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Abstract: Single-image dehazing plays a significant preprocessing role in machine vision tasks. As
the dark-channel-prior method will fail in the sky region of the image, resulting in inaccurately
estimated parameters, and given the failure of many methods to address a large band of haze, we
propose a simple yet effective method for single-image dehazing based on an improved bright prior
and dark channel prior. First, we use the Otsu method by particle swarm optimization to divide
the hazy image into sky regions and non-sky regions. Then, we use the improved bright channel
prior and dark channel prior to estimate the parameters in the physical model. Second, we propose a
weighted fusion function to efficiently fuse the parameters estimated by two priors. Finally, the clear
image is restored through the physical model. Experiments illustrate that our method can solve the
problem of the invalidation of the dark channel prior in the sky region well and achieve high-quality
image restoration, especially for images with limited haze.

Keywords: image dehazing; dark channel prior; bright channel prior; Otsu; particle swarm optimization

1. Introduction

Complex weather, such as haze, will decrease the visibility of the landscape and affect
the image quality. For example, there will be missing colors, low saturation and blurred
texture details, which will lead to a decrease in the accuracy of vision system tasks.

Image dehazing methods can be divided into: image enhancement-based, prior-based
and deep learning-based methods. Enhanced-based dehazing methods such as Retinex [1],
histogram equalization [2] and wavelet transform [3] do not depend on the physical model
and improve image quality by increasing contrast and saturation. However, this kind of
method does not have a good dehazing effect and does not realize real dehazing physically.
Prior-based image dehazing methods generally estimate the parameters (transmission map
and atmospheric light) of the atmospheric scattering model (ASM) [4–6] and recover sharp
images. For example, He et al. [7] proposed the dark channel prior (DCP) to estimate
the transmission map. DCP is a well-known prior, which assumes that low-intensity
values of at least one color channel in a haze-free image are close to zero [8]. Meng [9]
proposed boundary constraints and regularization (BCCR), which uses guided filtering
and bilateral filtering to replace time-consuming soft matting to improve computational
efficiency. Berman [10] discovered a haze line prior (NonLocal), that is, the color value
distribution of the image will change from clusters to lines due to the existence of haze, and
used this distribution rule to make a preliminary estimate of the transmission map. Some
scholars have also proposed some methods combining total variation and DCP to estimate
the parameters [11–13]. These prior-based methods, although somewhat successful, rely
on estimates of parameters but are prone to problems such as distortion.
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Recently, learning-based methods have received more attention. Scholars have begun
to explore the use of convolutional neural networks (CNN) for image dehazing. Early
image dehazing methods focused on using the estimated transmission map to restore the
hazy images. For example, Li [14] proposed an AOD-Net, which reformulated ASM and
put a transmission map and atmospheric light into a new variable, and then restored the
clear image. Ren [15] proposed coarse-scale and fine-scale networks to roughly estimate
and refine the transmission map, respectively. Li [16] proposed a hybrid dehazing network
combining the vision transformer. Deep learning-based methods [17–32] rely heavily on
synthetic hazy images, which are prone to overfitting and perform poorly in real-world
scenarios.

To solve the above problems, we propose a novel single-image dehazing method based
on an improved bright channel prior (BCP) [33] and DCP to more accurately estimate the
transmission map and atmospheric light to restore a more clear haze-free image. First, for
the failure of DCP in the sky region, we propose the Otsu using particle swarm optimization
(PSO) to divide the hazy images into sky regions and non-sky regions, and then estimate
the parameters via the improved BCP and DCP. Our work can be summarized as follows:

• A Otsu and PSO method is proposed to accurately segment the sky and non-sky
regions of hazy images, which allows the different priors in the two regions to estimate
the parameters accurately.

• We propose an improved BCP to more accurately estimate the transmission map.
Inaccurate estimation of the parameters of the sky region can easily amplify noise and
cause distortion, so we limit it.

• To better fuse the parameters estimated by BCP and DCP, we propose weighted fusion func-
tions to obtain more accurate transmission maps and atmospheric light values, respectively.

2. Related Work
2.1. Image-Enhancement-Based Methods

Methods based on image enhancement include histogram equalization and the Retinex
algorithm. The histogram equalization dehazing method is to transform the gray value of
the hazy image into a uniform distribution. Retinex is a color vision model [1]. Differently
from traditional methods, Retinex can adaptively enhance various images. However, since
the dehazing is not performed physically, such methods are not robust.

