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Abstract: Digital Twins, which are virtual representations of physical systems mirroring their be-
havior, enable real-time monitoring, analysis, and optimization. Understanding and identifying the
temporal dependencies included in the multivariate time series data that characterize the behavior of
the system are crucial for improving the effectiveness of Digital Twins. Long Short-Term Memory
(LSTM) networks have been used to represent complex temporal dependencies and identify long-
term links in the Industrial Internet of Things (IIoT). This paper proposed a Digital Twin temporal
dependency technique using LSTM to capture the long-term dependencies in IIoT time series data,
estimate the lag between the input and intended output, and handle missing data. Autocorrelation
analysis showed the lagged links between variables, aiding in the discovery of temporal dependen-
cies. The system evaluated the LSTM model by providing it with a set of previous observations and
asking it to forecast the value at future time steps. We conducted a comparison between our model
and six baseline models, utilizing both the Smart Water Treatment (SWaT) and Building Automation
Transaction (BATADAL) datasets. Our model’s effectiveness in capturing temporal dependencies
was assessed through the analysis of the Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF). The results of our experiments demonstrate that our enhanced model achieved a
better long-term prediction performance.

Keywords: temporal dependency; Digital Twins; LSTM; multivariate time series

1. Introduction

Digital Twins connect the real and virtual worlds [1,2], offering simulations, projec-
tions, and insights that can be applied to decision-making, optimization, and maintenance
tasks [3]. The Digital Twin can learn and capture the underlying patterns and dependencies
of the dynamic system by examining the historical and real-time data of the multivariate
time series and training an LSTM network with this data [4]. This enables it to generate
precise simulations and predictions. Digital Twin is a technology that is still under devel-
opment, but it has the potential to revolutionize the way we manage assets. Digital Twins
are virtual representations of physical assets that can be used to simulate, monitor, and
optimize the performance of those assets [5].

Temporal dependencies are the patterns and relationships that develop over time
between the variables in multivariate time series data. These dependencies can include
seasonality, trends, lagged relationships, sequential patterns, and other temporal structures.
Temporal dependencies and multivariate time series analysis are crucial in many areas,
including weather forecasting, industrial operations, and others [6]. To make effective
decisions and maximize system performance, it is essential to have the ability to accurately
analyze and forecast [7] the behavior of complex dynamics. Time series data can be utilized
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for analyzing various phenomena, including household electricity usage, road occupancy
rates, currency exchange rates, solar power generation, and even musical notation. Most of
the time, the data collected consists of multivariate time series (MTS) data, such as the local
power company monitoring the electricity consumption of numerous clients. Complex
dynamic interdependencies between different series [6] can be significant but challenging
to capture and analyze. As science and technology continuously advance, systems used by
people are becoming increasingly complex.

Multivariate time series (MTS) and increasingly sophisticated data are required to
explain complex systems [7,8]. The system generates multiple variables at any given time,
resulting in a multivariate time series denoted by the matrix X = {X1, X2, X3, . . . . . . , Xm},
which records the values of these numerous variables at different time steps within the same
period. In several areas, such as urban air quality forecasting [9], traffic prediction [10,11],
the COVID-19 pandemic [12], and the industrial sector [13], it is essential to analyze
the MTS data. Analysts frequently attempt to predict the future using historical data.
Forecasting can be more precise when the interdependencies among distinct variables
are effectively modeled. In general terms, we refer to the concurrent correlation between
different variables in the MTS as spatial connections [12], the concurrent correlation between
variables at different time points as temporal dependency correlation, and the concurrent
correlation between different variables at different points in time as temporal linkage.

The concept of the Digital Twin represents one potential application of LSTM networks
in the context of time series analysis. A Digital Twin is a virtual representation of a real-
world system or process. By integrating real-time input from sensors and other sources
with the capabilities of LSTM models, a Digital Twin can accurately replicate the behavior
and dynamics of the physical system it represents. Long Short-Term Memory (LSTM)
networks, a type of Recurrent Neural Network (RNN) explicitly designed to capture and
leverage temporal dependencies, offer an effective approach for analyzing multivariate
time series data. LSTM networks are particularly well-suited for modeling time series data
due to their ability to handle sequences with long-term dependencies.

