, by 50% in matching non-linear images with different
physical wavelengths.

Gabor filters are highly regarded in image segmentation. They have been demon-
strated by Premana et al. [14] and Fan et al. [52] to be effective in object segmentation using
K-means clustering. Srivastava and Srivastava [53] proposed a novel method for salient ob-
ject detection using Gabor filters, foreground saliency maps, and objectness criterion. This
method outperformed state-of-the-art algorithms as evaluated by the PR curve, F-measure
curve, and mean absolute error on eight public datasets.

Khaleefah et al. [54] have proposed a promising solution to address deformations
in paper images produced by existing scanners. Their automated paper fingerprinting
(APF) technique combines Gabor filters and uniform local binary patterns (ULBP) to extract
local and global information for improved texture classification. The evaluation results
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demonstrate the effectiveness of the proposed approach, outperforming the standalone
ULBP system by a significant 30.68%.

2.2. CNNs and Gabor Filters

A CNN is a family of statistical learning models that utilize convolution operations and
feature-mapping layers for image recognition. It typically consists of multiple layers, includ-
ing convolutional layers, a pooling layer, an activation layer, and a dense (fully connected)
layer [18,55]. CNNs are trained through backpropagation, updating the weight through
gradient descent [19]. The popularity of CNNs in image recognition has risen due to their
success in various applications, including food detection [22] and object detection [56,57].
Previous studies have shown that features from Gabor filters can complement CNNs and
improve their performance [12,58,59]. Researchers have also modified the architecture by
initializing the first layer of CNNs with Gabor filters, leading to improved accuracy and
faster convergence [19]. Furthermore, the concept was extended by initializing multiple
layers with different Gabor filters [60], resulting in improved robustness against image
transitions [28], scale changes [26], and rotations. Another proposed method uses hybrid
Gabor binarized filters (GBFs) that reduce memory usage while maintaining accuracy [27].

The prior studies have yet to fully delve into the current approaches’ limitations in
utilizing Gabor filters in CNNs. There is a concern that restricting Gabor filters as the
sole method for CNNs may hinder the ability of the network to optimize its performance
by altering the structure or completely altering an underperforming filter. Furthermore,
the relationship between Gabor filters and the convergence of CNNs has not been firmly
established, making it difficult to assess the computational cost of using Gabor filters versus
traditional methods, such as randomly generated uniform white noise. Finally, despite
being successful in specific computer vision tasks, there needs to be more evidence to
suggest that Gabor filters provide a significant advantage in general object recognition.

In this study, we aim to investigate the impact of incorporating Gabor filters in the
receptive layer of CNNs. Our objective is to enhance the network’s accuracy, loss, and con-
vergence performance in general object recognition.

2.3. A Formal Approach for AI-Based Technique Verification

The formal approach for model verification adopted in our research is grounded in
the seminal work of Demšar [61]. This methodology is especially pertinent when multiple
machine learning algorithms are compared across various datasets, a common scenario in
machine learning research.

Demšar’s work provides a critical examination of several statistical tests and advo-
cates for a set of robust non-parametric tests for the statistical comparison of classifiers.
Specifically, the Wilcoxon signed ranks test is recommended for the comparison of two
classifiers, while the Friedman test, along with corresponding post hoc tests, is suggested
for the comparison of more than two classifiers over multiple datasets.

The results of these tests can be effectively visualized using critical difference (CD)
diagrams, a tool introduced in Demšar’s work. These diagrams provide a clear and
concise presentation of the statistical comparison results, facilitating a more straightforward
interpretation of the data.

Demšar’s work is widely recognized as providing a robust foundation for the formal
verification of AI-based techniques. Its comprehensive approach to statistical comparison,
coupled with the effective visualization tools it introduces, makes it a highly regarded
option for research in this field. This methodology not only enhances the reliability of our
research findings but also contributes to the broader academic discourse on the verification
of AI-based techniques.

In the following section, we will outline our experimental approach to initialize CNNs
with Gabor filters using this verification technique based on statistical tests.
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3. Methodology

The methodology used in our study is thoroughly described in this section, which
includes the construction of the Gabor filter bank, the different datasets employed, the CNN
architecture applied in each dataset, the loss function and training methodology, the success
metrics evaluated, and the structure of each experiment. The methodology follows a well-
organized approach, ensuring the validity and reliability of the results.

3.1. Gabor Initialization and Control Group

The creation of a Gabor filter can be achieved through the utilization of (1). However,
to effectively extract features from an image, it is necessary to implement a bank of Gabor
filters. This is because a single Gabor filter with a specific orientation and frequency can only
extract the texture features aligned with that filter. To carry out our experiments, the method
outlined in [62] was employed to design our bank of Gabor filters. The orientations θm and
frequencies ωn of the filters were calculated as follows:

θm =
(π

8

)
· (m− 1), m ∈ [1, 8], (2)

ωn =
(π

2

)
· 2−

n−1
2 , n ∈ [1, 5]. (3)

The parameter σ was set as σ ≈ π
ω , while ψ was established through a uniform

distribution U(0, π).
In the context of CNNs, the number of convolutional layers may vary depending on

the model. However, for clear and concise experimentation, this study has been struc-
tured to examine the effect of incorporating Gabor filters exclusively at the first receptive
convolutional layer. The experimental models can be classified into three main categories:

1. Random weight initialization (control groups);
2. Random weight initialization with a Gabor filter applied to each channel;
3. The application of a fixed Gabor filter across all channels.

3.1.1. Random Weight Initialization

The control group utilizes methods to initialize the kernel filters of a classic CNN based
on random approaches, specifically the Glorot uniform initialization method, also referred
to as the Xavier uniform initialization method, and the Glorot normal initialization method.

As detailed in [63], the Glorot uniform initialization method entails drawing sam-
ples from a uniform distribution within the interval of [−l, l], with l being calculated as√

6
|h(−1) |+|h(+1) | . Here, |h(−1)| represents the number of input units, and |h(+1)| refers to the

number of output units.
The Glorot normal initialization technique is based on sampling from a truncated nor-

mal distribution with a mean of zero and a standard deviation defined as σ =
√

2
|h(−1) |+|h(+1) | .

This method is also highly effective in achieving optimal network performance.

3.1.2. Weight Initialization with a Random Gabor Filter on Each Channel

Our study adopted a method where a collection of Gabor filters of the appropriate
filter size was created using the method outlined in [62]. Each convolutional filter in the
receptive layer of the CNN was then initialized with a randomly selected Gabor filter from
this filter bank, thus providing unique filters for the receptive layer. As a result, such Gabor
filters have varying frequencies and random orientations.

The receptive layer of the CNN was comprised of multiple kernels. Each set of kernels
in the receptive convolutional layer consisted of three different kernel filters corresponding
to the three different channels of the image. Hence, each set of kernels was initialized
with three distinct Gabor filters. During the training phase, the CNN was permitted to
effectively alter the Gabor filters’ structure to extract features as required.
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3.1.3. Weight Initialization with a Random Gabor Filter Fixed across Channels

An approach similar to the prior method was employed wherein a bank of Gabor
filters was created using the same methodology. However, instead of randomly assigning
filters to each kernel set, a single Gabor filter was selected and allocated to all three filters
within that specific kernel set. This resulted in variation in the Gabor filters among different
kernel sets but a uniformity within a set that corresponded to the channels of the image
during initialization. The CNN, upon training with the specified datasets, could modify
the structure of the Gabor filters as required.

3.2. Datasets

We studied the impact of Gabor filters on CNNs through a comprehensive exam-
ination of various multi-class datasets. First, the datasets were selected based on their
number of classes, object characteristics, image dimensions, and distribution, as outlined
in Table 1. Next, the training images were converted to 32-bit floating point numbers and
underwent an optional image pre-processing procedure before rescaling the pixels by 1

255
to keep it in a [0, 1] interval, then converting the labels into a one-hot encoding format;
these pre-processing steps are common practice [64] and are only recommended for a
normalized approach and reproducibility. Finally, these pre-processed images were fed
into the designated CNN architecture for training and validation.

Table 1. Summary of the main properties of the datasets considered in our experiments. These
include binary and multiclass datasets with and without balance across various domains.

