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Abstract: The µ−synchronization issues of non-dissipative coupled networks with bounded distur-
bances and mixed delays are studied in this article. Different from existing works, three kinds of time
delays, including internal delays, coupling delays, and impulsive sampling delays, have unidentified
bounds and even evolve towards infinity over time, making the concerned network more practi-
cal. Considering µ−stability theory and impulse inequality techniques, a hybrid non-delayed and
time-delayed impulsive controller including both current and historical state information is designed,
and several novel sufficient conditions are derived to make nonlinear complex networks achieve
µ−synchronization. Moreover, not only can the constriction of dissipative coupling conditions on
network topology be relaxed, but also the restriction of various time delays on impulsive intervals
can be weakened, which makes the theoretical achievements in this article more general than the
previous achievements. Ultimately, numerical simulations confirm the effectiveness of our results.

Keywords: dynamical network; Lyapunov function; synchronization condition; stability analysis;
topological structure

1. Introduction

Recently, complex dynamic networks have received increasing attention by reason
of their important applications in intelligent identification, automatic processing, system
stability, etc. For instance, complex networks can be used for information protection, such as
image encryption [1] and secure communication [2]. Random neural networks can be used
for general dissipativity analysis [3] and extended dissipativity analysis [4]. Combining
DOS attacks and complex networks, image protection methods [5] and system stability
conditions [6] can be obtained. By utilizing machine learning rules for complex dynamic
networks, trajectory tracking can be achieved in [7]. Among the various aggregation
behaviors of complex networks, synchronization undoubtedly becomes one of the most
prominent dynamical evolution statuses [8]. Considering the complexity of network
structures and the interactive influence between different nodes, utilizing external forces to
achieve network synchronization is the most common strategy. Presently, various control
technologies, including but not limited to predictive control [9], tracking control [10],
intermittent control [11], linear control [12], and impulsive control [13], have been utilized
in the synchronization research of neural networks or complex dynamical networks.

As a typical discrete control method, impulsive control only applies external forces
to the controlled system at a small number of impulse moments, effectively downgrading
control duration and enhancing communication security [14]. The above distinguishing
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features of impulsive control are widely favored by researchers, and a large number of
synchronous research achievements on complex networks have been gained from this
control mechanism. For example, Deng et al. [15] explored the impulsive synchronization
for a kind of linearly-coupled group network through transient information interchange at
part-discrete impulse instants. Peng et al. [16] paid attention to the asymptotic synchroniza-
tion of drive–response complex systems by activating the sensor at event-triggered instants.
Yang et al. [17] acquired sufficient synchronization conditions for uncertain switching
of complex networks based on convex combination strategies and impulsive sampling
control schemes. The above synchronization results involving impulsive mechanisms are
interesting and valuable, but, regrettably, any time delay was not taken into account. As is
well known, time delays are commonly present in actual network systems because of finite
communication channel width and signal transfer rate. When studying the dynamical
behavior of networks, ignoring the important factor of time delays may lead to imprecise or
false results [18]. In [19], some important criteria were derived that ensure the admissibility
of a type of singular system with state delays. In [20], Kchaou et al. obtained several
sufficient requirements to ensure that the sliding mode dynamics of nonlinear systems
were robust and tolerable. Constant time delays in couplings and dynamics have been
explored in [21], and impulsive synchronization conditions for coupled networks including
fractional order have been derived via mixed impulsive control methods. In [22], Yang
et al. introduced time-varying internal delays to switching networks and obtained some
important synchronization criteria for considering models by applying impulsive control.
Feng et al. explored asymptotic synchronization [23] and exponential synchronization [24]
for a type of coupled complex network including variable internal delays and coupling
delays, and these two kinds of delays satisfied 0 ≤ τ1(t) ≤ τ1, 0 ≤ τ2(t) ≤ τ2. It is notewor-
thy that these research results obtained above assume that internal or coupling delays have
known or estimable boundaries.

In addition to the internal time delays and coupling time delays mentioned above,
the sampling time delays in impulsive control processes also need to be attention. Due to
limited sampling and transmission rates, it is hard to promptly accomplish the sampling,
processing, and transmission of impulse signals at certain impulsive points, which in-
evitably results in sampling delays at impulsive instants. Some scholars have paid attention
to this phenomenon and obtained partial relevant results based on time-delayed impulsive
control frameworks. For instance, Ye et al. [25] designed an impulsive controller includ-
ing impulse delays for coupled neural networks with fractional unmeasured information
and obtained some helpful lag synchronization conditions. Liu et al. [26] discussed the
global synchronization of linear complex dynamic systems by considering the time delays’
positive or negative influence on the impulsive control mechanism. The authors in [27]
deliberated on the asymptotic synchronization of fuzzy dynamic networks with random
disturbances via a time-delayed impulsive controller. In [28], Wu et al. derived exponential
synchronization criteria of random dynamical networks with reaction–diffusion items
by using delayed impulsive control. More stability conditions [29] and synchronization
results [30] stemming from impulsive control schemes with sampling delays can be found.
However, the previous works assume that the bound of time delays in impulsive controllers
is known or estimable, or even a constant. Under the constraints of these assumptions,
no matter how the network evolves, the delay signal in the impulsive controller must be
transmitted to controlled systems within a finite specified time. Actually, in addition to
internal delays and coupling delays, the boundary of time delays of impulsive signals
in impulsive controllers is also difficult to predict, even infinite. Hence, when we apply
delayed impulsive control to solve synchronization challenges of complex networks in-
volving variable delays, removing the boundedness assumptions of internal, coupling, and
impulsive delays can obtain more practical and valuable synchronization results.

To handle the unpredictability and unidentified bounds of time delays, the µ−function
and the concept of µ−stability were considered in [31]. µ−stability, as a generalized sta-
bility theory, can be applied to complex networks with unpredictable delays because the
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historical information and current communication of nodes in the networks can be linked
by µ−function [32]. Cui et al. [33] attained the µ−stability conditions for complex dy-
namical systems, including bounded distributed delays and internal delays of unknown
bounds. Liu et al. [34] explored the µ−stability issue of random complex networks involv-
ing unbounded internal delays. Chen et al. [35] popularized constant delays in complex
network models to time-varying delays of unidentified bounds through certain mild con-
ditions. The authors in [36] dealt with synchronization challenges of neural networks
with unbounded system delays and coupling delays by establishing special µ−functions.
Additionally, uncertain bounded disturbances exist widely in the process of information
interchange in various dynamical systems. For instance, Huang et al. [37] explored the syn-
chronization requirements of complex networks under perturbations or non-perturbations
in fixed time. Kaviarasa et al. analyzed the impact of uncertain internal coupling on the
synchronization of neural networks in [38]. In [39], some synchronization conditions for
dynamical networks with uncertain disturbances were studied by using adaptive control
methods. Narayana et al. studied the impulsive control schemes for multi-agent systems
under uncertain disturbances and attacks in [40]. For the sake of better simulation, var-
ious unpredictable time delays and uncertain norm-bounded disturbances need to be
considered in the studies of synchronization. However, few or no works pay attention to
the µ−synchronization of complex networks involving bounded disturbances and mixed
variable delays of unidentified bounds by hybrid non-delayed and time-delayed impulsive
control, especially the boundary of impulsive delay is unidentified and unpredictable,
which is the main motivation of this study.