2.2. Prior-Based Methods

Low visibility in hazy weather is affected by atmospheric particles. The most common
ASM is to describe the image degradation process in hazy weather:

I(q) = J(q)t(q) + A(1− t(q)) (1)

where q represents the position of a pixel, I(q) denotes the hazy image, J(q) represents the
clear image, A is the global atmospheric light and t(q) is the transmission map. The task
of image dehazing is to restore J(q) from I(q). Some scholars propose prior knowledge to
estimate J(q). The DCP-based algorithm [7] is the first method to combine DCP with ASM
for image dehazing. The mathematical expression of the dark channel:

Jdark(q) = min
y∈Ω(q)

( min
c∈(R,G,B)

Jc(q)), Jdark(q)→ 0 (2)

where c is a channel combining the three channels of R, G, and B; Jdark(q) can be calculated
by replacing the gray value of the center point pixel with the minimum gray value in
the rectangular area Ω(q). According to DCP theory, Jdark(q) is close to zero. DCP is
introduced to estimate the values of t(q) and A, and DCP has become the fastest-growing
and most widely used image dehazing algorithm. Therefore, many scholars have proposed
a large number of improved algorithms based on DCP [34–37]. However, many DCP-based
works cannot provide the dehazing of the sky region and are prone to halo and distortion,
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and the use of algorithms has high requirements for light intensity. Zhu [38] proposed a
color attenuation prior based on the statistical analysis of a large number of hazy images.
The method shows that the higher the haze concentration, the larger the depth of field.
He et al. [39] converted the parameter estimation into a convex linear optimization problem
and introduced the Haar wavelet transform to speed up the solution. It provides good
real-time performance. Ehsan [40] proposed a dual-transmission map method to restore
the haze-free image and reduce the halo phenomenon.

2.3. Learning-Based Methods

There is also a large number of learning-based methods in the field of haze removal.
Cai [41] proposed DehazeNet that can directly estimate the transmission map and then
completed the reconstruction of the clear image according to ASM. DehazeNet combines the
prior knowledge of the traditional dehazing network and obtains refined transmission maps
through feature extraction and nonlinear regression, and guided filtering [42]. DehazeNet’s
dehazing effect is good, but there are certain problems. Due to the different degrees of
light absorption, scattering, and transmission in different locations in the real atmospheric
environment, the distribution of atmospheric light is uneven, and the atmospheric light
obtained by using an assumptions prior cannot be well adapted to various situations in the
dehazing task. The processing effect at the change of depth of field is average. Ren [15]
proposed a single-image dehazing network (MSCNN), which first estimated the overall
transmission map and then further optimized it, and then analyzed the difference between
the features acquired by traditional methods and convolutional neural network learning.
Li [14] proposed AOD-Net, which unifies the two parameters in ASM into one parameter
through the conversion formula, eliminating intermediate steps and reducing the cumulative
error in parameter estimation. The network consists of two sub-modules, which are simple
in structure and efficient in processing. Engin [43] proposed an enhanced cycle generation
adversarial network (Cycle-Dehaze) that can directly generate a haze-free image without
estimating the parameters of ASM and in an unpaired manner. The network combines with
perceptual loss to improve the cycle consistency loss of CycleGAN architecture. Chen [44]
proposed GCANet, which used a smooth dilation technique that inserts dilated residual
blocks between codecs to aggregate contextual information without causing grid artifacts.
Wu [45] proposed AECR-Net based on contrastive learning, which uses the information of
clear images and hazy images as positive samples and negative samples respectively, ensuring
that the restored result images are closer to clear images. The network introduces deformable
convolution into the dynamic feature enhancement module in AECR-Net so that the sampling
grid can dynamically adapt to the shape to expand the receiving field and achieve a better
dehazing effect. AECR-Net is based on an autoencoder-like framework, which becomes
more compact by reducing the number of layers and the size of the space. Tran et al. [46]
proposed a new encoding–decoding network (EDN-GTM) that uses traditional RGB hazy
images and transmission maps estimated using dark channel priors as input to the network,
U-Net as the core network for image processing, and the spatial pyramid pooling module
and the Swish activation function in the network to achieve a better dehazing goal. Zhao [47]
proposed a nighttime image dehazing network, which fuses three inputs through white
balance. Alenezi [48] proposed an underwater image dehazing network that utilizes the
color channels and image features of RGB images to improve overall usability. The output
color channel features are fused using softmax weighting to obtain a clear image. Yang [49]
proposed a self-enhanced image dehazing framework D4 that focuses on the scattering
coefficient and depth information of images. They trained the network through unpaired
hazy and clear images to restore the scattering coefficient, depth map, and clear images. Song
et al. proposed DehazeFormer [50], which improved the structure of Swin Transformer [51]
to make it more suitable for the dehazing task. Song et al. proposed a compact dehazing
network gUNet [52] based on UNet [53] and achieved good results. Despite the great success
of deep learning-based methods, their generalization performance is unsatisfactory due to
heavy reliance on synthetic hazy image datasets.
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3. Methods