Dataset Classes Distribution Dimension Training Testing Reference

Cats vs. Dogs Version 1.0 2 Balanced 256×256 20,000 5000 [65]
CIFAR-10 Version 3.0.2 10 Balanced 128 × 128 50,000 10,000 [66]
CIFAR-100 Version 3.0.2 100 Balanced 128 × 128 50,000 10,000 [66]
Caltech 256 Version 2.0 257 Imbalanced 128 × 128 24,485 6122 [67]
Stanford Cars Version 2.0 196 Imbalanced 128 × 128 8144 8041 [68]
Tiny Imagenet 200 Balanced 128 × 128 100,000 10,000 [69]

3.3. Architectures

The selection and implementation of various CNN architectures depends on a dataset’s
characteristics, such as the number of classes and type of images. The choice of architecture
was made through preliminary experiments to prevent underfitting or overfitting. The final
model consisted of convolutional layers with batch normalization, activation, max-pooling,
and dropout, followed by a densely connected neural network with batch normalization,
activation, and dropout. The model does not necessarily outperform the state-of-the-art.
However, it is a classic CNN structure that performs well without needing additional
features or significant changes. Figure 2 depicts a diagram of one of the CNN architectures
we designed for the Tiny Imagenet dataset.

Figure 2. This is the CNN architecture used for the Tiny Imagenet dataset. The architectures for the
rest of the datasets only change the input layers in direct proportion to the input image sizes. This
kind of architecture resembles the classic AlexNet [19], a very successful general-purpose architecture.
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All the convolutional layers were designed to have a 3× 3 kernel filter size, (2, 2)
stride, and valid padding. The exception was the receptive convolutional layer, which had
varying kernel sizes and (1, 1) stride depending on the experiment. All biases were added
and initialized to zero, while the kernel filters were initialized with a Glorot uniform or
normal sampling or a Gabor filter, depending on the experiment. The activation layer used
ReLU, except for the last densely connected neural network, which utilized Softmax for the
activation of the last layer, resulting in a probability distribution.

The loss function is a crucial component in machine learning models as it determines
the model’s accuracy in terms of prediction. In this study, the categorical cross-entropy
function was utilized to calculate the validation loss, which involves computing the differ-
ence between the model’s output and the actual target value. The model was optimized
using the Adam optimization method [70], where the learning rate was adjusted based
on the improvement in the validation loss. Our models were trained until the validation
loss stopped improving, with an early stopping criterion set at 35 consecutive epochs
without improvement.

3.4. Evaluation

In the evaluation of the experiments, rigorous metrics were employed to assess the
model’s performance. The primary evaluation metrics utilized a classic and stratified 5-fold
cross-validation strategy to study and report the accuracy, AUC, loss, and the number
of epochs. The stratified 5-fold cross-validation strategy was used only for imbalanced
datasets. The cross-validation strategy splits the data into training and testing sets, and
results are reported by averaging the results on the test sets. During training, the training
sets were further divided into training and validation sets, with an 80-20 split implemented
if necessary, while ensuring that the class distribution was still maintained (stratified
random split). The model was subjected to continuous training and validation until early
stopping was triggered.

The balanced accuracy metric, unlike the classic accuracy, considers both the sensi-
tivity (true-positive rate) and specificity (true-negative rate) of the model. This metric is
especially beneficial in scenarios with imbalanced classes. Balanced accuracy is computed
as the average of the correctly identified actual positives (TPR) and the correctly identified
actual negatives (TNR). Given true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN), balanced accuracy can be defined as:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
. (4)

In this equation, TP
TP+FN represents the true-positive rate (sensitivity), and TN

TN+FP
represents the true-negative rate (specificity).

The receiver operating characteristic (ROC) curve’s area under the curve (AUC) mea-
sures the model’s ability to distinguish between classes. The ROC plots the true-positive
rate (TPR) against the false-positive rate (FPR).

Note that the balanced accuracy metric can be generalized for multiclass classification
as the average of the recall obtained on each class. From this point forward, in this paper’s
text, figures, and tables, we will refer to the balanced accuracy as simply accuracy.

The loss was calculated using categorical cross-entropy, and the objective was to
minimize it. The epoch refers to the number of training iterations that occur before the
early stopping criteria is met. The Gabor-initialized CNNs were compared with traditional
CNNs using the maximum accuracy epoch of the traditional CNN as a constraint. It is
desirable for the Gabor-initialized CNNs to perform better in terms of accuracy, AUC, loss,
and a lower maximum accuracy epoch.

We also used the Friedman test to compare the performance of k = 4 different clas-
sifiers, i.e., baseline, Gabor randomized, and Gabor repeated, on N = 6 datasets [61].
First, the test calculates the average rank of each classifier’s performance on each dataset,
with the best-performing classifier receiving a rank of 1. The Friedman test then tests the
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null hypothesis, H0, that all classifiers are equally effective and their average ranks should
be equal. The test statistic is calculated as follows:

χ2
F =

12N
k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
, (5)

where R is the average ranking of each classifier. The test result can be used to determine
whether there is a statistically significant difference between the performance of the classi-
fiers by making sure that χ2

F is not less than the critical value for the F distribution for a
particular confidence value α. However, since χ2

F could be too conservative, we can also
calculate the FF statistic as follows:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
. (6)

Based on the critical value, FF, and χ2
F, we evaluated H0; once the null hypothesis was

rejected, we applied a post hoc test. As suggested in [61], we used the Nemenyi test to
establish whether classifiers differ significantly in their performance. The Nemenyi test
allowed us to compare all pairs of classifiers based on their average rankings; classifiers
were determined to be significantly different if they differed by a CD [71]. The CD can be
calculated as follows:

CD = qα

√
k(k + 1)

6N
, (7)

where the qα value can be obtained from Table 2.

Table 2. Critical values for the Nemenyi test, which is conducted following the Friedman test,
with two-tailed results.

#Classifiers 2 3 4 5 6

qα=0.05 1.960 2.343 2.569 2.728 2.850
qα=0.10 1.645 2.052 2.291 2.459 2.589

3.5. Experiments on Data

In this study, we aim to assess the impact of Gabor filters on CNN models. To achieve
this, we conducted experiments using various datasets, as outlined in Table 1. These
datasets included Cats vs. Dogs, CIFAR-10, CIFAR-100, Caltech 256, Stanford Cars, and Tiny
Imagenet. Each of these datasets was carefully selected to represent a broad range of
object recognition tasks, providing a comprehensive evaluation of the performance of the
Gabor filters.

The CNN models employed were based on a classic CNN architecture, which has been
proven effective in various image recognition tasks. These models were refined through
multiple preliminary experiments to ensure optimal performance. These preliminary
experiments comprised ad hoc grid searches over the basic hyper-parameters of each CNN
on random subsets of the data. These are important to ensure that each CNN has a good
chance of successfully executing its gradient descent. These steps are common practice [64].

In total, we performed forty experiments, with ten experiments conducted for each
type of initialization method. These methods included both Gabor and Glorot initialization,
with a fixed Gabor size of 15× 15 used throughout the experiments. This size was chosen
based on preliminary experiments that indicated it provided a good balance between
computational efficiency and performance.

To further enhance the performance of the CNN models and Gabor filters, we resized
the original images to either 128× 128 or 256× 256 dimensions. This resizing process was
implemented to ensure that the images were of a consistent size, which is crucial for the
effective training of CNN models in a comparative way. For context, the Tiny Imagenet,
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Cats vs. Dogs, and Stanford Cars datasets have inconsistent, variable-sized images, while
the CIFAR-10 and CIFAR-100 original size is 32× 32 pixels; in Caltech 256, the images in
this dataset are also of different sizes, with a minimum size of 256× 256 pixels. The size
utilized for training, and for which all results are reported, is listed in Table 1.

Finally, to evaluate the success of each experiment, we calculated and compared the
success metrics of the different cases to those of traditional CNNs. These metrics provide a
comprehensive evaluation of the performance of the Gabor-initialized CNNs, allowing us
to draw robust conclusions about their effectiveness. The following section discusses the
results of these experiments.