Inspired by the above research achievements and utilizing non-delayed and delayed
impulsive controllers, this article discusses µ−synchronization for nonlinear complex
networks, including bounded disturbances and mixed variable delays of unidentified
bounds, and reveals the relationship between µ−synchronization and other synchroniza-
tion patterns, such as power synchronization, log synchronization, and exponential syn-
chronization. The key highlights can be listed as follows. (1) To obtain more practical
synchronization results, this paper focuses on a class of nonlinear dynamical networks
that include bounded disturbances, internal delays, coupling delays, and sampling delays.
In particular, all the delays considered in this study can be time-varying, non-differential,
and unidentified bounds, which make the investigated model more generalized than the
models with bounded delays in [18–24]. (2) The constriction of zero-row-sum conditions or
dissipative coupling conditions on network topology can be relaxed, and the restriction of
various time delays on impulsive intervals can also be weakened. (3) Different from existing
control schemes [25–30], both non-delayed impulses and delayed impulses of unidentified
bounds are considered concurrently in the impulsive controller, which implies information
interchange between different nodes, including both current information and historical
status information. Novel synchronization criteria for the concerned nonlinearly-coupled
networks are derived under the hybrid non-delayed and delayed impulsive impacts.

2. Mathematical Model and Prior Knowledge
2.1. Notation Description

We first give the following set description. Set Λ1 ⊆ R, Λ2 ⊆ Rk, 1 ≤ k ≤ n,
C1(Λ1, Λ2) = {υ : Λ1 → Λ2, υ is continuously differentiable}. PC(Λ1, Λ2) = {υ : Λ1 →
Λ2, υ is piecewise continuous except for a small number of points t with υ(t+) = υ(t), and
υ(t−) exists }. PCBτ = {ῡ ∈ PC([−τ, 0], Rn), ῡ is bounded}, and the norm is computed by
|ῡ| = sup−τ≤s≤0‖ῡ(s)‖. ℵ = {µ(t) ∈ C1(R+, [1,+∞)) : µ(t) is nondecreasing on [0,+∞)
and µ(t)→ ∞ as t→ ∞}. More mathematical symbols in master and slave networks can
be seen in Table 1.
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Table 1. Mathematical symbols utilized in this article.

λmax(A) The maximum eigenvalue of a matrix A.
ui(t) The state vector of master networks.
vi(t) The state vector of slave networks.
ei(t) The error vector between master and slave networks.
β(·) The activation function of non-delayed parts.
γ(·) The activation function of delayed parts.
ψ(·) The coupling function of master and slave networks.
D,E,F The connection synaptic matrices.
∆D(t), ∆E(t) The norm-bounded disturbances of non-delayed parts.
∆F(t) The norm-bounded disturbances of delayed parts.
φi(t), ϕi(t) The initial conditions of master and slave networks.
aik, cik The non-delayed and delayed impulsive strengths.
B The coupling matrix.
I The identity matrix.
ηk The impulsive sampling delay.
τ1(t) The internal time-varying delay.
τ2(t) The coupling time-varying delay.

2.2. Model Description

Consider a nonlinear complex network including N nodes with delays of unidentified
bounds as follows:

u̇i(t) = −(D+ ∆D(t))ui(t) + (E+ ∆E(t))β(ui(t)) + (F+ ∆F(t))γ(ui(t− τ1(t)))

+ε
N
∑

j=1
bijψ(uj(t− τ2(t))),

ui(s) = φi(s), s ∈ (−∞, 0],

(1)

where i = 1, 2, . . . , N, and ui(t) = (u1i(t), u2i(t), . . . , uni(t))T ∈ Rn denotes the state vector.
D is a diagonal matrix with positive elements d1, d2, · · · , dn. E ∈ Rn×n and F ∈ Rn×n

represent the connection synaptic matrices. ∆D(t) ∈ Rn×n, ∆E(t) ∈ Rn×n, and ∆F(t) ∈
Rn×n represent the norm-bounded disturbances, which are uncertain and time-varying.
β(·) ∈ Rn and γ(·) ∈ Rn represent the nonlinear activation functions, and ψ(·) ∈ Rn

represents the nonlinear coupling function. ε > 0 stands for the coupling strength. τ1(t)
and τ2(t) are the internal delay and the coupling delay, which are time-varying and have
unidentified bounds, namely, 0 ≤ τ1(t) ≤ ∞, 0 ≤ τ2(t) ≤ ∞. φi(·) ∈ PCBτ denotes the
initial condition of node i. B = (bij) ∈ RN×N denotes the outer coupling matrix, where
bij is defined as follows: if there exists an edge from node i to node j (i 6= j), then bij > 0;
otherwise, bij = 0.

Taking the nonlinear dynamical network (1) as the master network, then the corre-
sponding slave network could be given as:

v̇i(t) = −(D+ ∆D(t))vi(t) + (E+ ∆E(t))β(vi(t)) + (F+ ∆F(t))γ(vi(t− τ1(t)))

+ε
N
∑

j=1
bijψ(vj(t− τ2(t))), t 6= tk,

∆ei(tk) = aikei(t−k ) + cikei(t−k − ηk), t = tk, k ∈ Z+,
vi(s) = ϕi(s), s ∈ (−∞, 0],

(2)

where vi(t) = (v1i(t), v2i(t), . . . , vni(t))T ∈ Rn is the state vector of response network (2).
ϕi(·) ∈ PCBτ represents the starting condition of node i. The impulsive equation

∆ei(tk) = aikei(t−k ) + cikei(t−k − ηk), t = tk, k ∈ Z+, (3)

denotes the hybrid non-delayed and time-delayed impulsive controller applied to the
slave network, where ei(·) = vi(·) − ui(·) denotes the synchronization error of node i.
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∆ei(tk) = ei(t+k )− ei(t−k ), and this study assumes that ei(t) is right-hand continuous, i.e.,
ei(tk) = ei(t+k ). The time sequences {tk, k ∈ Z+} satisfy 0 = t0 < t1 < · · · < tk < · · · and
tk → ∞ as k→ ∞, and the set of impulsive sequences can be denoted by F0. For all ξ > 0,
let F (ξ) = {tk ∈ F0|tk − tk−1 ≤ ξ, k ∈ Z+}. ηk represents the impulsive sampling delay,
which satisfies 0 ≤ ηk ≤ ∞, k ∈ Z+. That is to say, the delay in the impulsive controller
can also be an unidentified bound. aik and cik denote impulsive strengths at instants tk and
tk − ηk, respectively. The nodes in master–slave networks are one-to-one correspondences,
as seen in Figure 1. The top layer is the master network, and the bottom layer is the slave
network. A dotted line denotes a directed link from a node in the master networks to the
node in the slave networks. Each network consists of N-coupled nodes that are described
by dynamical systems.