The method we propose mainly consists of three steps. We first segment the sky region
of the hazy image. Then, we estimate the transmission map and atmospheric light via the
proposed improved BCP and DCP. Finally, we fuse the transmission map and atmospheric
light and restore the clear image. The overall flowchart is shown in Figure 1.

Figure 1. The flowchart of our method.

3.1. Otsu Method by Particle Swarm Optimization

We propose an Otsu method [54,55] that uses particle swarm optimization (PSO) [56,57]
to find a better segmentation threshold to separate the sky region from the non-sky regions
in hazy images. The Otsu method by PSO can more accurately segment the sky and
non-sky regions.

We first convert the RGB hazy image into a grayscale image, letting NUM represent
the total number of pixels of the image and count(x) the number of pixels with a pixel gray
value of x. Then, the number of pixels with a gray value of x that appears in the image
probability P(x) can be expressed as:

P(x) =
count(x)

NUM
,

255

∑
0

P(x) = 1 (3)

Assuming that t is the threshold value for segmenting the non-sky and sky region of the
image, the pixels with gray values ranging from 0 to t are classified as non-sky regions, and
the pixels with gray values ranging from t + 1 to 255 are classified as sky regions. Let w1
and w2 denote the probabilities of two regions:

w1 =
t

∑
x=0

P(x), w2 =
255

∑
x=t+1

P(x) (4)
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Then, get the mean u1 and u2 of the two regions:

u1 =
∑t

x=0 x× P(x)
w1

, u2 =
∑255

x=t+1 x× P(x)
w2

(5)

Then, the mathematical expectation of the overall pixel gray value of the image is:

u = w1× u1 + w2× u2 (6)

According to the OSTU method [58], the optimal threshold t can be obtained by maximizing
the between-cluster variance σ2 of the image:

σ2 = w1× (u1− u)2 + w2× (u2− u)2 (7)

Then, we use Equation (7) as the fitness function of PSO. We used 500 particles and iterated
400 times to adaptively obtain the optimal segmentation threshold t. Finally, we performed
binarization processing and set the pixel value of the sky region whose gray value is greater
than the threshold t to 1, and the pixel value of the non-sky area whose gray value is less
than or equal to the threshold t to be 0. Figure 2 shows the effect of segmentation.

Figure 2. Hazy images and images after segmenting. The first row is the hazy image, and the second
row is the corresponding segmented image.

3.2. Accurate Estimation of Transmission Map and Atmospheric Light
3.2.1. In the Non-Sky Region

In the non-sky regions, DCP performs very well, so we use DCP for the initial estima-
tion. From Equations (1) and (2), the transmission map estimated by DCP [7] is:

t_DCP(q) = 1−ω min
y∈Ω(q)

(min
c

Ic(y)
Ac

DCP
) (8)

where the parameter ω is used to make distant objects have a small amount of haze, which
was set to 0.95 in [7]. As for the estimation of atmospheric light ADCP, we also use the
method of He [7]. First, we select the 0.1% brightest pixels in the dark channel and then take
the average value of the pixel values in the corresponding input image as the estimated
value of atmospheric light.
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3.2.2. In the Sky Region