4. Experimental Results

Ten experiments were conducted on each dataset using a CNN architecture and differ-
ent configurations of receptive convolutional layer kernels, including random initialization
(Glorot normal and uniform), Gabor filters randomly assigned to each channel, and re-
peated (fixed) Gabor filters across the three channels. Each different dataset was used for
training and validation with no restrictions on the number of training epochs, except for the
early stopping condition defined earlier. The results of the traditional CNN initializations
were compared to the Gabor filter results in terms of maximum accuracy, AUC at maximum
accuracy, minimum loss, and the minimum number of epochs, and the results are presented
in Tables 3–6. Additional experiments can be found in Appendix C.

4.1. Performance Analysis

Table 3 shows that Gabor-configured CNNs perform better than traditional CNNs in
terms of accuracy for the Cats vs. Dogs, CIFAR-10, and Stanford Cars datasets. The low
standard deviation on the Cats vs. Dogs and CIFAR-10 datasets indicate the consistent
performance of Gabor-configured models. Generally, the repeated Gabor configuration
performs slightly better than the random configuration, but this changes with increased
dataset complexity. The random Gabor filter configuration has a higher chance of extracting
valuable features. Still, the repeated Gabor filter configuration performs better on less
complex datasets due to similar texture segmentation analysis.

The analysis of the AUC at maximum accuracy, minimum loss, and the number of
epochs, as demonstrated in Tables 4–6, respectively, reveal a pattern consistent with that
of the analysis of maximum accuracy in Table 3. On average, it was found that the Gabor-
configured models tend to exhibit a higher AUC and a lower minimum loss in comparison
to traditional CNN models. Additionally, when the dataset is simple, the repeated Gabor
filter configuration demonstrated a slight improvement in performance over the random
Gabor filter configuration.

Table 3. Improvement in maximum accuracy of Gabor-configured CNN with respect to traditional
CNN. The proposed methodology displays accuracy-based advantages with statistical confidence.
The highest accuracies are shown in bold.

Dataset Baseline Glorot N. Baseline Glorot U. Random Gabor Filter Repeated Gabor Filter
Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk.

Cats vs. Dogs 0.8937 0.005 (3) 0.8839 0.004 (4) 0.9072 0.007 (2) 0.9102 0.006 (1)
CIFAR-10 0.8023 0.004 (4) 0.8024 0.004 (3) 0.8229 0.004 (2) 0.8238 0.005 (1)
CIFAR-100 0.7130 0.004 (4) 0.7132 0.003 (3) 0.7198 0.005 (2) 0.7206 0.005 (1)
Caltech 256 0.5084 0.007 (4) 0.5085 0.007 (3) 0.5232 0.009 (2) 0.5273 0.011 (1)
Stanford Cars 0.2331 0.074 (3) 0.2326 0.070 (4) 0.3620 0.072 (2) 0.3952 0.072 (1)
Tiny Imagenet 0.5174 0.005 (4) 0.5175 0.004 (3) 0.5307 0.003 (1) 0.5178 0.007 (2)

Average 0.6113 0.017 (3.66) 0.6097 0.015 (3.33) 0.6443 0.017 (1.83) 0.6492 0.018 (1.16)

χ2
F = 15.36, FF = 29.14, critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.



Electronics 2023, 12, 4072 11 of 26

Table 4. Improvement in AUC at the maximum accuracy of Gabor-configured CNN with respect to
traditional CNN. The proposed methodology displays AUC-based performance advantages with
statistical confidence. The highest AUCs are shown in bold.

Dataset Baseline Glorot N. Baseline Glorot U. Random Gabor Filter Repeated Gabor Filter
Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk.

Cats vs. Dogs 0.9514 0.004 (4) 0.9515 0.003 (3) 0.9651 0.004 (2) 0.9684 0.004 (1)
CIFAR-10 0.9717 0.002 (4) 0.9719 0.001 (3) 0.9749 0.001 (1) 0.9744 0.001 (2)
CIFAR-100 0.9620 0.002 (4) 0.9621 0.002 (3) 0.9634 0.002 (2) 0.9637 0.002 (1)
Caltech 256 0.8887 0.004 (3) 0.8885 0.004 (4) 0.8962 0.005 (1) 0.8925 0.005 (2)
Stanford Cars 0.8074 0.026 (4) 0.8077 0.026 (3) 0.8584 0.021 (2) 0.8703 0.025 (1)
Tiny Imagenet 0.9367 0.004 (3) 0.9370 0.003 (2) 0.9394 0.004 (1) 0.9358 0.007 (4)

Average 0.9197 0.007 (3.66) 0.9198 0.006 (3) 0.9329 0.006 (1.5) 0.9342 0.007 (1.83)

χ2
F = 10.98, FF = 7.82, critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.

Table 5. Improvement in minimum loss of Gabor-configured CNN with respect to traditional CNN.
The proposed methodology displays optimization advantages with statistical confidence, reaching
a lower minimum value in comparison to the standard methodology. The smallest loss is shown
in bold.

Dataset Baseline Glorot N. Baseline Glorot U. Random Gabor Filter Repeated Gabor Filter
Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk.

Cats vs. Dogs 0.2981 0.019 (4) 0.2960 0.012 (3) 0.2524 0.017 (2) 0.2399 0.012 (1)
CIFAR-10 0.6443 0.014 (3) 0.6555 0.013 (4) 0.6011 0.015 (2) 0.5985 0.017 (1)
CIFAR-100 1.1805 0.021 (3) 1.1823 0.020 (4) 1.1578 0.018 (2) 1.1509 0.020 (1)
Caltech 256 2.6357 0.066 (3) 2.6428 0.067 (4) 2.5388 0.078 (1) 2.5399 0.065 (2)
Stanford Cars 4.2337 0.323 (4) 4.1857 0.356 (3) 3.4045 0.291 (2) 3.1459 0.360 (1)
Tiny Imagenet 2.7357 0.022 (3) 2.7390 0.014 (4) 2.6863 0.024 (1) 2.7353 0.027 (2)

Average (3.33) (3.66) (1.66) (1.33)

χ2
F = 14.76, FF = 22.80, critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.

Table 6. Improvement in maximum accuracy epoch of epoch-constrained Gabor-initialized CNN
with respect to traditional CNN when training period was constrained to maximum accuracy epoch
of traditional CNN. The proposed methodology displays optimization advantages with statistical
confidence, reaching the best accuracy in a smaller number of epochs than the standard methodology.
The smallest number of epochs are shown in bold.

Dataset Baseline Glorot N. Baseline Glorot U. Random Gabor Filter Repeated Gabor Filter
Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk. Mean Stdev Rk.

Cats vs. Dogs 87.1 12.1 (3) 88.4 13.8 (4) 83.2 5.4 (2) 70.8 15.2 (1)
CIFAR-10 66.3 5.7 (3) 67.9 5.6 (4) 59.0 6.1 (1) 61.3 3.6 (2)
CIFAR-100 99.5 3.8 (4) 99.3 6.4 (3) 95.0 2.9 (2) 92.8 6.2 (1)
Caltech 256 74.1 4.9 (4) 73.3 5.4 (3) 69.1 4.4 (2) 67.6 4.0 (1)
Stanford Cars 104.3 8.3 (4) 103.6 13.2 (3) 97.9 5.1 (2) 97.7 5.4 (1)
Tiny Imagenet 36.8 7.1 (3) 37.3 6.6 (4) 32.2 5.7 (1) 32.6 5.7 (2)

Average (3.5) (3.5) (1.66) (1.33)

χ2
F = 10.536, FF = 7.058, critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.

Furthermore, the analysis of the number of epochs indicates that the Gabor-configured
CNNs tend to converge faster. Although there are instances where the Gabor-configured
CNNs take longer, this is because they are pushing themselves to improve more than
traditional CNNs. The experiments observed that the Gabor-configured CNNs achieved
the best performance metrics of traditional CNNs in fewer epochs.