Figure 1. Master–slave networks consist of coupled dynamical networks.

Remark 1. There is not enough prior information about the boundary of time delays in most cases.
In practical networks, for instance, in communication systems or power grids, time delays are
affected by the transmission medium, sudden changes, and outer perturbation, which means the
upper bound of delays cannot be precisely predicted. To establish a more generalized model, three
different types of time delays are also introduced into the network apart from nonlinear coupling and
bounded disturbances. Significantly, all delays can be time-varying, non-differentiable, and have
unidentified bounds.

Remark 2. To obtain general synchronization criteria, in coupled complex networks, it is commonly
supposed that the coupling topology matrix satisfies the zero-row-sum condition or dissipative
coupling condition, such as [4,15–17,32]. This article removes this restrictive assumption, making
the obtained synchronization criterion more practical.

Remark 3. Impulsive control intervals rely on the bound of time delays in existing research
achievements, such as [12,13,29]. That is, as the time evolution and time delays increase, the
impulse interval must be correspondingly reduced to ensure that the controlled systems attain a
synchronization state. In this study, no matter how the time delays increase or if they have no upper
bound, the synchronization objective can be fulfilled through given impulse intervals.
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Combining master network (1) and slave network (2), one can derive the error system
as follows:

ėi(t) = −(D+ ∆D(t))ei(t) + (E+ ∆E(t))β̄(ei(t)) + (F+ ∆F(t))γ̄(ei(t− τ1(t)))

+ε
N
∑

j=1
bijψ̄(ej(t− τ2(t))), t 6= tk,

∆ei(tk) = aikei(t−k ) + cikei(t−k − ηk), t = tk, k ∈ Z+,
ei(s) = ϕi(s)− φi(s), s ∈ (−∞, 0],

(4)

for i = 1, 2, . . . , N, where β̄(ei(t)) = β(vi(t)) − β(ui(t)), γ̄(ei(t − τ1(t))) = γ(vi(t −
τ1(t)))− γ(ui(t− τ1(t))) and ψ̄(ej(t− τ2(t))) = ψ(vj(t− τ2(t)))− ψ(uj(t− τ2(t))). After
that, the µ−synchronization problem between the slave system (2) and the master system
(1) can be transformed into the µ−stability problem of the error system (4).

Definition 1 ([35]). Master–slave dynamical networks (1) and (2) are referred to as global
µ−synchronization, if one can find suitable µ(t) ∈ ℵ and χ > 0, making the following inequality hold:

‖ei(t)‖ ≤
χ

µ(t)
, t ≥ 0, i = 1, 2, . . . , N.

Remark 4. If the concrete mathematical expression of µ−function is given, the equivalence between
µ−synchronization and the current mainstream synchronization pattern can be easily discovered.
For instance, assuming µ(t) = (1 + p1t)p2 , p1 > 0, p2 > 0, µ−synchronization can convert to
power synchronization; assuming µ(t) = ln(e + q1t), q1 > 0, µ−synchronization can turn into
log synchronization; considering µ(t) = exp(wt), w > 0, µ−synchronization can change into
exponential synchronization.

Assumption 1. For activation functions β(·), γ(·) and nonlinear coupling function ψ(·), there
exist three positive scalars, Lβ, Lγ, and Lψ, such that

‖β(η)− β(θ)‖ ≤ Lβ‖η − θ‖, ‖γ(η)− γ(θ)‖ ≤ Lγ‖η − θ‖, ‖ψ(η)− ψ(θ)‖ ≤ Lψ‖η − θ‖

hold for any η, θ ∈ Rn.

Assumption 2. The bounded disturbances ∆D(t), ∆E(t), and ∆F(t) can be described as

∆D(t) = GDΩ(t)HD, ∆E(t) = GEΩ(t)HE, ∆F(t) = GFΩ(t)HF,

where GD, GE, GF, HD, HE, HF represent known constant matrices and Ω(t) denotes the unknown
matrix satisfying the condition ΩT(t)Ω(t) ≤ I.

Assumption 3. For the outer coupling matrix B, there exists a scalar Mb > 0 such that

N

∑
j=1

(bij)
2 ≤ Mb, i = 1, 2, . . . , N.

Assumption 4. There exist constants µi ≥ 1(i = 0, 1, 2, 3) such that µ(t) ∈ ℵ satisfies the
conditions below:

µ(tk)

µ(tk−1)
≤ µ0,

µ(t)
µ∗(t− τ1(t))

≤ µ1,
µ(t)

µ∗(t− τ2(t))
≤ µ2,

µ(tk)

µ∗(tk − ηk)
≤ µ3,

where k ∈ Z+, µ∗(t) = µ(t) when t ≥ 0, and µ∗(t) = 1 when t < 0.
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Remark 5. If the functional expressions of the µ−function and the delay functions are deter-
mined, one can obtain the values of µi through a simple calculation. Although µi that meet the
above conditions are not unique, we only need to select the minimum value for each inequality in
practical applications.

Lemma 1 ([41]). For any positive-definite matrix U ∈ Rn×n and x, y ∈ Rn, one has the
following inequality:

2xTy ≤ xTUx + yTU−1y.