Since DCP fails in the sky region [7], we adopt the improved BCP to estimate parame-
ters in the sky region. According to the BCP theory [33], the intensity values of most images
containing white objects or light sources in the RGB color channel are particularly large, or
even close to 255. For an image J(q), the mathematical expression of the bright channel is:

Jbright(q) = max
y∈Ω(q)

{
max

c∈(R,G,B))
[Jc(q)]

}
, Jbright(q)→ 255 (9)

where c is a channel combining the three channels of R, G, and B; Ω(q) is a rectangular area
centered at q. According to the BCP theory, Jbright(q) is close to 255. From ASM (Equation
(1)) and BCP (Equation (9)), it can be deduced that the transmission map is:

t_bright(q) =
max[ max

y∈Ω(p)
Ic(y)]− Ac

bright

255− Ac
bright

(10)

where c is a channel combining the three channels of R, G, and B; Ω(q) is a rectangular
area centered at q. However, the transmission map obtained in this way may be a negative

value or may be too small, so we improved it. We let b =

∣∣∣∣max
[

max
y∈Ω(q)

Ic(y)
]
− Ac

bright

∣∣∣∣, and

mean(b) represents the mean of b. Then:

t_bright(q) =


b+k

255−Ac
bright

, i f b < meau(b)
b

255−Ac
bright

, i f b > meau(b)
(11)

where k is the adjustment factor, and it was found through experiments that the value of k
is most suitable between 0.05 and 0.15. In addition, in order to prevent the transmission
map of pixels from exceeding 1, we made another restriction as follows:

t_bright(q) = min
(

t_bright(q), 1
)

(12)

For the estimation of atmospheric light Abright based on BCP, according to the BCP, the
maximum value of the bright channel in the region where the atmospheric light is located
is closest to the atmospheric light, so we take the 0.1-percent brightest pixels of the bright
channel and then take the average value of the pixel of the corresponding input image as
the atmospheric light estimated value.

3.3. Fusion of Sky and Non-Sky Regions

In order to better fuse the estimated parameters of the sky and non-sky region, we
propose a more appropriate weighted fusion function.

3.3.1. Transmission Map Fusion

According to the DCP and BCP theories, the transmission map estimated by DCP is
suitable for non-sky regions, and the transmission map estimated by BCP is suitable for
sky regions. For better fusion, we introduce a weight parameter λ:

λ =
Z

H ×W
(13)

where Z represents the total number of pixels in the sky region, which can be obtained by
calculating the number of pixels whose pixel value is [t + 1, 255]; H and W represent the
height and width of the image, respectively; H ×W represents the total number of pixels
of the image. The fused transmission map t(q) is:

t(q) = λt_bright(q) + (1− λ)t_dark(q)− σ (14)
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where σ = 1
10 e−

Z
H×W−Z − 0.05 is an adaptive parameter we designed, and the value of σ

belongs to [−0.05, 0.05]; Z is the total number of pixels in the sky region; (H ×W − Z)
is the total number of pixels in the non-sky region; the value of σ in the sky region is
a negative number; and the value of σ in the non-sky region is a positive number. The
fused transmission map t(q) is then refined by gradient domain guided filtering [59] to
reduce blocking artifacts. Experiments verify that the transmission map obtained after σ
fine-tuning can make the image recovery better.

3.3.2. Atmospheric Light Fusion

Since the atmospheric light obtained by the bright channel has an atmospheric light
value near to that of light in the haze-free state, we fuse the atmospheric light as follows:

A = λADCP + (1− λ)Abright (15)

3.4. Recovering the Clear Image

According to Equation (1), the final recovered clear image J(p) is as follows:

J(q) =
I(q)− A

max(t(q), 0.1)
+ A (16)

where we set a lower limit of 0.1 for the transmission map, retaining a little haze and
preventing noise amplification caused by the too-small transmission map. The algorithm
of the proposed method is described in Algorithm 1.