As we mentioned earlier, the utilization of Gabor filters as a feature extraction method
in CNNs has been extensively studied. However, the results from these studies suggest
that strict implementation of Gabor filters may not result in optimal performance. This
highlights the importance of allowing the CNN to self-adjust the filters during training
with no restrictions to produce better results.
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Lastly, we noted that the size of the kernel filters and images also significantly impacts
the CNN’s performance. Experiments have shown that smaller images reduce performance
for traditional and Gabor-configured CNNs, as fine details may be missed. While no linear
relationship exists between image size and performance, larger images provide better detail for
a CNN to learn from. Similarly, larger kernel filters were found to perform better than smaller
ones, as the structure of the Gabor filter is more explicit, and thus, feature extraction is improved.
Again, however, this does not follow a linear relationship with performance and kernel size.

4.2. Statistical Analysis

In this study, we conducted a comprehensive statistical analysis to evaluate the perfor-
mance of four different classifiers. We employed two statistical tests: the chi-squared test
and the post hoc Nemenyi test.

The chi-squared test is a statistical hypothesis test that is used to determine whether
there is a significant association between two categorical variables. In our case, we used it
to test the null hypothesis that the performance of all classifiers is equal.

The post hoc Nemenyi test, on the other hand, is a multiple comparison procedure
used to identify significant differences between pairs of classifiers. It is typically used
following a chi-squared test when the null hypothesis has been rejected.

Our results indicated that we could reject the null hypothesis of equal performance
among classifiers with 99% confidence. This means that there is a statistically significant
difference in the performance of the classifiers.

To quantify these performance differences, we calculated the critical difference. The crit-
ical difference is a measure of the minimum amount that the result must differ by in order
to be considered statistically significant.

Our analysis concluded that the Gabor classifiers outperformed the baseline classifiers
in all metrics: accuracy, AUC, loss, and the number of epochs. The specific statistics for
each experiment are detailed at the bottom of Tables 3–6. See Appendix B for more details.

Figure 3 presents a graphical comparison of all classifiers using the Nemenyi test.
Classifiers that performed similarly are connected in the graph. It is important to note that
we set the significance level to either α = 0.10 or α = 0.5. This means that classifiers not
significantly different at these levels were considered to have performed similarly.

Figure 3. Comparison of all classifiers against each other with the Nemenyi test. Classifiers that
are not significantly different at α = 0.10 or α = 0.5 are connected. Note that at least one Gabor-
based method is always significantly different than the baseline. This suggests that the proposed
methodology can offer performance and convergence advantages with statistical significance.
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However, in every comparison, at least one of the Gabor-based methods was found
to be significantly different from the baseline. This underscores the effectiveness of the
Gabor-based method as a classifier and its ability to outperform the baseline in most cases.

Our statistical analysis results strongly advocate for the use of Gabor-based methods
for CNN weight initialization in the receptive fields, demonstrating their superiority over
traditional methods.

4.3. Closely Related Work

The utilization of Gabor filters within deep learning architectures has been explored
in various contexts, each embodying distinct objectives and methodologies.

The research conducted by Pérez et al. [72] investigated the ramifications of replacing
the initial layers of diverse deep architectures with Gabor layers, which were defined as
convolutional layers with filters predicated on learnable Gabor parameters. This inquiry
was primarily concerned with the modification’s effect on the robustness of models against
adversarial incursions. The empirical evidence demonstrated that integrating Gabor layers
leads to a consistent enhancement in robustness relative to conventional models with-
out compromising generalization efficacy. This regularizer’s effectiveness was validated
through comprehensive experimentation across an array of architectures and datasets.
Nevertheless, salient distinctions exist between this work and our own, including our
focus on performance and convergence gains rather than robustness, our initialization with
Gabor filters rather than the filters constituting a layer, and our allowance for gradient
descent updates to the random filters.

Contrarily, the study by Lumistra et al. [73] does not align with our methodology.
Their work is predicated on learning vector quantization (LVQ) rather than CNNs, and they
adhere to a fixed Gabor filter structure. Our approach employs CNNs, and the filters are
neither preserved nor updated post-initialization.

Similarly, the research by Zhang et al. [74] diverges from our proposition. The authors
advocate for an architecture characterized by a reduced parameter space, specifically by
Gabor filter hyper-parameters, thereby preserving the intrinsic structure of the Gabor
filters. Our proposal diverges fundamentally by utilizing Gabor filters solely as initial
values, subject to alteration through backpropagation, without any constraint to retain their
Gabor characteristics.

Lastly, the work by Abdullah et al. [75] warrants critical examination. While ostensibly
following a parallel trajectory in employing Gabor filters as initializers, their utilization
of 3× 3 Gabor filters is untenable. The nature and morphology of Gabor filters are well-
understood, and the assertion that 3× 3 filters can be uniquely identified as Gabor filters is
incongruent with established knowledge; at that resolution, the filters are indistinguish-
able from a random wavelet, a Gaussian filter, or any generic low-pass filter. We shall
reference this work critically, elucidating these evident flaws and contrasting their limited
empirical substantiation with the rigorous statistical validation that underpins our research
presented here.

5. Discussion and Conclusions

The utilization of Gabor filters in image processing has been extensive due to their
exceptional feature extraction capabilities. This study investigates their application as
receptive filters in CNNs. Previous research has indicated that when Gabor filters are
used in the receptive layer of CNNs, they lead to improved accuracy, AUC, and lower loss
as compared to other datasets [26,28,60]. These findings suggest that incorporating Gabor
filters in the receptive layer of a CNN can significantly enhance the model’s performance,
achieving superior results in a shorter time frame than other models.
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The configuration of Gabor filters plays a pivotal role in their performance. A bank of
filters with varying hyper-parameters, such as orientation and wavelength, is essential to
extract all the features from an image. Our findings indicate that repeated filter configu-
rations yield better results for less complex datasets, while random configurations prove
more effective as the dataset complexity increases. Therefore, to optimize performance, we
recommend generating random Gabor filters and assigning the configuration type based
on the complexity of the dataset.

The size of the Gabor filters also significantly impacts the performance of CNNs. Our
research shows that smaller filters, which require a more apparent shape and structure,
perform less effectively than larger filters. However, using large filters is not advisable
as they may overlook fine details. Therefore, the ideal size of the Gabor filter should be
optimal to extract the necessary features. Further research is warranted to determine the
range of sizes that result in a positive impact when using Gabor filters. This will provide a
more comprehensive understanding of the optimal conditions for effectively using Gabor
filters in CNNs.

This study opens up several avenues for further research that could enhance the
results obtained. One such avenue is the optimization of the hyper-parameters of Gabor
filters, which could be evaluated for their impact on underperforming CNNs. A thorough
exploration of the hyper-parameter space of Gabor filters is necessary to identify a range
that leads to high-performing filters for general object recognition tasks.

In addition, it would be beneficial to extend the research to examine the impact
of Gabor filters on deeper convolutional layers, moving beyond just the receptive layer.
This could provide valuable insights into the broader applicability of Gabor filters within
CNN architectures.

Moreover, there is potential for conducting comparative studies between Gabor filters
and other commonly used image processing filters, such as log-Gabor and Gaussian
filters. These comparisons could be made individually and in combination, providing
a comprehensive understanding of each filter type’s relative strengths and weaknesses.

Lastly, while this study utilized a traditional CNN as the base model, various variants
of CNNs are available. Future work could investigate the effects of Gabor filters on these
different variants of CNNs. This would help to understand how Gabor filters can be utilized
across different CNN architectures and potentially enhance their performance. Such re-
search could significantly contribute to the field of image processing and object recognition,
potentially leading to the development of more efficient and accurate CNN models.
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Appendix A. Gabor Filter Examples

Figure A1 illustrates a range of Gabor filters of varying dimensions, each exhibiting
random orientations.

Figure A1. Sample Gabor filters produced at random with different parameters.

Appendix B. Statistical Analysis

For the statistical analysis that supports Table 4, we performed the following:

χ2
F =

12 · 6
4 · 5

[(
3.662 + 3.332 + 1.832 + 1.162

)
− 4 · 52

4

]
,

= 15.364.
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FF =
5 · 15.364

6 · 3− 15.364
= 29.143.

The critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence. The critical
differences are:

CDα=0.05 = 2.569

√
4 · 5
6 · 6 = 1.915.

CDα=0.10 = 2.291

√
4 · 5
6 · 6 = 1.708.