Lemma 2 ([32]). Under Assumption 4, z(t) ∈ PC(R, R+) meets the below inequality:{
D+z(t) ≤ az(t) + b1z(t− τ1(t)) + b2z(t− τ2(t)), t 6= tk,
z(t) ≤ ρkz(t−) + $kz(t− − ηk), t = tk, k ∈ Z+,

(5)

where a ∈ R, b1, b2 ∈ R+, ρk, $k ∈ R+, 0 ≤ τ1(t), τ2(t) ≤ ∞, 0 ≤ ηk ≤ ∞, and 0 = t0 < t1 <
· · · < tk < · · ·, k ∈ Z+. If there exist constants σ > 1, ξ > 0, and function µ(t) ∈ ℵ such that

[|a|+ σ(b1µ1 + b2µ2)]ξ < ln(σ/µ0), (6)

and

(ρk + µ3$k)σ ≤ 1, k ∈ Z+, (7)

then any solution of (5) satisfies

z(t) ≤ σµ(0)z̄(0)
µ(t)

, t ≥ 0, (8)

where z̄(0) = sup−∞<s≤0z(s).

3. Principal Theoretical Achievements

In this section, by applying a hybrid impulsive controller, synchronization criteria
between master system (1) and slave system (2) are derived based on rigorous theoretical
analysis.

Theorem 1. Under Assumptions 1–4, if there exist a function µ(t) ∈ ℵ, some positive scalars ξD,
ξE, ξF, ζE, ζF, b̌0, b̌1, b̌2, ξ, σ > 1, and a positive definite matrix P = diag{ p̃1, p̃2, · · · , p̃n}, such
that the requirements

(i)
[
|b̌0|+ σ(b̌1µ1 + b̌2µ2)

]
ξ < ln(σ/µ0),

(ii) − 2PD+ ξDPGDGT
DP + ξEPEET P + ξFPFFT P + ζEPGEGT

EP + ζFPGFGT
FP

+ εδMbPP + ξ−1
D λmax(HT

DHD)I +
(
ξ−1
E + ζ−1

E λmax(HT
EHE))L2

β I ≤ b̌0P,

(iii)
(

ξ−1
F + ζ−1

F λmax(HT
FHF)

)
L2

γ I ≤ b̌1P,

(iv)
(

εδ−1L2
ψN
)

I ≤ b̌2P,

(v) (ak
p̄
p
+ µ3ck

p̄
p
)σ ≤ 1, k ∈ Z+,

where ak = max{2(aik + 1)2, i = 1, 2, · · · , N}, ck = max{2c2
ik, i = 1, 2, · · · , N},

p̄ = max{ p̃i, i = 1, 2, · · · , n}, and p = min{ p̃i, i = 1, 2, · · · , n}, then master system (1)
and slave system (2) can be globally µ−synchronized under the impulsive sampling control schemes.
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Proof. Choose the Lyapunov function below:

V(t) =
N

∑
i=1

eT
i (t)Pei(t). (9)

When t 6= tk, k ∈ Z+, differentiating V(t) along the solution of (4) gives:

D+V(t) =2
N

∑
i=1

eT
i (t)Pėi(t)

=2
N

∑
i=1

eT
i (t)P

[
− (D+ ∆D(t))ei(t) + (E+ ∆E(t))β̄(ei(t))

+ (F+ ∆F(t))γ̄(ei(t− τ1(t))) + ε
N

∑
j=1

bijψ̄(ej(t− τ2(t)))
]
. (10)

Combining Assumption 2 and Lemma 1, one can obtain:

2
N

∑
i=1

eT
i (t)P[−(D+ ∆D(t))]ei(t)

=− 2
N

∑
i=1

eT
i (t)P(D+ GDΩ(t)HD)ei(t)

≤− 2
N

∑
i=1

eT
i (t)PDei(t) +

N

∑
i=1

[
ξDeT

i (t)PGDGT
DPei(t) + ξ−1

D eT
i (t)λmax(HT

DHD)ei(t)
]
. (11)

By Assumptions 1–2 and Lemma 1, one can derive:

2
N

∑
i=1

eT
i (t)P(E+ ∆E(t))β̄(ei(t))

=2
N

∑
i=1

eT
i (t)PEβ̄(ei(t)) + 2

N

∑
i=1

eT
i (t)PGEΩ(t)HE β̄(ei(t))

≤
N

∑
i=1

[
ξEeT

i (t)PEET Pei(t) + ξ−1
E β̄T(ei(t))β̄(ei(t))

]
+

N

∑
i=1

[
ζEeT

i (t)PGEGT
EPei(t) + ζ−1

E β̄T(ei(t))HT
EHE β̄(ei(t))

]
≤

N

∑
i=1

[
ξEeT

i (t)PEET Pei(t) + ζEeT
i (t)PGEGT

EPei(t)
]

+
N

∑
i=1

[
ξ−1
E + ζ−1

E λmax(HT
EHE)

]
L2

βeT
i (t)ei(t). (12)
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Similarly, one can further derive:

2
N

∑
i=1

eT
i (t)P(F+ ∆F(t))γ̄(ei(t− τ1(t)))

=2
N

∑
i=1

eT
i (t)PFγ̄(ei(t− τ1(t))) + 2

N

∑
i=1

eT
i (t)PGFΩ(t)HFγ̄(ei(t− τ1(t)))

≤
N

∑
i=1

[
ξFeT

i (t)PFFT Pei(t) + ξ−1
F γ̄T(ei(t− τ1(t)))γ̄(ei(t− τ1(t)))

]
+

N

∑
i=1

[
ζFeT

i (t)PGFGT
FPei(t) + ζ−1

F γ̄T(ei(t− τ1(t)))HT
FHFγ̄(ei(t− τ1(t)))

]
≤

N

∑
i=1

[
ξFeT

i (t)PFFT Pei(t) + ζFeT
i (t)PGFGT

FPei(t)
]

+
N

∑
i=1

[
ξ−1
F + ζ−1

F λmax(HT
FHF)

]
L2

γeT
i (t− τ1(t))ei(t− τ1(t)). (13)

Based on Assumptions 1 and 3 and Lemma 1, one can obtain:

2
N

∑
i=1

eT
i (t)Pε

N

∑
j=1

bijψ̄(ej(t− τ2(t)))

=2ε
N

∑
i=1

N

∑
j=1

eT
i (t)Pbijψ̄(ej(t− τ2(t)))

≤ε
N

∑
i=1

N

∑
j=1

δeT
i (t)P(bij)

2Pei(t) + ε
N

∑
i=1

N

∑
j=1

δ−1ψ̄T(ej(t− τ2(t)))ψ̄(ej(t− τ2(t)))

≤ε
N

∑
i=1

N

∑
j=1

δeT
i (t)P(bij)

2Pei(t) + ε
N

∑
i=1

N

∑
j=1

δ−1L2
ψeT

j (t− τ2(t))ej(t− τ2(t))

≤εδMb

N

∑
i=1

eT
i (t)PPei(t) + εδ−1L2

ψN
N

∑
i=1

eT
i (t− τ2(t))ei(t− τ2(t)). (14)