Algorithm 1: Single image dehazing based on improved BCP and DCP.
Input: A hazy image I(q)
(1) Segmentation I(q) into sky area and non-sky regions using OSTU by PSO.
(2.1) For the non-sky region of I(q), the transmission map t_DCP(q) and

atmospheric light ADCP are estimated by DCP.
(2.2) For the sky region of I(q), the transmission map t_bright(q) and atmospheric

light Abright are estimated by improved BCP.
(3) Fuse t_DCP(q) and t_bright(q) by Equation (14), and fuse ADCP and Abright by

Equation (15)
(4) Recovering the clear image J(q) byEquation (16)
Output: The clear image J(q)

4. Experiments and Discussion

We randomly sampled some images from the synthetic hazy image (RESIDE dataset [60])
and real hazy images (O-Haze dataset [61] and NH-Haze dataset [62]) for comparative
experiments, and used the peak-signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM) metrics [63] for quantitative evaluation. We conducted detailed
comparative experiments with state-of-the-art methods, including DCP [7], BCCR [9],
NonLocal [10], MSCNN [15], DehazeNet [41], AODNet [14], He [39], Ehsan [40], D4 [49],
DehazeFormer-T [50], and gUNet-T [52].

4.1. Experiments on Synthetic Hazy Images

We randomly sampled several images from SOTS-Outdoor (from RESIDE dataset)
for experimental comparison. The visual comparison is shown in Figure 3. For Image 1,
the result of restoration via DCP is overall darker; the image restored by BCCR is a bit
overexposed; the result of restoration by He’s method has more haze; the color restoration
result of AODNet and Ehsan’s method shows a great change; the result of restoration
by NonLocal, MSCNN, DehazeNet, and D4 has color distortion; the result of restoration
by our method is closest to ground truth (GT)—the sky area is very well protected. For
Image 2 and Image 3, the restored results of DCP, BCCR, AODNet, and Ehsan show severe
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color distortion. He’s method was not effective in dehazing, and the restored results of
NonLocal, MSCNN, DehazeNet, and D4 show overexposure or overexposure in the sky
region. The overall restoration effects of DehazeFormer-T and gUNet-T are better, but the
restoration results of the sky region in Image 1 are slightly different from those of GT. The
result recovered by our method is closest to that of GT. The comparison of visual effect
experiments shows that our method can well protect the sky region of the image, which
solves the problem that DCP fails in the sky region.

Figure 3. Comparison of visual effects after dehazing of synthetic hazy images from SOTS-Outdoor.
(a) Hazy input, (b) DCP [7] results, (c) BCCR [9] results, (d) NonLocal [10] results, (e) MSCNN [15] results,
(f) DehazeNet [41] results, (g) AODNet [14] results, (h) He [39] results, (i) Ehsan [40] results, (j) D4 [49]
results, (k) DehazeFormer-T [50] results, (l) gUNet-T [52] results, (m) our results, (n) ground truth.

4.2. Experiments on Real-World Hazy Images

We randomly sampled several images from the O-Haze and NH-Haze datasets for
comparative experiments. Both O-Haze and NH-Haze datasets show haze generated by
professional haze generators. O-Haze has hazy outdoor scenes, and NH-Haze has uneven
haze. Figure 4 shows the dehazing effects of different methods on the O-Haze dataset. In
Image 4 of Figure 4, the results restored by DCP, NonLocal, and Ehsan methods are severely
distorted in the sky region, and the result of BCCR is that the sky area is overexposed.
The results of restoration by DehazeNet, MSCNN, He, D4, DehazeFormer-T, and gUNet-T
have more haze, as shown in the tree area in Image 4. The result of recovery by AODNet
is oversaturated. For Image 5, the BCCR and NonLocal methods increased the original
brightness, and AODNet reduced the original brightness of the image. The result recovered
by Ehsan’s method is severely distorted. The results of D4, DehazeFormer-T, and gUNet-T
restoration still show residual haze, such as the red box area. For Image 6, the recovery
results of DCP, DehazeNet, AODNet, and Ehsan are all darker, and the brightness of the
recovery result of BCCR is obviously changed. The recovery by MSCNN, DehazeFormer-T,
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and gUnet-T left the haze visible to the naked eye, such as the grass part of the image.
Image 7 shows a similar result. The results recovered by our method have the least haze
while being closest to GT.

Figure 4. Comparison of visual effects after dehazing of real-world hazy images from the O-
Haze dataset. (a) Hazy input, (b) DCP [7] results, (c) BCCR [9] results, (d) NonLocal [10] results,
(e) MSCNN [15] results, (f) DehazeNet [41] results, (g) AODNet [14] results, (h) He [39] results,
(i) Ehsan [40] results, (j) D4 [49] results, (k) DehazeFormer-T [50] results, (l) gUNet-T [52] results,
(m) our results, (n) ground truth.