Since the difference in rank between the randomized Gabor filter and the baseline
Glorot normal filter is 1.83 and is less than the CDα=0.10 = 1.708, we conclude that the
Gabor filter is better. Similarly, since the difference in rank between the fixed Gabor filter
and the baseline Glorot uniform filter is 2.17 and is less than the CDα=0.05 = 1.915, we
conclude that the Gabor filter is better.

For the statistical analysis that supports Table 4, we performed the following:

χ2
F =

12 · 6
4 · 5

[(
3.6662 + 32 + 1.52 + 1.8332

)
− 4 · 52

4

]
,

= 10.978.

FF =
5 · 10.978

6 · 3− 10.978
= 7.817.

The critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.
Since the difference in rank between the fixed Gabor filter and the baseline Glorot

normal filter is 1.83 and is less than the CDα=0.10 = 1.708, we conclude that the Gabor filter
is better. Similarly, since the difference in rank between the random Gabor filter and the
baseline Glorot uniform filter is 1.5 and is less than the CDα=0.05 = 1.915, we conclude that
the Gabor filter is better.

For the statistical analysis that supports Table 5, we performed the following:

χ2
F =

12 · 6
4 · 5

[(
3.332 + 3.662 + 1.662 + 1.332

)
− 4 · 52

4

]
,

= 14.763.

FF =
5 · 14.763

6 · 3− 14.763
= 22.804.

The critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.
Since the difference in rank between the fixed Gabor filter and the baseline Glorot

normal filter is 2 and is less than the CDα=0.05 = 1.915, we conclude that the Gabor filter
is better. Similarly, since the difference in rank between the random Gabor filter and the
baseline Glorot uniform filter is 2 and is less than the CDα=0.05 = 1.915, we conclude that
the Gabor filter is better.

For the statistical analysis that supports Table 6, we performed the following:

χ2
F =

12 · 6
4 · 5

[(
3.52 + 3.52 + 1.6662 + 1.3332

)
− 4 · 52

4

]
,

= 10.536.

FF =
5 · 10.536

6 · 3− 10.536
= 7.058.

The critical value at α = 0.01 is 5.417. We reject H0 with 99% confidence.
Since the difference in rank between the random Gabor filter and the baseline Glorot

normal filter is 1.84 and is less than the CDα=0.10 = 1.708, we conclude that the Gabor
filter is better. Similarly, since the difference in rank between the fixed Gabor filter and the
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baseline Glorot uniform filter is 2.17 and is less than the CDα=0.05 = 1.915, we conclude
that the Gabor filter is better.

Appendix C. Additional Experiments

Tables A1 and A2 provide a comprehensive overview of the improvement in terms of
the maximum accuracy and the AUC at the maximum accuracy for the Gabor-initialized
CNN in comparison to traditional CNNs. This comparison is made under the constraint
that the Gabor-initialized CNN is trained only up to the number of epochs where the
traditional CNN reaches its maximum accuracy.

Tables A3 and A4 present a comparison of the minimum loss and number of epochs
required to reach its minimum loss for the Gabor-initialized CNN in relation to the tradi-
tional CNN, with the constraint that the Gabor-initialized CNN is trained only up to the
number of epochs where the traditional CNN reaches its maximum accuracy.

Tables A5–A7 summarize the improvement in maximum accuracy, AUC at maximum
accuracy, and minimum loss of the Gabor-initialized CNN in comparison to traditional
CNNs under the constraint that the receptive filters of the Gabor-initialized CNN are frozen,
while the filters in other layers are allowed to change.

Finally, the results of experiments conducted with different kernel sizes of the receptive
layer of the CNN and image sizes of the datasets can be found in Tables A8–A25.

Table A1. Improvement in maximum accuracy of epoch-constrained Gabor-initialized CNN with
respect to traditional CNN when training period was constrained to maximum accuracy epoch of
traditional CNN. Bold numbers indicate top results.

Dataset Base Maximum Accuracy Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.8839 0.004 +0.0212 0.007 +0.0253 0.006
CIFAR-10 0.8024 0.004 +0.0197 0.003 +0.0212 0.005
CIFAR-100 0.7132 0.003 +0.0054 0.005 +0.0053 0.005
Caltech 256 0.5085 0.007 +0.0131 0.008 +0.0163 0.010
Stanford Cars 0.2326 0.070 +0.1200 0.065 +0.1576 0.068
Tiny Imagenet 0.5175 0.004 +0.0128 0.003 −0.0008 0.007

Average 0.6097 0.015 +0.0320 0.015 +0.0375 0.017

Table A2. Improvement in AUC at maximum accuracy of epoch-constrained Gabor-initialized CNN
with respect to traditional CNN when training period was constrained to maximum accuracy epoch
of traditional CNN. Bold numbers indicate top results.

Dataset Base AUC Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.9515 0.003 +0.0129 0.004 +0.0164 0.004
CIFAR-10 0.9719 0.001 +0.0033 0.001 +0.0026 0.001
CIFAR-100 0.9621 0.002 +0.0013 0.002 +0.0022 0.002
Caltech 256 0.8885 0.004 +0.0086 0.004 +0.0062 0.005
Stanford Cars 0.8077 0.026 +0.0552 0.022 +0.0645 0.026
Tiny Imagenet 0.9370 0.003 +0.0023 0.004 −0.0010 0.003

Average 0.9198 0.006 +0.0134 0.006 +0.0151 0.007

Table A3. Improvement in minimum loss of Gabor-initialized CNN with respect to traditional CNN
when training period was constrained to minimum loss epoch of traditional CNN. Bold numbers
indicate top results.

Dataset Base Minimum Loss Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.2960 0.012 −0.0406 0.015 −0.0553 0.013
CIFAR-10 0.6555 0.013 −0.0517 0.015 −0.0567 0.013
CIFAR-100 1.1823 0.020 −0.0150 0.038 −0.0192 0.029
Caltech 256 2.6428 0.067 −0.0908 0.038 −0.0192 0.029
Stanford Cars 4.1857 0.356 −0.6513 0.231 −0.8913 0.264
Tiny Imagenet 2.7390 0.014 −0.0522 0.024 −0.0027 0.028
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Table A4. Improvement in minimum loss epoch of Gabor-initialized CNN with respect to traditional
CNN when training period constrained to minimum loss epoch of traditional CNN. Bold numbers
indicate top results.

Dataset Base Epoch Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 70.6 13.5 −7 5.4 −14 9.8
CIFAR-10 40.1 5.5 −8.6 8.1 −10 7.4
CIFAR-100 70.2 6.5 −6.2 3.3 −8.8 7.7
Caltech 256 42.1 5.1 −3.5 2.7 −5.2 3.5
Stanford Cars 74.0 14.9 −5.1 4.4 −6.4 3.9
Tiny Imagenet 32.2 4.6 −5.2 5.6 −5.9 6.1

Table A5. Improvement in maximum accuracy of Gabor-initialized CNN (frozen receptive convolu-
tional layer variant) with respect to traditional CNN. Bold numbers indicate top results.

Dataset Base Maximum Accuracy Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.8839 0.004 +0.0029 0.009 +0.0183 0.005
CIFAR-10 0.8024 0.004 +0.0086 0.005 −0.0075 0.007
CIFAR-100 0.7132 0.003 +0.0022 0.004 −0.0559 0.007
Caltech 256 0.5085 0.007 +0.0079 0.011 +0.0012 0.012
Stanford Cars 0.2326 0.070 +0.0924 0.096 +0.1662 0.086
Tiny Imagenet 0.5175 0.004 +0.0045 0.009 −0.0391 0.004

Average 0.6097 0.015 +0.0197 0.022 +0.0139 0.020

Table A6. Improvement in AUC of Gabor-initialized CNN (frozen receptive convolutional layer
variant) with respect to traditional CNN. Bold numbers indicate top results.

Dataset Base AUC Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.9515 0.003 +0.0020 0.006 +0.0133 0.002
CIFAR-10 0.9719 0.001 +0.0012 0.001 −0.0017 0.002
CIFAR-100 0.9621 0.002 −0.0003 0.003 −0.0095 0.002
Caltech 256 0.8885 0.004 +0.0052 0.007 +0.0048 0.006
Stanford Cars 0.8077 0.026 +0.0408 0.035 +0.0684 0.032
Tiny Imagenet 0.9370 0.003 +0.0012 0.004 −0.0081 0.003

Average 0.9198 0.006 +0.0083 0.009 +0.0112 0.008

Table A7. Improvement in minimum loss of Gabor-initialized CNN (frozen receptive convolutional
layer variant) with respect to traditional CNN. Bold numbers indicate top results.