To build effective predictive models, identifying the appropriate lag order (the number
of past observations used as inputs in a time series model) is crucial. The Autocorrelation
Function (ACF) and the Partial Autocorrelation Function (PACF) are used for this purpose.
Our methodology’s primary contribution to this research lies in its utilization of statistical
methods for identifying lags in time series data. These methods play a pivotal role in
helping us to comprehend the relationships between data points at different time stamps, a
critical aspect of identifying and modeling temporal dependencies.

Utilizing temporal dependencies in multivariate time series analysis through LSTM
networks, in combination with the concept of Digital Twins, forms a powerful approach
to understanding and predicting complex systems. These methodologies open up new
avenues for optimization, proactive maintenance, and decision support across various
industries, ultimately enhancing productivity, reliability, and overall performance.

The main contribution of this paper includes:

• We propose a Digital Twins scenario based on temporal connections in multivariate
time series data. It aims to identify patterns, relationships, and lags among the time
series data variables.

• To capture complex temporal connections and uncover long-term links in the data, the
study utilizes Long Short-Term Memory (LSTM) networks to represent and analyze
the multivariate time series data based on past observations.

• The lag orders between variables are identified using autocorrelation analysis, includ-
ing ACF and PACF, which facilitate the determination of lag orders at each time step
in the time series data. This analysis simplifies the comprehension of connections and
dependencies among various variables within the feature.

• Metrics such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE),
and Root Mean Square Error (RMSE) were measured to demonstrate the robustness of
the system. The model was tested for its ability to predict future values at various time
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steps using historical observations as training data. This assessment sheds light on the
efficiency and efficacy of the LSTM model in identifying temporal dependencies in
the data.

Paper Structure

The structure of this paper is as follows: Section 2 explores related works on temporal
dependencies in multivariate time series data. Section 3 defines a Digital Twin overview,
temporal dependencies in multivariate LSTM, and the datasets used. Section 4 details the
experimental results of the proposed system. Section 5 focuses on correlation analysis.
Section 6 presents the conclusion and summarizes the results. Finally, we conclude with
future work in Section 7.

2. Related Work

Recently, several industries, including manufacturing and the automobile industry [14],
have chosen to make Digital Twin a cornerstone of their technology. Digital Twin offers
data fusion and the ability to replicate physical systems [15].

In the field of processing time series data, the autoregressive model has traditionally
been employed. This methodology assumes that the time series [16] under investigation
exhibit a linear relationship with their past values. It predicts future values based on
linear modeling of previous values, possibly with a constant term and random error.
Autoregressive Integrated Moving Average (ARIMA) is the model [17] that most commonly
employs the autoregressive model concept. It transforms a non-stationary time series into a
stationary one [18], after which the ARIMA model is applied to represent the data. However,
as the ARIMA model assumes a linear relationship between the projected value of the time
series, past values, and noise, it can only be used for assessing stationary series and cannot
effectively predict or address numerous complex time series.

As deep learning advances, more researchers are exploring the use of deep learning to
model the problem of multivariate time series analysis. Recurrent Neural Networks (RNNs)
and their variations serve as representative models for sequence-based deep learning.
However, it can be challenging for these models to converge due to issues like the vanishing
gradient and exploding gradient [19]. The vanishing gradient problem in RNNs has been
partially addressed by LSTM, which is still utilized in many sequential models. The
authors of [20] integrated LSTM with the conventional genetic algorithm to forecast time
series. The genetic algorithm selected the optimal LSTM structure, which was subsequently
successfully tested on time series data from the petroleum industry. In another study,
ref. [18] employed LSTM for supply chain analysis and forecasting, achieving excellent
results. LSTM was used to estimate the power load in a power compliance early warning
system and assess several sets of time series [19,20] generated by power consumption. The
authors successfully combined the random forest method with LSTM to predict the price
of carbon. Furthermore, ref. [21] constructed a self-encoder network based on LSTM for
forecasting daily precipitation time series data, while the authors of [22] applied LSTM to
analyze historical oil well production data and make predictions.