Figure 5 is a comparison on the NH-Haze dataset. The haze in each image in this
dataset is relatively thick. The images restored by methods such as DCP, AODNet, and
Ehsan are too dark or oversaturated. The image recovered by BCCR is overexposed. The
images restored by MSCNN, DehazeNet, He, and D4 methods still have more haze; and the
images restored by NonLocal have less haze, as shown in Image 8, which may be because
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the non-local prior has a better dehazing effect on uneven haze, but the scene color shows
some distortion. In Image 9, the results recovered by DCP and Ehsan are darker; the result
of BCCR is overexposed; and the results recovered by MSCNN, He, DehazeFormer-T, and
gUnet-T have more residual haze, such as the area shown in the red box. The scene details
restored by NonLocal feel good, but the color of the haze is changed, making it the same in
Image 10. The image restored by our method is relatively closer to GT in terms of color and
saturation, but there is still a certain amount of haze, which is where our future work can
be improved.

Figure 5. Comparison of visual effects after dehazing of real-world hazy images from the NH-
Haze dataset. (a) Hazy input, (b) DCP [7] results, (c) BCCR [9] results, (d) NonLocal [10] results,
(e) MSCNN [15] results, (f) DehazeNet [41] results, (g) AODNet [14] results, (h) He [39] results,
(i) Ehsan [40] results, (j) D4 [49] results, (k) DehazeFormer-T [50] results, (l) gUNet-T [52] results,
(m) our results, (n) ground truth.

4.3. Quantitative Evaluation Experiment

To objectively verify the performance, we conducted a detailed quantitative evaluation
using PSNR and SSIM metrics for comparison. Table 1 is the quantitative experimental
comparison results of all images in Figures 3–5. In Table 1, the highest PNSR/SSIM scores of
Image 1, Image 2, and Image 3 are based on the deep learning method gUNet, which is due
to the fact that gUNet learns better features on synthetic data. However, the PNSR/SSIM
score of our method was the highest on the remaining real-world hazy images, which
illustrates the excellent performance of our method in real-world scenes.
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Table 1. Quantitative evaluation results. The bold font indicates the highest score.

Methods
PSNR/SSIM Values for Images 1–10.

1 2 3 4 5 6 7 8 9 10

DCP [7]
11.089 11.190 18.619 12.209 21.088 18.497 13.269 14.882 12.244 11.220

/0.727 /0.715 / 0.918 /0.535 /0.561 /0.763 /0.545 /0.584 /0.335 /0.273

BCCR [9]
19.987 15.577 21.027 15.275 15.667 15.925 8.395 6.632 8.464 12.297

/0.896 /0.495 / 0.882 /0.599 /0.523 / 0.699 /0.517 /0.428 /0.472 /0.277

NonLocal [10]
27.937 16.550 21.063 13.674 13.211 19.308 18.526 15.132 13.202 13.418

/0.971 /0.927 /0.838 /0.579 /0.513 /0.708 /0.682 /0.578 /0.493 /0.371

MSCNN [15]
26.273 28.195 23.438 16.461 20.649 21.324 17.109 14.097 13.926 15.042

/0.964 /0.946 /0.925 /0.654 /0.676 /0.809 /0.731 /0.605 /0.442 /0.312

DehazeNet [41]
23.790 22.745 19.717 14.743 21.107 16.980 16.959 13.884 13.070 14.394

/0.965 /0.947 /0.710 /0.541 /0.648 /0.679 /0.670 /0.566 /0.395 /0.348

AODNet [14]
17.454 16.120 15.810 13.581 16.142 16.421 15.362 14.999 13.514 12.745