Dataset Base Minimum Loss Random Gabor Filter Repeated Gabor Filter
Mean Stdev Mean Stdev Mean Stdev

Cats vs. Dogs 0.2960 0.012 −0.0100 0.018 −0.0475 0.010
CIFAR-10 0.6555 0.013 −0.0352 0.019 +0.0086 0.022
CIFAR-100 1.1823 0.020 −0.0099 0.035 +0.2437 0.037
Caltech 256 2.6428 0.067 −0.0794 0.091 −0.0466 0.068
Stanford Cars 4.1857 0.356 −0.6217 0.502 −1.0837 0.487
Tiny Imagenet 2.7390 0.014 −0.240 0.027 +0.1628 0.019

Table A8. Improvement in maximum accuracy on Cats vs. Dogs dataset with different kernel sizes
and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.8261 0.8303 0.8165 0.8143 0.8035 0.8037 0.7869
Random Gabor (∆) −0.0202 −0.0389 −0.0114 +0.0036 +0.0120 +0.0044 +0.0094
Repeated Gabor (∆) −0.0258 −0.0174 −0.0170 −0.0120 −0.0174 −0.0020 +0.0090

64 × 64
Traditional CNN (Base) 0.8015 0.8403 0.8381 0.8297 0.8425 0.8315 0.8279
Random Gabor (∆) −0.0168 +0.0038 +0.0100 +0.0132 +0.0022 +0.0128 +0.0058
Repeated Gabor (∆) +0.0126 −0.0070 +0.0204 +0.0162 +0.0044 +0.0116 +0.0180

128 × 128
Traditional CNN (Base) 0.8672 0.9026 0.8948 0.9022 0.8992 0.8804 0.8952
Random Gabor (∆) +0.0062 −0.0138 −0.0022 +0.0114 +0.0150 +0.0242 +0.0150
Repeated Gabor (∆) +0.0134 +0.0120 +0.0228 +0.0144 +0.0160 +0.0341 +0.0216

256 × 256
Traditional CNN (Base) 0.8932 0.8892 0.8926 0.8862 0.8924 0.8916 0.8870
Random Gabor (∆) −0.0170 −0.0058 −0.0078 +0.0076 +0.0156 +0.0214 +0.0142
Repeated Gabor (∆) −0.0214 +0.0120 +0.0142 +0.0264 +0.0136 +0.0170 +0.0240
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Table A9. Improvement in AUC at maximum accuracy on Cats vs. Dogs dataset with different kernel
sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.9028 0.9092 0.8947 0.8946 0.8789 0.8809 0.8650
Random Gabor (∆) −0.0161 −0.0391 −0.0076 −0.0012 +0.0137 +0.0024 +0.0107
Repeated Gabor (∆) −0.0208 −0.0149 −0.0110 −0.0081 −0.0110 +0.0008 +0.0095

64 × 64
Traditional CNN (Base) 0.8900 0.9232 0.9213 0.9077 0.9214 0.9127 0.9097
Random Gabor (∆) −0.0179 +0.0027 +0.0053 +0.0103 +0.0022 +0.0113 +0.0081
Repeated Gabor (∆) +0.0090 −0.0066 +0.0127 +0.0146 +0.0037 +0.0116 +0.0139

128 × 128
Traditional CNN (Base) 0.9461 0.9690 0.9641 0.9670 0.9651 0.9557 0.9638
Random Gabor (∆) +0.0032 −0.0094 −0.0028 +0.0071 +0.0093 +0.0148 +0.0094
Repeated Gabor (∆) +0.0068 +0.0044 +0.0118 +0.0089 +0.0097 +0.0188 +0.0103

256 × 256
Traditional CNN (Base) 0.9586 0.9565 0.9602 0.9531 0.9570 0.9565 0.9541
Random Gabor (∆) −0.0099 −0.0016 −0.0056 +0.0072 +0.0086 +0.0139 +0.0087
Repeated Gabor (∆) −0.0129 +0.0054 +0.0086 +0.0178 +0.0085 +0.0121 +0.0141

Table A10. Improvement in minimum loss on Cats vs. Dogs dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.7039 1.0208 1.3793 0.8991 0.8574 0.9765 1.0263
Random Gabor (∆) −0.0630 −0.3510 −0.7026 −0.2184 −0.1522 −0.1801 +0.1596
Repeated Gabor (∆) −0.0696 −0.3772 −0.6521 −0.2515 −0.1687 −0.1927 −0.1891

64 × 64
Traditional CNN (Base) 0.8884 0.9717 0.8448 0.9905 1.2597 1.3066 1.4466
Random Gabor (∆) −0.1744 −0.2768 −0.1251 −0.3048 −0.5674 −0.4398 −0.6611
Repeated Gabor (∆) −0.2145 −0.2895 −0.1689 −0.3397 −0.5842 −0.6421 −0.6685

128 × 128
Traditional CNN (Base) 1.0480 0.8813 1.1060 0.7639 0.8840 1.0305 1.3318
Random Gabor (∆) −0.3270 −0.0753 −0.3405 −0.0858 −0.1525 −0.3765 −0.5583
Repeated Gabor (∆) −0.4209 −0.2144 −0.4912 −0.2167 −0.2957 −0.3765 −0.7697

256 × 256
Traditional CNN (Base) 1.1261 0.6374 0.7055 0.7233 1.1426 0.8459 0.8025
Random Gabor (∆) −0.4575 −0.0646 −0.0882 −0.0916 −0.5824 −0.2015 −0.2225
Repeated Gabor (∆) −0.4516 −0.0561 +0.0252 −0.0221 −0.5944 −0.0720 −0.1276

Table A11. Improvement in maximum accuracy on CIFAR-10 dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.7818 0.7896 0.7929 0.7712 0.7713 0.7744 0.7654
Random Gabor (∆) −0.0049 −0.0090 −0.0122 +0.0143 +0.0124 +0.0089 +0.0101
Repeated Gabor (∆) −0.0037 −0.0028 −0.0087 +0.0283 +0.0164 +0.0234 +0.0155

64 × 64
Traditional CNN (Base) 0.7086 0.7257 0.7199 0.7207 0.7115 0.7203 0.7219
Random Gabor (∆) −0.0076 −0.0129 +0.0077 +0.0143 +0.0279 +0.0393 +0.0403
Repeated Gabor (∆) −0.0098 −0.0107 +0.0206 +0.0348 +0.0466 +0.0416 +0.0394

128 × 128
Traditional CNN (Base) 0.7936 0.7988 0.8007 0.7930 0.7989 0.8004 0.8067
Random Gabor (∆) +0.0086 +0.0073 +0.0146 +0.0258 +0.0228 +0.0271 +0.0177
Repeated Gabor (∆) +0.0093 +0.0113 +0.0134 +0.0273 +0.0281 +0.0199 +0.0142

Table A12. Improvement in AUC at maximum accuracy on CIFAR-10 dataset with different kernel
sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.9759 0.9773 0.9777 0.9744 0.9734 0.9737 0.9722
Random Gabor (∆) −0.0011 −0.0011 −0.0027 +0.0018 +0.0023 +0.0019 +0.0018
Repeated Gabor (∆) −0.0010 −0.0006 −0.0019 +0.0036 +0.0037 +0.0034 +0.0021

64 × 64
Traditional CNN (Base) 0.9575 0.9615 0.9606 0.9614 0.9598 0.9621 0.9623
Random Gabor (∆) −0.0026 −0.0019 +0.0020 +0.0032 +0.0069 +0.0073 +0.0081
Repeated Gabor (∆) −0.0018 −0.0006 +0.0050 +0.0080 +0.0104 +0.0086 +0.0076