Time series data are present in all aspects of daily life. We collect time series data by
observing evolving variables produced by sensors over discrete time increments [21]. There
are some examples prior to the work of [22] for knowledge discovery in temporal data.
These methods mostly handle point-based events and only consider data as chronological
series. As a result, the physical arrangement of events is relatively straightforward, and
the expressiveness of using temporal relations such as “during” and “overlaps,” etc., is
limited. In addition to the parallel and serial ordering of event sequences, when dealing
with time series data for events that last across time, we may encounter other intriguing
temporal patterns [23]. Examples of patterns that cannot be described as simple sequential
ordering are “event A occurs during the time event B happens” and “event A’s occurrence
time overlaps with that of event B and both of these events occur before event C appears.”
However, it is suggested that temporal logic [24] be used to express temporal patterns
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defined over categorical data. Temporal operators are utilized, including since, until, and
next. Event A may always occur until Event B appears in our patterns [25]. Sequence data
is typically processed using Recurrent Neural Networks (RNNs), which are a crucial type of
neural network. However, vanishing- or exploding-gradient issues, which cannot resolve
the long-term reliance problem, severely affect RNNs. Long Short-Term Memory (LSTM), a
particular type of RNN, adds a gate mechanism and can prevent back-propagated errors
from disappearing or blowing up [23]. In contrast to other approaches, StemGNN [26]
uses a novel strategy to capture both inter-series correlations and temporal dependence
simultaneously in the spectral domain.

Complex models built using Artificial Neural Networks (ANNs) and Deep Learning
(DL) architectures typically struggle with issues relating to the need for large training data.

When considering the dynamic system of the Digital Twin and the Industrial Internet of
Things Applications, temporal dependencies were considered to discover temporal patterns
within the historical time series data based on lags and missing data. Industry 4.0 is the
fourth industrial revolution, which is characterized by the integration of digital technologies
into manufacturing and other industrial processes. Table 1 presents a comparative study
of different methods used and their limitation between multivariate LSTM, temporal
dependencies, and Digital Twins. Information serves as the vital foundation for the mass
personalization concept, and cooperative, people-centered strategies form the fundamental
elements for achieving a significant degree of sustainability [27]. Sensor technologies play a
crucial role in Industry 4.0 (Acme Corporation, San Francisco, CA, USA) by collecting data
from the physical world in real time. These data can then be used to create Digital Twins,
which are virtual representations of physical systems. However, environmental factors or
inherent problems may cause sensors to be faulty [28].

Some RNN, GRU, and LSTM models have been shown to be able to handle very high
missing values and delays in time series data [29]. This is because they are able to learn the
underlying patterns in the data even when there is a lot of missing information.

Table 1. A comparative study of multivariate LSTM, temporal dependency, and Digital Twin.

Authors Year Methodology Limitations

P. G. Zhang et al. [17] 2003

The hybrid model uses the distinctive
quality and power of both ANN and
ARIMA models to identify
various patterns.

The proposed hybrid model is not
contrasted with other cutting-edge time
series models in the paper.

R. Vohra et al. [19] 2015 The DBN-LSTM network is used to keep
track of the temporal information.

Their work only focuses on DBN-LSTM
without comparing it with other
ML algorithms.

A. Sagheer et al. [20] 2019 An evolutionary algorithm is used to
optimally configure DLSTM architecture.

They emphasize the significance of
applying deep learning techniques to
overcome the complexity and
time-consuming nature of conventional
forecasting methodologies.

S. Y. Shih et al. [6] 2019
Temporal Pattern Attention (TPA)
is used for multivariate time
series forecasting.

The method is not comprehensively
compared in the paper to other
state-of-the-art methodologies, which
may restrict the generalizability of
the findings.

P. S. Kam et al. [22] 2000
The research offers potential techniques
for identifying temporal patterns in
interval-based events.