/0.912 /0.896 /0.754 /0.460 /0.376 /0.644 /0.586 /0.550 /0.385 /0.263

He [39]
21.662 21.712 24.983 15.723 19.857 21.349 20.469 13.177 12.911 14.788

/0.923 /0.916 /0.905 /0.576 /0.698 /0.787 /0.760 /0.610 /0.417 /0.323

Ehsan [40]
18.067 15.713 16.845 12.135 17.421 16.519 17.012 14.488 12.061 10.176

/0.805 /0.817 /0.855 /0.553 /0.456 /0.682 /0.643 /0.546 /0.327 /0.232

D4 [49]
22.212 27.556 30.337 16.955 19.562 21.819 21.447 13.733 14.205 14.311

/0.965 /0.970 /0.978 /0.695 /0.803 /0.859 /0.816 /0.648 /0.501 /0.507

DehazeFormer-T [50]
28.043 29.251 34.520 16.379 21.051 24.324 20.806 12.798 13.071 14.764

/0.973 /0.978 /0.983 /0.723 /0.816 /0.856 /0.800 /0.633 /0.455 /0.491

gUNet-T [52]
34.693 34.214 36.290 16.065 19.435 22.761 19.421 12.356 13.227 14.909

/0.990 /0.989 /0.991 /0.722 /0.778 /0.848 /0.768 /0.619 /0.449 /0.495

Our
27.958 30.125 30.709 17.480 21.131 25.686 21.530 15.482 14.423 15.359
/0.974 /0.973 /0.987 /0.732 /0.830 /0.864 /0.820 /0.649 / 0.506 / 0.518

In addition, we performed quantitative comparison experiments on all images on the
SOTS-Outdoor dataset, O-Haze dataset, and NH-Haze dataset. Table 2 shows the average
PNSR/SSIM score results of the three datasets. On the synthetic data, SOTS-Outdoor, our
method, scored inferiorly to the latest deep learning methods DehazeFormer-T and gUNet-
T, which shows that these two methods perform well on synthetic datasets. However,
our method scored the highest on the O-Haze and NH-Haze datasets of real-world hazy
images, which further illustrates the excellent dehazing performance of our method in
the real world. The performance of deep learning-based methods on real-world images is
inferior to that of our method, possibly due to the overfitting of models trained on synthetic
datasets. This also shows that deep learning-based methods may have poor generalization
ability due to their heavy dependence on datasets.
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Table 2. The average PSNR/SSIM score results on the SOTS-Outdoor dataset, O-Haze dataset, and
NH-Haze dataset. The bold font indicates the highest score.

Methods
SOTS-Outdoor O-Haze NH-Haze

PSNR SSIM PSNR SSIM PSNR SSIM

DCP [7] 14.802 0.802 14.428 0.502 11.573 0.418

BCCR [9] 15.323 0.795 8.719 0.524 10.271 0.500

NonLocal [10] 18.581 0.843 15.006 0.649 12.155 0.529

MSCNN [15] 19.108 0.875 17.012 0.675 12.796 0.500

DehazeNet [41] 18.696 0.742 15.486 0.601 11.852 0.448

AODNet [14] 19.645 0.892 15.098 0.543 11.873 0.424

He [39] 23.743 0.912 15.573 0.625 12.215 0.473

Ehsan [40] 13.899 0.739 14.628 0.567 11.106 0.404

D4 [49] 25.066 0.939 16.746 0.657 12.666 0.507

DehazeFormer-T [50] 29.293 0.964 15.925 0.637 12.051 0.485

gUNet-T [52] 35.649 0.987 15.820 0.630 12.055 0.479

Our 25.543 0.946 18.283 0.688 13.285 0.536

4.4. Application in Traffic Electronic Monitoring

On roads, especially in mountainous areas, haze is prone to occur, and there is much
electronic monitoring on roads. Hazy weather may affect the collection of vehicle infor-
mation by electronic monitoring, such as vehicle color, license plate number, and other
information. Our method can also be used for haze removal in hazy images collected by
traffic electronic monitoring. We downloaded a hazy traffic scene from the Internet and
conducted a comparative experiment. As shown in Figure 6, the results recovered by DCP,
BCCR, and Ehsan methods has obvious color distortion. The sky region of the NonLocal
restored result is overexposed. The results recovered by MSCNN, DehazeNet, AODNet,
and He have distortion in the sky region; and the road part recovered by DehazeNet, AOD-
Net, He, Ehsan, and D4 is too dark. The overall effects of the DehazeFormer-T and gUnet-T
restoration are superior, but there will be more residual haze, whereas the restoration result
of our method reduces distortion while removing haze. Since there is no GT image, it
is impossible to quantitatively evaluate the PNSR/SSIM index, but we used a fog aware
density evaluator (FADE) [53] to measure the amount of haze. The score of the FADE index
indicates the density of haze to a certain extent. In Table 3, the haze density of the image
recovered by the DehazeNet method is shown to be the smallest, which reflects that the
method has good dehazing ability, but the visual effect is not satisfactory. Our method
restores the image fog concentration only 0.024 more than the DehazeNet method. The
FADE value of the image recovered by our method is only 0.024 higher than that of the De-
hazeNet method, which shows that the dehazing performance by our method is also very
good. In addition, it can be seen that the images recovered by MSCNN, DehazeFormer-T,
and gUNet-T methods have more residual haze, which illustrates the limitations of these
methods for dehazing.