Substituting inequalities (11)–(14) into (10), we have:

D+V(t) ≤
N

∑
i=1

eT
i (t)

[
− 2PD+ ξDPGDGT

DP + ξEPEET P + ξFPFFT P + ζEPGEGT
EP

+ ζFPGFGT
FP + εδMbPP + ξ−1

D λmax(HT
DHD)I +

(
ξ−1
E + ζ−1

E λmax(HT
EHE)

)
L2

β I
]
ei(t)

+
N

∑
i=1

eT
i (t− τ1(t))

[
ξ−1
F + ζ−1

F λmax(HT
FHF)

]
L2

γei(t− τ1(t))

+
N

∑
i=1

eT
i (t− τ2(t))

(
εδ−1L2

ψN
)

ei(t− τ2(t))

≤b̌0V(t) + b̌1V(t− τ1(t)) + b̌2V(t− τ2(t)). (15)
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When t = tk, k ∈ Z+, using the Lyapunov function definition and control protocol (3),
one can derive that:

V(tk) =
N

∑
i=1

eT
i (tk)Pei(tk)

=
N

∑
i=1

[
(aik + 1)eT

i (t
−
k ) + cikeT

i (t
−
k − ηk)

]
P
[
(aik + 1)ei(t−k ) + cikei(t−k − ηk)

]
≤ p̄

N

∑
i=1

[
(aik + 1)2eT

i (t
−
k )ei(t−k ) + (aik + 1)cikeT

i (t
−
k )ei(t−k − ηk)

+ (aik + 1)cikeT
i (t
−
k − ηk)ei(t−k ) + c2

ikeT
i (t
−
k − ηk)ei(t−k − ηk)

]
≤ p̄

N

∑
i=1

[
2(aik + 1)2eT

i (t
−
k )ei(t−k ) + 2c2

ikeT
i (t
−
k − ηk)ei(t−k − ηk)

]
≤ p̄

N

∑
i=1

[
akeT

i (t
−
k )ei(t−k ) + ckeT

i (t
−
k − ηk)ei(t−k − ηk)

]
≤ p̄

p

N

∑
i=1

[
akeT

i (t
−
k )Pei(t−k ) + ckeT

i (t
−
k − ηk)Pei(t−k − ηk)

]
≤ p̄

p

[
akV(t−k ) + ckV(t−k − ηk)

]
. (16)

Denote e(t) = [eT
1 (t), eT

2 (t), · · · , eT
N(t)]

T . In view of Lemma 2, it follows from inequali-
ties (15) and (16) that

V(t) ≤ σµ(0)V̄(0)
µ(t)

, t ≥ 0, (17)

which further proclaims that

‖e(t)‖ ≤
√

σµ(0) p̄|e(0)|2
pµ(t)

. (18)

Hence, master–slave complex networks (1) and (2) can achieve µ−synchronization via
our control strategy, and we finish the mathematical derivation of Theorem 1.

Remark 6. In [18–24], various interesting research results were derived based on the assumption
that time delays are bound, that is 0 ≤ τi(t) ≤ τi, where τi represents a constant. Different from
these existing works, we have removed the restrictive assumption on the upper bound of time delays,
that is, 0 ≤ τi(t) ≤ ∞.

Remark 7. Considering that the µ−synchronization between master–slave networks can convert
to the µ−stability of the corresponding error systems, the µ−stability and µ−synchronization
have been investigated in [33–36], and the impacts of impulsive control strengths on system
synchronization have been discussed in these works. Unlike these existing results, the influences
of norm-bounded disturbances and non-delayed and delayed impulsive factors on synchronization,
especially the influences of the impulse sampling delays of unidentified bounds, have been considered
in this study.

When the concrete forms of time delays and µ−function are determined, one can
further obtain the following important corollaries, which indicate the close interconnection
between µ−synchronization and other mainstream synchronization modes.
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Corollary 1. Suppose µ(t) = (1 + p1t)p2 , τ1(t) = v1t, τ2(t) = v2t, and ηk = v3tk, k ∈ Z+,
where p1 > 0, p2 > 0, and 0 ≤ vi < 1 (i = 1, 2, 3). When Assumptions 1–3 and con-
ditions (ii)–(iv) are satisfied, if one can find suitable constants σ > 1, ξ > 0, and a matrix
P = diag{ p̃1, p̃2, · · · , p̃n} > 0, such that

|b̌0|ξ + σ
[ b̌1

(1−v1)p2
+

b̌2

(1−v2)p2

]
ξ < ln

[ σ

(1 + p1ξ)p2

]
and

[ak
p̄
p
+

ck
(1−v3)p2

p̄
p
]σ ≤ 1, k ∈ Z+,

where ak = max{2(aik + 1)2, i = 1, 2, · · · , N}, ck = max{2c2
ik, i = 1, 2, · · · , N},

p̄ = max{ p̃i, i = 1, 2, · · · , n}, and p = min{ p̃i, i = 1, 2, · · · , n}, and then the power syn-
chronization between master–slave dynamical networks (1) and (2) can be fulfilled through the
hybrid delayed impulsive control.

Proof. Obviously, we just need to verify that the given function µ(t) = (1 + p1t)p2 satisfies
Assumption 4. For any t ≥ 0, k ∈ Z+, we have:

µ(tk)

µ(tk−1)
=
[ 1 + p1tk

1 + p1tk−1

]p2
=
[1 + p1tk−1 + p1(tk − tk−1)

1 + p1tk−1

]p2
≤ (1 + p1ξ)p2 ,

µ(t)
µ∗(t− τ1(t))

=
[ 1 + p1t

1 + p1(1−v1)t

]p2
=

1[
1+p1(1−v1)t

1+p1t

]p2
≤ 1

(1−v1)p2
,

µ(t)
µ∗(t− τ2(t))

=
[ 1 + p1t

1 + p1(1−v2)t

]p2
=

1[
1+p1(1−v2)t

1+p1t

]p2
≤ 1

(1−v2)p2
,

µ(tk)

µ∗(tk − ηk)
=
[ 1 + p1tk

1 + p1(1−v3)tk

]p2
=

1[
1+p1(1−v3)tk

1+p1tk

]p2
≤ 1

(1−v3)p2
.

Based on the above inequalities and Assumption 4, let µ0 = (1+ p1ξ)p2 , µ1 = 1
(1−v1)

p2 ,

µ2 = 1
(1−v2)

p2 , and µ3 = 1
(1−v3)

p2 . Using the similar mathematical derivation of Theorem 1,
one can obtain the power synchronization between master dynamical network (1) and
slave dynamical network (2).