The article offers fresh approaches for
identifying intriguing temporal patterns
in interval-based occurrences.
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Table 1. Cont.

Authors Year Methodology Limitations

K. J. Uribe et al. [21] 2020
The Unbiased Finite Impulse Response
(UFIR) filtering is used for time-stamped
delay and missing data.

The method proposed is based on
numerical investigation.

En Fu et al. [7] 2022 A temporal attention mechanism is
proposed based on (ConV-LSTM).

Since LSTM units continue to be
necessary for the temporal self-attention
mechanism, the model cannot be
fully parallelized.

P. C. Bascones et al. [14] 2023

Digital Twin (DT) is introduced and
Kernel Principal Component Analysis
(KPCA) and One-Class Support Vector
Machines (OCSVM) are used.

The methodology’s execution might
need a lot of processing power, technical
know-how, and data analysis.

Y. Lian et al. [30] 2023 MTAD-GAN (Multivariate Time Series
Data Anomaly Detection with GAN).

The suggested method is not contrasted
in the research with cutting-edge
anomaly detection techniques created
especially for multivariate time series
data for large scale applications.

3. Digital Twin and Temporal Dependency on Multivariate LSTM

Let T € Rnxt represent the number of exogenous series n and the total length of time t.
Suppose the exogenous series represents a series of data, with the kth series data denoted
as Xm = {X1m, X2m, X3m, . . . . . . , Xnm} to represent all features at time m. The total length
of time t for the target series data can be expressed as

T € Rnt

where

• T is the tensor representing the exogenous and target series data, with dimensions
n (number of exogenous series) × t (total length of time).

• n is the number of exogenous series.
• t is the total length of time.

The exogenous series are represented by the tensor x € Rnxtxk, where k is the number
of features in each exogenous series. The target series is represented by the tensor y € Rt.

The Digital Twin uses the historical time series data (tensor T) to analyze the pattern and
their relationships with machine failures. It employs machine learning models, such as LSTM,
to capture temporal dependencies and predicts based on data (X1m, X2m, X3m, . . . . . . Xnm).
The Digital Twin can provide early warnings when it detects abnormal patterns that indicate
potential machine failures.

3.1. Notation and Problem Formulation

To anticipate the target series accurately, it is imperative to discern temporal depen-
dencies within time series data when dealing with Digital Twins. In this context, Digital
Twins serve as virtual counterparts of real-world physical systems, facilitating efficient
monitoring, prediction, and control of the physical system itself. This involves capturing
correlations and patterns among variables as they evolve over time.

The Digital Twin temporal dependency on multivariate LSTM is captured by the
following equation:

y_t = f(T_{t − 1}, y_{t − 1}),

where f is the multivariate LSTM function. This equation states that the target series at time
t depends on the exogenous and target series data at time t− 1.
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In the context of multivariate time series analysis, let us consider a scenario in which
we have a set of variables represented as xi€ Rn. The objective is to predict the value
xt−1 + ∆ at the time t, where ∆ represents a constant limit that defines a distinct task.
For clarity, we denote the predicted value as yt−1 + ∆, which is expected to match the
actual ground truth value xt−1 + ∆. To achieve this prediction, we only require the input
data {xt−w, xt−w+1, . . . . . . , xt+1} for each task, with w representing the window size.
This approach is commonly employed because it is assumed that there is no meaningful
information available prior to the defined window, and as a result, the input remains
fixed [31,32].

ŷ
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= f (y1, y2, . . . . . . , yw, x1, x2, . . . . . . , xw), (1)

where f (.) is a nonlinear mapping function our model aims to learn.

3.2. Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) typically defines a recurrent function, f , and
calculates ht € Rn for each time step, t, as follows:

ht = f (ht−1, xt) (2)

where the kind of RNN cell utilized determines how function f is implemented.
The widely employed Long Short-Term Memory (LSTM) [33] cells have a slightly

distinct recurring function:
This is defined by the equations below:

it = sigmoid
(

Wi H + bi
)

(3)

ft = sigmoid
(
WtH + bt) (4)

Ot = sigmoid(Wo H + bo) (5)

Ct = sigmoid(WcH + bc) (6)

where it, ft, ot, and ct in the equations stand for the new memory cell states, forgetting
gate values, output gate values, and entry threshold values, respectively. Wi Wi, Wo, and
Wc are weight matrices and are a sigmoid function. The offset terms that correlate to
bi, bt, bo, and bc are equivalent terms. Mt is the final state of the memory cell, and ht is the
final output of the memory unit.