128 × 128
Traditional CNN (Base) 0.9730 0.9724 0.9734 0.9725 0.9737 0.9733 0.9746
Random Gabor (∆) +0.0008 +0.0017 +0.0011 +0.0023 +0.0023 +0.0047 +0.0033
Repeated Gabor (∆) +0.0005 +0.0029 +0.0021 +0.0044 +0.0031 +0.0023 +0.0015
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Table A13. Improvement in minimum loss on CIFAR-10 dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 1.4764 1.5682 1.9694 1.9144 1.6672 1.5935 2.1591
Random Gabor (∆) −0.1391 −0.2193 −0.5082 −0.5611 −0.1535 −0.1015 −0.6806
Repeated Gabor (∆) −0.0672 −0.1756 −0.6604 −0.6354 −0.0718 −0.1837 −0.8144

64 × 64
Traditional CNN (Base) 1.6460 1.9160 2.3001 1.6342 1.6378 1.8921 2.0575
Random Gabor (∆) −0.0266 −0.3585 −0.6622 −0.0978 −0.1412 −0.2156 −0.4911
Repeated Gabor (∆) +0.0670 −0.3258 −0.7804 −0.0624 −0.1956 +0.3132 −0.3499

128 × 128
Traditional CNN (Base) 1.4920 2.2684 1.2744 1.3457 1.3687 1.7287 1.4233
Random Gabor (∆) −0.2609 −1.1010 −0.0477 −0.1184 −0.1824 −0.3236 −0.0045
Repeated Gabor (∆) −0.2781 −1.0944 +0.2863 −0.1774 −0.2432 −0.1496 −0.0947

Table A14. Improvement in maximum accuracy on CIFAR-100 dataset with different kernel sizes
and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.5842 0.5740 0.5854 0.5488 0.5605 0.5678 0.5590
Random Gabor (∆) −0.0237 +0.0114 −0.0281 +0.0192 +0.0201 −0.0139 +0.0081
Repeated Gabor (∆) −0.0189 +0.0003 −0.0021 +0.0023 +0.0004 −0.0086 −0.0029

64 × 64
Traditional CNN (Base) 0.6803 0.6869 0.6807 0.6866 0.6898 0.6886 0.6867
Random Gabor (∆) +0.0007 +0.0025 −0.0007 −0.0015 −0.0087 −0.0094 −0.0015
Repeated Gabor (∆) +0.0039 +0.0018 +0.0027 −0.0028 −0.0080 −0.0010 −0.0006

128 × 128
Traditional CNN (Base) 0.7144 0.7065 0.7162 0.7164 0.7138 0.7123 0.7112
Random Gabor (∆) −0.0060 +0.0037 +0.0018 +0.0002 +0.0012 +0.0073 0.0059
Repeated Gabor (∆) +0.0017 +0.0106 −0.0070 −0.0041 +0.0040 +0.0086 +0.0145

Table A15. Improvement in AUC at maximum accuracy on CIFAR-100 dataset with different kernel
sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.9550 0.9503 0.9530 0.9525 0.9511 0.9514 0.9512
Random Gabor (∆) −0.0025 +0.0035 +0.0003 −0.0028 +0.0023 −0.0007 −0.0004
Repeated Gabor (∆) −0.0036 +0.0018 −0.0006 +0.0025 −0.0019 +0.0020 −0.0006

64 × 64
Traditional CNN (Base) 0.9636 0.9652 0.9659 0.9628 0.9655 0.9643 0.9652
Random Gabor (∆) +0.0008 +0.0002 −0.0009 +0.0030 −0.0006 +0.0025 +0.0007
Repeated Gabor (∆) −0.0004 −0.0004 −0.0007 +0.0027 −0.0012 +0.0021 +0.0006

128 × 128
Traditional CNN (Base) 0.9694 0.9686 0.9684 0.9690 0.9682 0.9691 0.9682
Random Gabor (∆) +0.0008 +0.0002 +0.0010 +0.0021 +0.0028 +0.0000 +0.0016
Repeated Gabor (∆) +0.0002 +0.0011 +0.0030 +0.0013 +0.0010 +0.0007 +0.0029

Table A16. Improvement in minimum loss on CIFAR-100 dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 4.3399 4.5608 4.0880 5.9439 4.1416 4.2599 5.1038
Random Gabor (∆) +0.1598 −0.6657 −0.0989 −1.7213 +0.1809 −0.2785 +2.1429
Repeated Gabor (∆) +0.4380 −0.4634 +0.7734 −1.5532 +0.5421 +0.2966 −1.1574

64 × 64
Traditional CNN (Base) 3.6348 3.7467 3.5715 3.8046 3.8158 4.0575 4.0832
Random Gabor (∆) +0.1774 −0.0744 +0.0242 −0.3521 +0.2289 +0.1263 +0.2179
Repeated Gabor (∆) +0.5789 +0.3015 +1.7995 −0.0274 +0.1685 +0.8609 +0.1275

128 × 128
Traditional CNN (Base) 3.4936 4.1385 4.1666 5.1151 3.7694 3.5885 4.0887
Random Gabor (∆) +0.2320 −0.2233 −0.6036 −1.3428 +0.9635 +0.0513 −0.0090
Repeated Gabor (∆) +0.4857 −0.2240 −0.1239 −0.6645 +0.0184 −0.0016 +0.1811
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Table A17. Improvement in maximum accuracy on Caltech 256 dataset with different kernel sizes
and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.3086 0.3084 0.3022 0.3096 0.3061 0.3099 0.2978
Random Gabor (∆) −0.0007 +0.0002 +0.0195 +0.0106 +0.0064 +0.0010 +0.0008
Repeated Gabor (∆) +0.0123 +0.0020 +0.0146 +0.0115 +0.0056 +0.0008 −0.0005

64 × 64
Traditional CNN (Base) 0.4296 0.4388 0.4375 0.4404 0.4403 0.4380 0.4313
Random Gabor (∆) −0.0090 −0.0028 +0.0113 +0.0025 −0.0116 +0.0119 +0.0214
Repeated Gabor (∆) +0.0039 −0.0054 +0.0082 +0.0072 +0.0113 +0.0059 +0.0059

128 × 128
Traditional CNN (Base) 0.5028 0.5025 0.5350 0.5200 0.5113 0.5195 0.5092
Random Gabor (∆) +0.0151 +0.0208 +0.0008 +0.0026 +0.0211 +0.0061 +0.0041
Repeated Gabor (∆) +0.0195 +0.0128 −0.0043 +0.0036 +0.0188 +0.0051 +0.0198

Table A18. Improvement in AUC at maximum accuracy on Caltech 256 dataset with different kernel
sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.8481 0.8419 0.8513 0.8574 0.8454 0.8474 0.8392
Random Gabor (∆) −0.0021 +0.0162 +0.0019 −0.0027 +0.0050 +0.0003 +0.0057
Repeated Gabor (∆) +0.0055 +0.0095 −0.0030 +0.0005 +0.0131 +0.0037 +0.0069

64 × 64
Traditional CNN (Base) 0.8741 0.8853 0.8846 0.8853 0.8837 0.8848 0.8840
Random Gabor (∆) +0.0026 −0.0037 +0.0036 +0.0033 −0.0010 +0.0060 −0.0001
Repeated Gabor (∆) +0.0037 −0.0028 −0.0007 +0.0050 +0.0114 +0.0034 +0.0041

128 × 128
Traditional CNN (Base) 0.9034 0.9097 0.9062 0.9036 0.9046 0.9049 0.9021
Random Gabor (∆) +0.0053 −0.0004 +0.0072 +0.0020 +0.0006 −0.0059 +0.0036
Repeated Gabor (∆) +0.0050 +0.0002 +0.0010 +0.0028 +0.0045 +0.0044 +0.0054

Table A19. Improvement in minimum loss on Caltech 256 dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 8.1892 6.2550 7.0410 7.8705 8.5046 11.1519 5.8391
Random Gabor (∆) −2.5809 +0.6026 −1.6581 −2.3008 +0.8493 −0.4026 −0.3982
Repeated Gabor (∆) −1.6821 +1.8756 −1.0074 −1.6438 −0.5016 −5.2436 +2.1425