Corollary 2. Assume µ(t) = ln(e + q1t), τ1(t) = t + [e− (t + e)ς1 ]/q1, τ2(t) = t + [e− (t +
e)ς2 ]/q1, and ηk = v4tk, k ∈ Z+, where 0 < q1 < 1, 0 < ςi < 1, (i = 1, 2), and 0 ≤ v4 < 1.
When Assumptions 1–3 and conditions (ii)–(iv) are satisfied, if one can find appropriate constants
σ > 1, ξ > 0, and a matrix P = diag{ p̃1, p̃2, · · · , p̃n} > 0, such that

[|b̌0|+ σ(
b̌1

ς1
+

b̌2

ς2
)]ξ < ln

[ σ

1 + ln(1 + q1ξ/e)

]
,

and [
ak

p̄
p
+ ck(1− ln(1−v4))

p̄
p

]
σ ≤ 1, k ∈ Z+,

where ak = max{2(aik + 1)2, i = 1, 2, · · · , N}, ck = max{2c2
ik, i = 1, 2, · · · , N},

p̄ = max{ p̃i, i = 1, 2, · · · , n}, and p = min{ p̃i, i = 1, 2, · · · , n}, then the log synchroniza-
tion between master–slave dynamical networks (1) and (2) can be fulfilled through the hybrid
delayed impulsive control.
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Proof. Evidently, we just need to validate Assumption 4. One can obtain

µ(tk)

µ(tk−1)
=

ln(e + q1tk)

ln(e + q1tk−1)
≤ 1 +

ln[1 + q1(tk−tk−1)
e+q1tk−1

]

ln(e + q1tk−1)
≤ 1 + ln(1 + q1ξ/e),

µ(t)
µ∗(t− τ1(t))

=
ln(e + q1t)

µ∗[((t + e)ς1 − e)/q1]
=

ln(e + q1t)
ς1ln(e + t)

≤ 1
ς1

,

µ(t)
µ∗(t− τ2(t))

=
ln(e + q1t)

µ∗[((t + e)ς2 − e)/q1]
=

ln(e + q1t)
ς2ln(e + t)

≤ 1
ς2

,

µ(tk)

µ∗(tk − ηk)
=

ln(e + q1tk)

ln(e + q1(tk −v4tk))
= 1 +

ln[ e+q1tk
e+q1(1−v4)tk

]

ln[e + q1(1−v4)tk]
≤ 1− ln(1−v4),

for any t ≥ 0, k ∈ Z+. Based on the above inequalities and Assumption 4, let
µ0 = 1 + ln(1 + q1ξ/e), µ1 = 1

ς1
, µ2 = 1

ς2
, and µ3 = 1 − ln(1 − v4). Applying the

analogous mathematical derivation of Theorem 1, we can obtain the log synchronization
between master dynamical network (1) and slave dynamical network (2).

Corollary 3. Assume µ(t) = exp(ωt), 0 ≤ τi(t) ≤ τ(i = 1, 2), 0 ≤ ηk ≤ η, k ∈ Z+, where
ω > 0. When Assumptions 1–3 and conditions (ii)–(iv) are satisfied, if one can find appropriate
constants σ > 1, ξ > 0, and a matrix P = diag{ p̃1, p̃2, · · · , p̃n} > 0, such that

[|b̌0|+ σ(b̌1 + b̌2)exp(ωτ)]ξ < ln
[ σ

exp(ωξ)

]
,

and
[ak

p̄
p
+ ckexp(ωη)

p̄
p
]σ ≤ 1, k ∈ Z+,

where ak = max{2(aik + 1)2, i = 1, 2, · · · , N}, ck = max{2c2
ik, i = 1, 2, · · · , N},

p̄ = max{ p̃i, i = 1, 2, · · · , n}, and p = min{ p̃i, i = 1, 2, · · · , n}, then the exponential syn-
chronization between master–slave dynamical networks (1) and (2) can be fulfilled through the
hybrid delayed impulsive control.

Proof. Evidently, we only need to explain that Assumption 4 holds for µ(t) = exp(ωt).
One can obtain

µ(tk)

µ(tk−1)
=

exp(ωtk)

exp(ωtk−1)
= exp[ω(tk − tk−1)] ≤ exp(ωξ),

µ(t)
µ∗(t− τ1(t))

=
exp(ωt)

exp[ω(t− τ1(t))]
= exp[ωτ1(t)] ≤ exp(ωτ),

µ(t)
µ∗(t− τ2(t))

=
exp(ωt)

exp[ω(t− τ2(t))]
= exp[ωτ2(t)] ≤ exp(ωτ),

µ(tk)

µ∗(tk − ηk)
=

exp(ωtk)

exp[ω(tk − ηk)]
= exp[ωηk] ≤ exp(ωη),

for any t ≥ 0, k ∈ Z+. Let µ0 = exp(ωξ), µ1 = exp(ωτ), µ2 = exp(ωτ), and µ3 = exp(ωη).
Using a similar mathematical derivation, we can easily obtain Corollary 3.

4. Numerical Examples

We present three numerical simulations to explicate the correctness of the theoretical
achievements derived above.
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Example 1. Contemplate a two-dimensional complex dynamical network consisting of six
nodes involving variable delays of unidentified bounds as below:

u̇i(t) =− (D+ ∆D(t))ui(t) + (E+ ∆E(t))β(ui(t)) + (F+ ∆F(t))γ(ui(t− τ1(t)))

+ ε
6

∑
j=1

bijψ(uj(t− τ2(t))), i = 1, 2, · · · , 6, (19)

where ui(t) = (u1i(t), u2i(t))T represents the two-dimensional state vector of node i.
Choose the nonlinear mappings β(ui(t)) = γ(ui(t)) = 1/5(tanh(u1i(t)), tanh(u2i(t)))T as
activation functions, and select the mapping ψ(ui(t)) = 1/4(tanh(u1i(t)), tanh(u2i(t)))T

as the coupling function. Taking dynamical network (19) as the master system, then the
slave system under hybrid impulsive effects can be given by

v̇i(t) = −(D+ ∆D(t))vi(t) + (E+ ∆E(t))β(vi(t)) + (F+ ∆F(t))γ(vi(t− τ1(t)))

+ε
6
∑

j=1
bijψ(vj(t− τ2(t))), t 6= tk,

∆ei(tk) = aikei(t−k ) + cikei(t−k − ηk), t = tk, k ∈ Z+,
(20)

where vi(t) = (v1i(t), v2i(t))T represents the state vector of node i. The connection synaptic
matrices D,E, and F can be selected as:

D =

[
1 0
0 1

]
,E =

[
2.0 −0.1
−3.0 1.5

]
,F =

[
−1.5 −0.1
−0.2 −2.0

]
.