LSTM demonstrates promising results even when dealing with noisy and incom-
pressible input sequences. It has the ability to learn and capture temporal dependencies
spanning beyond short time lags, making it a valuable tool for handling multivariate time
series (MTS) data, which often present challenges for other models. Researchers have
dedicated decades to studying methods for predicting the future and identifying temporal
relationships among these variables. They achieve this by modeling previously observed
sequences of values, which in turn aids in making more informed decisions. When it comes
to predicting future occurrences, the concept of Digital Twin technology can be applied to
monitor both the physical and virtual environments effectively.

3.3. Digital Twins and Model Mapping

Modern industrial management places a high priority on Digital Twins, a topic that
has been extensively studied and applied in various industries. The Digital Twin is capable
of providing timely and accurate simulations, among other features, allowing it to monitor,
regulate, and manage the state of physical entities effectively [34]. Due to its effectiveness
in industrial manufacturing, community administration, and other sectors, Digital Twin
technology has recently attracted significant attention. To achieve more precise manage-
ment and prediction, recent studies have introduced the concept of distributed Digital
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Twins, as depicted in Figure 1. In our approach, we utilize a functional data-driven model
to identify temporal dependencies in Digital Twins using time series data. Additionally,
the contribution of this research lies in the utilization of statistical methods for identify-
ing lags in time series data. These methods aid us in understanding the relationships
between data points at different time stamps, which is crucial for identifying and modeling
temporal dependencies.
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Figure 1. Digital Twin and temporal dependency LSTM framework.

Between the physical space and the twin space, there exists a connection through
wired and wireless links to the industrial system. Based on their specific requirements
and significance, industrial devices request the associated server to perform simulations to
predict temporal connections. In this study, LSTM serves as the functional model of the
Digital Twin, aiming to identify patterns, trends, and lags in the system. In this mode, the
domain of Digital Twins can conduct integrated simulations in accordance with the physical
connection relations of these virtual models. It can also perform correlation discovery of
patterns, thus enhancing accuracy and scalability through this mechanism. In general,
several relationships that are challenging to define in the real world are often easier to
resolve in the virtual world.

3.4. Temporal Dependency Techniques

Temporal dependencies (TDs) are the patterns and relationships that develop over
time between the variables in multivariate time series data. These dependencies can be
seasonality, trends, lagged relationships, sequential patterns, and other temporal structures.

For Digital Twin applications, identifying temporal connections in multivariate time
series data is essential, as shown in Figure 1. Understanding the temporal correlations
between various variables enables spotting hidden patterns and future behavior. This
information can be applied to Digital Twin implementations to improve system perfor-
mance, anticipate problems, carry out condition monitoring, and enable environment or
proactive maintenance.

Figure 2 visualizes how temporal dependency can be based on observed, trend, sea-
sonal, and residual components in the datasets. In time series analysis, understanding
temporal dependency involves decomposing a time series into its various components,
which typically include observed, trend, seasonal, and residual components. Each of
these components represents different aspects of the data, and they help in identifying the
underlying patterns and dependencies in the time series.
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In the context of the Digital Twin, the temporal dependencies can be identified based on
trends and observed data but can also be identified based on other components like residual
and seasonality. In the physical space, these trends might indicate how a specific parameter,
say, temperature or production output, is gradually changing over time while in the twin
space, LSTM models can capture these trends by learning from the data. The Digital Twin
leverages these learned dependencies to provide real-time insights and predictions. For
instance, it might send an alert when the pressure exceeds safe limits or predict peak flow
rates for better resource allocation.