64 × 64
Traditional CNN (Base) 6.3774 8.1425 6.8721 6.7314 7.0304 8.6386 5.2090
Random Gabor (∆) −0.8742 −3.0356 −1.2754 −1.3800 −1.0103 −2.7627 +0.8800
Repeated Gabor (∆) −1.1548 −2.6945 +3.0506 −0.1708 +5.0498 −2.1193 +0.7651

128 × 128
Traditional CNN (Base) 4.9090 5.1978 13.0624 6.8160 6.3426 7.1236 7.1915
Random Gabor (∆) +0.3547 +0.1951 −8.0269 −1.6014 −1.3128 −1.7678 −1.8235
Repeated Gabor (∆) +0.7467 +0.3598 −7.7013 −0.7981 −0.6349 +1.1454 −1.4903

Table A20. Improvement in maximum accuracy on Stanford Cars dataset with different kernel sizes
and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.0493 0.0426 0.0442 0.0425 0.0304 0.0334 0.0300
Random Gabor (∆) −0.0088 +0.0090 −0.0002 +0.0060 +0.0133 +0.0076 +0.0009
Repeated Gabor (∆) +0.0051 +0.0024 +0.0004 +0.0059 +0.0152 +0.0115 +0.0139

64 × 64
Traditional CNN (Base) 0.1774 0.1602 0.1498 0.1350 0.1386 0.0818 0.1143
Random Gabor (∆) −0.0330 +0.0081 +0.0015 +0.0019 −0.0162 +0.0436 −0.0009
Repeated Gabor (∆) −0.0339 +0.0117 +0.0326 +0.0281 −0.0092 +0.0524 +0.0410

128 × 128
Traditional CNN (Base) 0.4103 0.3879 0.4180 0.3598 0.3010 0.3102 0.3517
Random Gabor (∆) −0.0151 +0.0396 +0.0157 +0.0802 +0.1398 +0.1930 +0.0600
Repeated Gabor (∆) −0.0818 +0.0274 +0.0005 +0.0029 +0.1313 +0.0788 +0.0648
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Table A21. Improvement in AUC at maximum accuracy on Stanford Cars dataset with different
kernel sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.7107 0.6970 0.7114 0.6907 0.6290 0.6427 0.6325
Random Gabor (∆) −0.0198 +0.0019 −0.0198 +0.0009 +0.0526 +0.0292 +0.0041
Repeated Gabor (∆) +0.0111 −0.0038 −0.0106 +0.0173 +0.0705 +0.0448 +0.0568

64 × 64
Traditional CNN (Base) 0.8211 0.8046 0.7911 0.7815 0.7713 0.7255 0.7472
Random Gabor (∆) −0.0173 −0.0063 +0.0018 +0.0030 −0.0056 +0.0358 +0.0146
Repeated Gabor (∆) −0.0150 −0.0046 +0.0154 +0.0165 +0.0045 +0.0528 +0.0388

128 × 128
Traditional CNN (Base) 0.8736 0.8831 0.8723 0.8808 0.8369 0.8344 0.8811
Random Gabor (∆) +0.0020 +0.0020 +0.0180 +0.0033 +0.0455 +0.0458 +0.0032
Repeated Gabor (∆) +0.0063 +0.0017 +0.0028 +0.0030 +0.0515 +0.0278 +0.0035

Table A22. Improvement in minimum loss on Stanford Cars dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 7.3203 47.5599 8.8750 9.2702 22.8231 7.1648 9.1182
Random Gabor (∆) +12.3424 −37.8715 +3.6937 +3.4808 −15.7108 +0.3171 +0.4810
Repeated Gabor (∆) +7.1468 −37.3148 −2.6179 +6.2107 −4.7338 +5.3186 +7.1548

64 × 64
Traditional CNN (Base) 24.1874 7.3460 14.2081 10.4780 16.0974 17.0614 20.6991
Random Gabor (∆) −13.0682 +1.0896 −6.3144 +1.3075 −3.0181 −4.1803 −0.5565
Repeated Gabor (∆) −16.0293 +13.3526 +13.5375 +2.7611 −1.1857 −0.2307 −3.6890

128 × 128
Traditional CNN (Base) 18.8136 36.2230 18.1727 6.6971 6.5915 73.8066 6.7081
Random Gabor (∆) −1.3699 −26.1808 −9.9487 +9.0980 +4.3474 −66.8044 +7.0920
Repeated Gabor (∆) −4.3315 −23.0504 −9.2398 +4.6752 +34.7256 −62.0934 +4.2712

Table A23. Improvement in maximum accuracy on Tiny Imagenet dataset with different kernel sizes
and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.3921 0.3950 0.3832 0.3712 0.3671 0.3649 0.3543
Random Gabor (∆) −0.0077 −0.0029 −0.0419 −0.0223 −0.0294 −0.0340 −0.0083
Repeated Gabor (∆) −0.0050 −0.0465 −0.0462 −0.0453 −0.0401 −0.0612 −0.0410

64 × 64
Traditional CNN (Base) 0.4806 0.4824 0.4739 0.4699 0.4659 0.4662 0.4562
Random Gabor (∆) +0.0102 −0.0021 −0.0041 −0.0072 −0.0102 +0.0002 +0.0152
Repeated Gabor (∆) −0.0037 −0.0390 −0.0186 +0.0004 −0.0244 −0.0229 −0.0021

128 × 128
Traditional CNN (Base) 0.5199 0.5233 0.5241 0.5216 0.5229 0.5218 0.5104
Random Gabor (∆) +0.0113 +0.0056 +0.0081 −0.0031 −0.0018 +0.0056 +0.0170
Repeated Gabor (∆) −0.0066 −0.0153 −0.0411 −0.0126 −0.0142 −0.0099 +0.0060

Table A24. Improvement in AUC at maximum accuracy on Tiny Imagenet dataset with different
kernel sizes and image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 0.9109 0.9113 0.9062 0.9056 0.9011 0.8991 0.8979
Random Gabor (∆) −0.0002 −0.0054 −0.0118 −0.0109 −0.0079 −0.0098 −0.0006
Repeated Gabor (∆) −0.0038 −0.0181 −0.0082 −0.0163 −0.0103 −0.0172 −0.0175

64 × 64
Traditional CNN (Base) 0.9361 0.9319 0.9333 0.9312 0.9308 0.9294 0.9262
Random Gabor (∆) −0.0031 +0.0008 −0.0026 +0.0002 −0.0033 −0.0006 +0.0037
Repeated Gabor (∆) −0.0093 −0.0050 −0.0094 −0.0021 −0.0039 −0.0078 −0.0018

128 × 128
Traditional CNN (Base) 0.9435 0.9418 0.9438 0.9432 0.9439 0.9428 0.9427
Random Gabor (∆) −0.0006 +0.0011 −0.0013 −0.0017 −0.0014 −0.0009 +0.0013
Repeated Gabor (∆) −0.0065 −0.0068 −0.0091 −0.0089 −0.0061 −0.0056 −0.0023
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Table A25. Improvement in minimum loss on Tiny Imagenet dataset with different kernel sizes and
image sizes. Bold numbers indicate top results.

Image Size Gabor Configuration Kernel Size
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

32 × 32
Traditional CNN (Base) 5.2912 5.2273 5.2322 5.1488 5.1689 5.2050 5.1729
Random Gabor (∆) −0.2901 −0.2618 −0.2595 −0.2248 −0.1753 −0.1808 −0.1660
Repeated Gabor (∆) −0.0636 −0.0202 −0.0505 −0.0025 −0.0429 −0.0107 −0.0384

64 × 64
Traditional CNN (Base) 5.1014 5.1428 5.1198 5.1246 5.0847 5.1234 5.0616
Random Gabor (∆) −0.2692 −0.2719 −0.2538 −0.2102 −0.2546 −0.1730 −0.1027
Repeated Gabor (∆) +0.1317 +0.0625 −0.0146 −0.0464 +0.0509 −0.0955 −0.0103

128 × 128
Traditional CNN (Base) 5.0659 5.0616 5.0584 5.0257 5.0092 5.0673 5.2985
Random Gabor (∆) −0.2046 −0.2492 −0.3288 −0.1116 +0.0950 −0.0409 −0.5205
Repeated Gabor (∆) +0.1017 +0.0927 +0.0865 +0.0545 +0.0739 −0.0492 −0.3941
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