Table 3. The FADE index values of images recovered by different methods; see Figure 6. The bold
font indicates the best score, and the italic font indicates the next best score.

Image Input DCP [7] BCCR [9] NonLocal [10] MSCNN [15] DehazeNet [41] AODNet [14] He [39] Ehsan [40] D4 [49] DehazeFormer-T [50] gUNet-T [52] Our

FADE 3.511 1.184 1.112 1.077 2.072 1.003 1.519 1.880 1.293 1.582 2.302 2.980 1.027
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Figure 6. Comparison of visual effect after haze removal of a hazy image collected by traffic road
electronic monitoring. (a) Hazy input, (b) DCP [7] results, (c) BCCR [9] results, (d) NonLocal [10]
results, (e) MSCNN [15] results, (f) DehazeNet [41] results, (g) AODNet [14] results, (h) He [39]
results, (i) Ehsan [40] results, (j) D4 [49] results, (k) DehazeFormer-T [50] results, (l) gUNet-T [52]
results, (m) our results.

4.5. Processing Time of the Algorithm

We used MATLAB 2019a software to execute our algorithm on an Intel i7-7700 3.6 GHz
CPU and 8 GB RAM environment to obtain the haze-free images. Table 4 shows the processing
times of all images in Figures 3–5. In Table 4, we can see that as the size of the image increases,
the processing time of the algorithm increases. Especially for high-definition images with a
resolution of 1600× 1200, the algorithm’s processing time increases significantly. The two most
time-consuming operations of the algorithm are to use PSO to find the optimal segmentation
threshold t and to traverse each pixel of the image to determine whether it belongs to the sky
region. This shows that our method takes more time to process high-definition images, which
is also the direction of our future improvement.

Table 4. The algorithm’s processing time for Images 1–10.

Image 1 2 3 4 5 6 7 8 9 10

Size 550 × 413 550 × 309 550 × 413 459 × 573 476 × 311 541 × 358 484 × 334 1600 × 1200 1600 × 1200 1600 × 1200

Time 3.294 s 2.594 s 3.155 s 3.358 s 2.396 s 2.964 s 2.477 s 21.308 s 19.559 s 20.270 s

5. Conclusions

We propose a simple yet effective dehazing method. In order to solve the famous
DCP failure in the sky region, we segment the sky area of the image, use the improved
BCP to estimate the parameter in the sky area, and use DCP to estimate the transmission
map in the non-sky area and atmospheric light. We then efficiently fuse the parameters
of the two regions, and then recover a clear image according to ASM. We conducted
visual and quantitative comparison experiments on synthetic and real-world datasets with
state-of-the-art methods. The results demonstrate that our method can well preserve sky
regions, reduce color distortion and oversaturation, and provide higher PSNR and SSIM
scores. Recent learning-based methods have achieved excellent performance on synthetic
datasets due to their powerful backbone networks for learning image features, such as
UNet and Swin transformer. However, the learning-based method has poor generalization
ability due to its heavy dependence on the specific dataset it is trained with, and it may
not perform satisfactorily on new scenes. In contrast, our method is unsupervised and
performs well in real-world scenarios, which illustrates the effectiveness of physical models
and prior knowledge.

In addition, the proposed method cannot fully achieve the effect of dehazing non-
uniform thick hazy images, which may be due to the fact that the physical model and prior
knowledge are not fully practical in non-uniform haze scenes, which is also the direction of
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our future work. In the future, we will try to study a more robust physical model that can
reflect the imaging process of images with various haze concentrations.
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