Overall, by decomposing a time series into its constituent parts, analysts can gain
insights into the different patterns and relationships that exist within the data. Temporal
dependency in time series data is an important concept that can be used to comprehend,
predict, and analyze time series data effectively.

3.5. Experimental Environment

This work uses the Python Jupiter notebook 6.5.2 framework to develop the appropri-
ate LSTM machine-learning-based model for the verification of the temporal dependency
model based on Digital Twins. A Windows 10 computer with a 64-bit operating system, an
LG 13th-generation Intel Core i5-13400 processor, 32 GB of RAM, and an NVIDIA GeForce
RTX 3060 Ti GPU Seoul, South Korea were all used in the training configuration. We
employed the Adam optimizer with a batch size of 16, a learning rate of 0.0001, and a
number of epochs of 300 to enhance the performance of our model. We employed mul-
tivariate time series to verify the temporal dependence of Digital Twin using SWaT [28]
and BATADAL [35].

4. Experiment and Results
4.1. Data Preprocessing

In our datasets, all the input features based on our dataset were collected from different
sensors and actuators, and their unit scale may be different.

The first step in dealing with the sparseness of IIoT data is to use the StandardScaler
to normalize the input variables. The data are transformed using standard scaling to have
a mean of 0 and a standard deviation of 1. It scales the data so that the distribution is
centered around 0, and some machine learning algorithms can operate more effectively as
a result. The StandardScaler is used to scale down input data ‘inputs’ to a common scale.
Table 2 shows the features used for the normalization of the LSTM model.
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Table 2. Dataset with features used.

Datasets Features

SWaT ‘PIT501’, ‘PIT502’, ‘PIT503’, ‘AIT501’, ‘AIT502’, ‘AIT503’, ‘AIT504’, ‘FIT501’,
‘FIT502’, ‘FIT503’

BATADAL ‘ P_J280’, ‘ P_J269’, ‘ P_J300’, ‘ P_J256’, ‘ P_J289’, ‘ P_J415’, ‘ P_J302’, ‘
P_J306’, ‘ P_J307’, ‘ P_J317’, ‘ P_J14’, ‘ P_J422’

Missing values in the dataset can cause problems while training machine learning
models. This is handled by the SimpleImputer. Normalizing the variables helps the opti-
mization algorithm to converge faster during the training by bringing them to a common
scale. The optimization process is generally more stable and efficient.

4.2. Training Stage of TD-LSTM

We employed the multivariate LSTM to improve our model’s ability to learn by
applying temporal dependency filters to the row vectors by capturing and learning the
temporal relationships in the time series data. Algorithm 1 aimed to help the TD-LSTM
model generate precise predictions and comprehend the dynamics of the system across the
time stamps.

Algorithm 1: Training Stage of Using LSTM.

1 Input:
2 Time series phenomenal: {X1, X2, . . . . . . , Xn−1}; target at
3 time t: Xt;
4 Length of lags(delays), period, trend: ld, lt;

period: p;
5 Output:

TD-LSTM model M;
Procedure:

//create a training example
6 T←µ

7 for every window of time that exists t(1 ≤ t ≤ n − 1) do:
8 Zd =

[
Xt−ld

, Xt−(ld−1), . . . . . . , Xt−1

]
;

9 Zp =
[

Xt − lp .p , Xt−(lp−1).p, . . . , Xt−p

]
;

put a training instance
({

Zd, Zp
})

into T;
10 end for

// Train model
11 for epoch in range (2000):
12 for batch in random batches(T): // Divide T into random mini-batches
13 update µ using optimization approach (Adam) and batch;

// Provide the trained TD-LSTM model M
14 M = TD-LSTM(µ);

4.3. Model Evaluation Criteria

Several metrics were employed to evaluate the models’ efficacy, which consisted of
Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE). When using a forecasting method that often expresses prediction
accuracy as a percentage, the MAPE offers a helpful way to quantify prediction accuracy.
The MAE provides the average deviation between the model’s predictions and the actual
data. The RMSE measures the standard deviation of the model’s prediction results. A lower
value implies improved model performance. The three standards are described below:

MAPE =

(
1
n

n

∑
i=1

yi − ŷi
yi

)
× 100 (7)
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MAE =
1
n

n

∑
i=1

yi − ŷi (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (9)

We used three evaluation criteria where yi, ŷi, and yi are respectively the ith actual
value, the ith predicted value, and the average value of n samples.