The bounded time-varying disturbances can be chosen as:

∆D(t) = GDΩ(t)HD =

[
0.1 0
0 0.1

][
sin(t) 0

0 cos(t)

][
0.05 0

0 0.05

]
,

∆E(t) = GEΩ(t)HE =

[
0.2 0
0 0.2

][
sin(t) 0

0 cos(t)

][
0.15 0

0 0.15

]
,

∆F(t) = GFΩ(t)HF =

[
0.3 0
0 0.3

][
sin(t) 0

0 cos(t)

][
0.25 0

0 0.25

]
.

The outer coupling matrix B is not restricted by the zero-row-sum condition or dissi-
pative coupling condition, which can be chosen as:

B =



0 0 0.5 0 0.5 0.5
0.5 0 0.5 0.5 0.5 0
0 0.5 0 0.5 0 0.5

0.5 0 0.5 0 0.5 0
0.5 0.5 0 0.5 0 0.5
0.5 0 0.5 0.5 0.5 0

.

The master network and the slave network have the same node size. In the simulation,
the six nodes in the master network and the slave network are connected one-to-one.
Through a simple computation, one can easily derive Lβ = Lγ = 1/5 and Lψ = 1/4,
which satisfies Assumption 1. Clearly, ΩT(t)Ω(t) ≤ I shows that Assumption 2 holds.
When Mb = 3, Assumption 3 can be fulfilled evidently. For convenience, three kinds of
time-varying delays are set in linear form as τ1(t) = τ2(t) = 0.01t, ηk = tk/6, k ∈ Z+. It
should be emphasized that their boundaries are unidentified and evolve towards infinity
over time. Choose ξD = ξE = 2, ξF = 4, ζE = ζF = 0.1, σ = 2.43, δ = 0.5, ε = 0.05,
p̄ = p = 1.62, µ(t) =

√
1 + 3t. The impulsive sequences {tk} satisfy tk − tk−1 ≤ 0.01
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for any k ∈ Z+. Calculation results yield µ0 = 1.0149, µ1 = 1.0050, µ2 = 1.0050, and
µ3 = 1.0954. Impulsive strengths are key parameters that decide whether the master and
slave systems can be synchronized. When parameters pi, µi, σ are determined, one can
select suitable impulsive strengths according to the second condition in Corollary 1. In
this simulation, we can set aik = −0.7, cik = 0.3. Moreover, when b̌0 = 73.5, b̌1 = 1.01,
b̌2 = 1.12, one can obtain |b̌0|ξ + σ

[
b̌1

(1−v1)
p2 + b̌2

(1−v2)
p2

]
ξ − ln

[
σ

(1+p1ξ)p2

]
= −0.0861 < 0,

and [ak
p̄
p + ck

(1−v3)
p2

p̄
p ]σ − 1 = −0.0835 < 0. Hence, it is not difficult to find that all the

constraint circumstances in Corollary 1 are valid.
The initial conditions of complex dynamical networks are generated randomly in

[−30, 30]. The four-step Runge–Kutta approach gives the numerical simulation results of
Corollary 1 with impulsive strengths aik = −0.7 and cik = 0.3, as seen in Figure 2. The
horizontal axis represents the evolution time t, which is measured in seconds. The ordinate
is the norm of the error vector. It is dimensionless and characterizes the magnitude of
the error. Figure 2 displays the state trajectories of different error norm curves with time
evolution. As we can see in the six subgraphs, the error of each node in the master and
slave systems gradually approaches 0. According to the definition of synchronization,
we can obtain that the objective of power synchronization between slave network (20)
and master network (19) can be accomplished under hybrid impulsive control schemes.
Furthermore, to investigate the influence of impulses on synchronization, the non-delayed
impulse remains unchanged, and only the delayed impulsive strength is slightly adjusted
to cik = 0.4, which makes [ak

p̄
p + ck

(1−v3)
p2

p̄
p ]σ− 1 = 0.2892 > 0 and the second condition

of Corollary 1 not hold. Under this control strength, Figure 3 shows the state trajectories
of six error norm curves with time evolution. From the six different subgraphs, it can be
seen that the error between each node of the two systems slowly decreases, but it can never
approach 0. According to the definition of synchronization, Figure 3 indicates that the
power synchronization between networks (20) and (19) cannot be accomplished. This is
mainly because the strength of the control cannot meet the given requirements.
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Figure 2. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.7 and cik = 0.3
in Example 1. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.
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Figure 3. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.7 and cik = 0.4
in Example 1. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.
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Remark 8. In contrast to the impulsive control schemes in [15–17], the impulsive controller in
this paper includes both the non-delayed effect and the delayed effect, in which both current and
historical information are considered. It can effectively downgrade control duration and costs.

Example 2. Consider the similar two-dimensional master dynamical network and slave
dynamical network as in Example 1. Different from the previous example, we not only
change the uncertain disturbances and network topology architecture but also replace linear
forms of time delays with more complex nonlinear expressions. Select the time-varying
disturbances with finite boundaries as follows:

∆D(t) = GDΩ(t)HD =

[
0.08 0

0 0.08

][
sin(t) cos(t) 0

0 sin(t) cos(t)

][
0.06 0

0 0.06

]
,

∆E(t) = GEΩ(t)HE =

[
0.14 0

0 0.14

][
sin(t) cos(t) 0

0 sin(t) cos(t)

][
0.12 0

0 0.12

]
,

∆F(t) = GFΩ(t)HF =

[
0.18 0

0 0.18

][
sin(t) cos(t) 0

0 sin(t) cos(t)

][
0.16 0

0 0.16

]
.

Without the condition limitation of dissipative coupling, the outer coupling matrix
representing the network topology with different weights can be selected as:

B =



0 0.2 0.1 0 0.3 0.4
0.2 0 0.3 0.1 0.2 0
0.1 0.6 0 0.2 0 0.3
0.2 0 0.4 0 0.5 0.1
0.1 0.4 0 0.2 0 0.3
0.1 0 0.3 0.1 0.4 0

.