4.4. Results and Discussion

As shown in Figure 3 we employed LSTM layers specifically designed to handle time
series data. The first LSTM layer comprised 64 units, while the second LSTM layer consisted
of 32 units. The return_sequences = True argument was utilized to instruct the model to
return the output of the LSTM layer at each time step. This was imperative because we
aimed to enable the model to learn temporal dependencies within the data.
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Additionally, we introduced a dropout layer of 20% into the model. The dropout layer
randomly deactivates some of the units during training, which effectively prevents the
model from overfitting the training data. Furthermore, a dense layer was implemented to
connect all the units within the layer, matching the number of units to the output data.

During the experiment, we specified the optimizer, loss function, and metrics em-
ployed for training and evaluating the model. We opted for the Adam optimizer to update
the weights and measure the error between the model’s predictions and the ground truth
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labels. Metrics were employed to monitor the model’s performance throughout both the
training and evaluation phases. The results in Figure 4 were remarkable, with excellent
MAPE, MAE, and RMSE metrics signifying high predictive accuracy. However, in the
case of the SWaT dataset, our proposed model exhibited a weakness, particularly in terms
of RMSE.
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Figures 3 and 4 display the error rate metrics for several models across the datasets.
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Net [32], StemGNN [26], DA-ConvLSTM [31], and TSA-ConvLSTM [7].

To evaluate the LSTM network’s ability to recognize temporal relationships in multi-
variate Digital Twins, we conducted an assessment using the SWaT and BATADAL datasets.
As depicted in Figure 3, when comparing error rates between the datasets, a significant
distinction becomes apparent between the baseline and our model. MAPE and MSE demon-
strate promising results in reducing the error rate disparity, with differences of less than 0.2
when compared to the six baseline models. However, RMSE exhibits some weaknesses in
terms of error rates between the datasets.

StemGNN [26], on the other hand, is built upon the discrete Fourier approach and
incorporates a Graph Neural Network (GNN) model to extract features based on the spatial
relationships within the multivariate time series. It introduces an innovative self-attention
mechanism for learning the necessary graph structure for the GNN. During our training
process, we adhered to the default method configuration, using sample lengths of 10 for
SWaT and 12 for BATADAL.

Additional studies of LSTNet [32], designed to capture both long-term and short-term
dependencies, employ a fully connected layer for data autoregression. In our experiments,
we adopted the default model settings provided by the authors, and they utilized sample
lengths of 15 and 20 for their datasets. LSTM [32] is a conventional sequential model, while
GRU [26] represents an improved variant of LSTM with a reduced number of parameters.
These models were combined with a dense layer featuring a single hidden unit.

DA-ConvLSTM [31] and TSA-ConvLSTM [7] are two recent models for multivariate
time series prediction. They incorporate two attention layers within the convolutional
layer to capture temporal and spatial correlations, which have been shown to produce
excellent results.

In our paper, we followed the authors’ training procedures in [31] and [7] but increased
the number of iterations from 300 to 2000. The baseline models in the original papers
used 256 LSTM units, but we used lighter units of 64 to capture temporal correlations.
Our results in Table 3 were remarkable, with excellent MAPE, MAE, and RMSE metrics
in Figures 3 and 4, indicating high predictive accuracy. However, our proposed model
showed a weakness in the SWaT dataset, particularly in terms of RMSE.
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Table 3. Comparing our methods with other methods in the literature.

Methods
SWaT BATADAL

MAPE MAE RMSE MAPE MAE RMSE

GRU [29] 0.5593 0.2749 0.3631 0.2675 0.0575 0.0725
LSTM [36] 1.1373 0.5583 0.6936 0.5529 0.1131 0.1804

StemGNN [26] 0.4401 0.2152 0.2449 0.7825 0.1652 0.2066
LSTNet [32] 0.2325 0.1133 0.1615 1.5534 0.3221 0.3302

DA-ConVLSTM [31] 0.1958 0.0962 0.1416 0.1036 0.0193 0.0291
TSA-Conv-LSTM [7] 0.1549 0.0762 0.1216 0.0812 0.0174 0.0232

Ours 0.0153 0.6952 1.5140 0.0592 0.1470 0.2296

5. Correlation Analysis

Various analysis approaches can be applied to multivariate time series data to detect
temporal dependencies. Among the methods that are frequently utilized is autocorrelation
analysis, where one can determine the correlation between a variable and its lagged values.
The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) can be
used to determine the proper order of the moving average (MA) and autoregressive (AR)
components of a time series model.

In time series analysis, identifying the appropriate lag order (the number of past
observations used as inputs in a time series model) is crucial for building effective predictive
models. The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
plots seen in Figure 5a–d of the SWaT and BATADAL datasets are commonly used tools to
identify the lag order. The y-axis represents the correlation while the x-axis represents the
lag for both ACF and PACF.
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The ACF plot shows the correlation between the time series and its lagged values.
The PACF plot shows the correlation between the time series and its lagged values, after
removing the effects of the intervening lags.

Both the ACF and PACF plots are typically plotted on the same graph, with the lag on
the x-axis and the correlation coefficient on the y-axis. The blue area in the plots represents
the 95% confidence interval. Any correlation coefficient that falls outside the blue area is
considered to be statistically significant.

To interpret the ACF and PACF plots, we looked for the following patterns:

• A significant spike at lag 0, indicating that the time series is autocorrelated. This means
that the current value of the time series is correlated with its past values.

• A gradual decay in the ACF plot, suggesting that the time series is an autoregressive
(AR) process. This means that the current value of the time series can be predicted
from its past values.

A sharp drop in the PACF plot after a certain lag suggests that the time series is a
moving average (MA) process. This means that the current value of the time series can be
predicted from the errors of its past predictions.

6. Conclusions

In this research paper, we explored the application of Digital Twins and harnessed the
power of LSTM networks to uncover long-term temporal dependencies within complex
multivariate time series data. Our proposed method, utilizing multivariate LSTM, effec-
tively captured these extended temporal relationships present in time series data. Dealing
with missing data is a common challenge in time series analysis, and to overcome this
hurdle, we employed LSTM, a technique capable of handling missing values seamlessly.
The integration of LSTM networks played a significant role in advancing Digital Twin
technology for industrial use, showcasing their efficiency in capturing intricate connections
and handling missing data.

Our experiments demonstrated that our approach outperformed others when assessed
using key evaluation metrics such as MAPE, MAE, and RMSE. To gauge our model’s
performance comprehensively, we conducted thorough comparisons with six baseline
models using the SWaT and BATADAL datasets.

Overall, our methodology incorporated two essential statistical techniques, ACF and
PACF, which proved instrumental in identifying time lags within time series data. These
statistical methods facilitated a deeper comprehension of the relationships between data
points at different time intervals, a critical aspect in effectively identifying and modeling
temporal dependencies within time series data.

7. Limitations and Future Work

With the aim of enhancing the efficiency of industrial systems and identifying temporal
correlations, this study has made significant advancements by utilizing Digital Twins
and LSTM networks with time series datasets in the Industrial Internet of Things (IIoT).
However, it is essential to acknowledge that the research has several limitations.

Future work should focus on addressing the weaknesses observed in the SWaT dataset,
particularly regarding the RMSE error rate comparison. This can be achieved by conducting
more comprehensive hyperparameter tuning analyses and investigating methods for inter-
preting the temporal dependencies learned by the LSTM model. Furthermore, real-world
applications would greatly benefit from considering the actual impacts and challenges
associated with model deployment and integration.

In summary, while this study has made significant progress in utilizing the Digital
Twins concept and LSTM networks for temporal correlation identification in time series
data, it is imperative to recognize and address the research’s limitations to ensure its validity
and applicability in practical scenarios.
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