For the internal delay and the coupling delay, complex nonlinear time delays are used
instead of linear time delays; that is, τ1(t) = τ2(t) = t + 5[e− (t + e)0.5]. Assumption 3
could be established when Mb = 1 and ΩT(t)Ω(t) ≤ I for Ω(t) = diag{sin(t) cos(t), sin(t)
cos(t)}. Choose µ(t) = ln(e + t/5), ηk = tk/5, k ∈ Z+, p̄ = p = 1.60, and the other
system parameters are chosen as in Example 1. Simple calculation yields that µ0 = 1.0007,
µ1 = 2, µ2 = 2, and µ3 = 1.2231. Additionally, when b̌0 = 68.29, b̌1 = 1.03, b̌2 = 1.05,

one can further obtain [|b̌0|+ σ( b̌1
ς1

+ b̌2
ς2
)]ξ − ln

[
σ

1+ln(1+q1ξ/e)

]
= −0.1032 < 0, and

[
ak

p̄
p +

ck(1− ln(1− v4))
p̄
p

]
σ − 1 = −0.0276 < 0. Hence, one can find that all the constraint

circumstances in Corollary 2 hold.

The initial conditions of complex dynamical networks are generated randomly as
before, and one can see the simulation results of Corollary 2 in Figure 4. Under impulsive
strengths aik = −0.7 and cik = 0.3, Figure 4 displays the state trajectories of ‖ei(t)‖ with
time evolution, which shows that the objective of log synchronization between the master
network and the corresponding slave network can also be achieved. In addition, to observe
the influence of the non-delayed impulsive strength on log synchronization, keep the
delayed impulsive strength unchanged and slightly adjust the other impulsive strength

to aik = −0.6, which makes
[

ak
p̄
p + ck(1− ln(1− v4))

p̄
p

]
σ− 1 = 0.3126 > 0 and breaks

the second condition of Corollary 2. Under this circumstance and impulsive strengths,
Figure 5 indicates that the state trajectories of ‖ei(t)‖ cannot approach zero as control time
evolves, which suggests that log synchronization cannot be fulfilled between master-slave
dynamical networks.
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Figure 4. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.7 and cik = 0.3
in Example 2. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.
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Figure 5. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.6 and cik = 0.3
in Example 2. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.

Example 3. Consider a two-dimensional master network including six nodes, in which
each uncoupled node can be described by a chaotic dynamical system. Unlike in previous
examples, the first activation function is β(ui(t)) = (tanh(u1i(t)), tanh(u2i(t)))T , and the
second activation function is γ(ui(t)) = (0.5(|u1i(t) + 1| − |u1i(t)− 1|), 0.5(|u2i(t) + 1| −
|u2i(t)− 1|))T . The connection synaptic matrices D,E, and F can be selected as:

D =

[
1 0
0 1

]
,E =

[
1 + π

4 20
0.1 1 + π

4

]
,F =

[
− 1.3

√
2π

4 0.1
0.1 − 1.3

√
2π

4

]
.

The disturbances, including constant matrices and bounded time-varying matrices,
are given by:

∆D(t) = GDΩ(t)HD =

[
0.36 0

0 0.36

][ | sin(t) cos(t)|
2 0
0 | sin(t) cos(t)|

2

][
0.14 0

0 0.14

]
,
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∆E(t) = GEΩ(t)HE =

[
0.08 0

0 0.08

][ | sin(t) cos(t)|
2 0
0 | sin(t) cos(t)|

2

][
0.10 0

0 0.10

]
,

∆F(t) = GFΩ(t)HF =

[
0.42 0

0 0.42

][ | sin(t) cos(t)|
2 0
0 | sin(t) cos(t)|

2

][
0.24 0

0 0.24

]
.

Consider the nonlinear internal delay and coupling delay as τ1(t) = et

1+et , τ2(t) = 0.1et

1+et ,
which are time-varying and satisfy 0 < τi(t) < 1. It is not difficult to validate that all
assumptions are established when Mb = 1. Choose µ(t) = exp(0.1t), ηk = 0.1, k ∈ Z+,
p̄ = p = 1.43. The coupled network structure is the same as in the previous example. Simple
calculation gives µ0 = 1.001, µ1 = 1.1052, µ2 = 1.1052, and µ3 = 1.0101. Additionally,
when b̌0 = 62.34, b̌1 = 1.04, b̌2 = 1.06, one can further obtain [|b̌0|+ σ(b̌1 + b̌2)exp(ωτ)]ξ −
ln
[

σ
exp(ωξ)

]
= −0.0823 < 0, and [ak

p̄
p + ckexp(ωη) p̄

p ]σ − 1 = −0.2092 < 0. Hence, it is
clear that all the constraint circumstances in Corollary 3 are satisfied.

The initial values of complex networks are still randomly generated. First, two impul-
sive strengths are set as aik = −0.65 and cik = 0.25. Figure 6 gives the state error between
master–slave networks with time evolution, which shows that exponential synchronization
can be achieved in this case. Additionally, adjusting the control intensities as aik = −0.60
and cik = 0.35 makes [ak

p̄
p + ckexp(ωη) p̄

p ]σ − 1 = 0.2087 > 0, and some conditions of
Corollary 3 cannot be guaranteed. In such control circumstances, Figure 7 gives the state
trajectories of ‖ei(t)‖ with time variation. Observation shows that the synchronization
error of each neuron cannot approach zero under control and synchronization fails. The
above experiments indicate that the impulsive intensities have an important influence on
the stability of the error system. Minor changes in strengths may cause the synchronization
target to not be completed.
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Figure 6. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.65 and cik = 0.25
in Example 3. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.
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Figure 7. The state trajectories of ‖ei(t)‖ under impulsive control strengths aik = −0.60 and cik = 0.35
in Example 3. (a) ‖e1(t)‖; (b) ‖e2(t)‖; (c) ‖e3(t)‖; (d) ‖e4(t)‖; (e) ‖e5(t)‖; (f) ‖e6(t)‖.
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Remark 9. Different from the results in [33–35], this article shows that µ−synchronization of
complex networks is equivalent to µ−stability of the corresponding error system and reveals the inner
link between µ−synchronization and other synchronization patterns, such as power synchronization,
log synchronization, exponential synchronization, etc.

5. Conclusions

This article explored the synchronization challenge for a type of non-dissipative
coupled complex network comprising bounded disturbances and time-varying delays of
unidentified bounds. Based on the hybrid non-delayed and delayed impulsive control
techniques, the impact of three types of time delays with unidentified bounds on sys-
tem stability can be effectively overcome by transforming µ−synchronization issues into
µ−stability issues. Removing the zero-row-sum constraint of the topological matrix and the
straitjacket of time delay on impulse intervals, some new synchronization criteria for the
controlled model can be obtained and verified by numerical examples. Our future research
direction is to set appropriate impulse event-triggered mechanisms to solve stability and
synchronization problems in high-order complex dynamical networks with distributed
time delays of unidentified bounds.
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